
LIU et al.: ROTATION-INVARIANT DESCRIPTION FROM SPHERICAL HOG FIELD 1

3D Rotation-Invariant Description from
Tensor Operation on Spherical HOG Field

Kun Liu1,3

liu@informatik.uni-freiburg.de

Henrik Skibbe1,3

skibbe@informatik.uni-freiburg.de

Thorsten Schmidt1,3

tschmidt@informatik.uni-freiburg.de

Thomas Blein2,3

thomas.blein@biologie.uni-freiburg.de

Klaus Palme2,3

klaus.palme@biologie.uni-freiburg.de

Olaf Ronneberger1,3

ronneber@informatik.uni-freiburg.de

1 Computer Vision and Image Analysis
Group
University of Freiburg
Germany
http://lmb.informatik.uni-freiburg.de

2 Institute of Biology II - Botany
University of Freiburg
Germany

3 BIOSS Centre for Biological Signalling
Studies
University of Freiburg
Germany

Abstract

Rotation-invariant descriptions are required in many 3D volumetric image analy-
sis tasks. The histogram-of-oriented-gradient (HOG) is widely used in 2D images and
proves to be a very robust local description. This paper concentrates on how to use the
HOG feature in 3D volumetric images when rotation-invariance is concerned. This is
challenging because of the complexity of 3D rotations. We present a decent solution
based on the spherical harmonics theory which is an effective tool for analysing 3D ro-
tations, together with the spherical tensor operations which explore high order tensor
information in spherical coordinates. The design is quite general and could be used
for different applications. It achieves high scores on Princeton Shape Benchmark and
SHREC 2009 Generic Shape Benchmark, and also produces promising results when ap-
plying on biological microscopy images.

1 Introduction

In 3D volumetric images, it is very common that similar objects presented in different ori-
entations need to be recognized as the same class [10, 19, 22]. When objects have unknown
poses, starting from rotation-invariant descriptions can make the following analysis easier
since they are pose-independent. Besides, a good description should be able to capture
substantial image patterns, and be robust to small object deformation or image distortion.
Gradient-histogram based features, like HOG [6] and SIFT [15], are widely used for 2D im-
age description and prove to be very robust [9, 26]. Concerning the rotation-invariance, HOG
always needs to be constructed on a certain coordinate, and SIFT achieves the invariance on
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(a) (b) (c) (d)

Figure 1: The basic ideas: (a) Spherical harmonics for representing HOG (real part of the
first 4 bands are shown). (b) Individual gradient as function on a sphere (reconstructed
from the SH coefficients). (c) The spatially aggregated spherical HOG. (d) Spherical tensor
operations create rotation-invariant descriptions from the spherical HOG field.

detected interest points by normalizing (aligning) the local coordinate to the dominant gra-
dient directions. The basic HOG feature employs a histogram binning on gradient direction
and a spatial aggregation, with soft binning. The spatial aggregation works as a “blurring”
effect, which discounts the importance of exact alignment between features. Because the im-
portant gradient patterns in different directions have already been separated into histogram
bins, they can be well preserved under this “blurring”.

Some work is recently reported on extending SIFT or HOG feature to 3D data [2, 10, 13,
21]. The approach proposed in [21] computes HOG features on pose-normalized 3D shapes.
Allaire et al. [2] proposed a 3D SIFT. Their method normalizes the local coordinate direc-
tions by checking dominant gradient directions in two steps. A similar method is employed
in [10]. However, these normalization methods only work well for objects or positions with
certain conditions. Like in the 2D case, this rotation-invariant SIFT is based on an interest
point detection, because the decision for a local coordinate system is not reliable for arbi-
trary positions. In fact, the interest point detection is usually insufficient for complex tasks.
For example, many state-of-the-art 2D object recognition algorithms skip this step and use
the non-invariant dense HOG features with a sliding window [9, 26]. On another aspect,
the complexity of 3D rotations makes the normalization methods even less reliable in 3D
images. While only one angle needs to be determined for an aligned coordinate in 2D, three
angles are required for the 3D case (like Euler angles).

In contrast, there exist analytic methods which guarantee the rotation invariance directly,
without any dependence on pose normalization. A fundamental method to compute such
invariant features is group integration [18]. Closely related methods come from Fourier
analysis in spherical coordinates [12, 25], where spherical harmonics (SH) are used as the
angular basis, and rotation-invariant features can be created by taking the magnitude of SH
coefficients in different bands. Recently, high order information like vector and tensors
are also utilized in the SH framework [7, 24]. They bring better representation for local
structures. However, these SH based methods have no special ability to deal with object
deformation and image distortion, which proves to be important for robust description. So
we are motivated to take advantage of some HOG-like feature to enhance the performance
of SH based descriptions.

In this paper, we will present an approach to embed HOG into the SH framework, produc-
ing a high-performance 3D rotation-invariant description. First the preliminaries about the
SH and spherical tensors are given in the next section. Sec. 3 introduces a spherical HOG
representation which connects HOG with the SH framework. Then Sec. 4 presents how
to create rotation-invariant descriptions from the obtained spherical HOG field. The experi-
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mental part demonstrates the performance of our approach on 3D shape retrieval benchmarks
and a practical application on 3D confocal biological images.

2 Preliminaries for Working on the 2-sphere

In 2D, an angular signal on a certain radius (a circle) could be well described by a one-
dimensional Fourier transform [25]. In 3D, to describe a signal on a sphere with 3D rotations,
the tools we need are the spherical harmonics (SH) and the rotation group SO(3). The gentle
introduction from Green [11] might be a good start for readers who are unfamiliar with
SH. Here we give an introduction about some important conceptions for working on the
2-sphere(S2), in the scope of this paper. For more details, we refer to [3, 17, 20].

2.1 Spherical Harmonics

Spherical harmonics Y `
m : S2→ C form an orthonormal basis for the 2-sphere. Any square-

integrable scalar function on a sphere, can be expanded into a linear combination as:

f (θ ,φ) =
∞

∑
`=0

`

∑
m=−`

f̂ `mY `
m(θ ,φ) =

∞

∑
`=0

f̂`
>

Y`(θ ,φ) (1)

where Y`(θ ,φ) and f̂` ∈ C2`+1, ` denotes the band of expansion, m ∈ [−`,`] is the order in
the `-th band, x>= xT is the conjugate transpose. The angular part of spherical coordinate
is defined as θ ∈ [0,π] and φ ∈ [0,2π) (colatitude and longitude). To describe an integrable
function f (r) : R3→ C, we can write

f (r) =
∞

∑
`=0

f̂`(r)>Y`(r) (2)

where r = |r|, and Y`(r) only depend on the angle of r. The Schmidt semi-normalized SH

are defined as Y `
m(θ ,φ) =

√
(`−m)!
(`+m)! P`

m(cosθ)eimφ . P`
m are the associated Legendre polynomi-

als. They have the normalization relationship < Y `
m,Y

`′
m′ > =

∫
S2 Y `

mY `′
m′dΩ = 4π

2`+1 δ`,`′δm,m′ .
Considering the normalization and Equation 1, the expansion coefficients are computed as
f̂ `m = 2`+1

4π
<f ,Y `

m>= 2`+1
4π

<Y `
m, f>.

Without loss of generality, here we can always assume the rotation is around the origin.
To analyse the rotation behaviour of expansion coefficients, we need the so called Wigner
D-matrices [20], which are the irreducible representation of a rotation g ∈ SO(3). They are
determined by the 3D rotation angles, and denoted by unitary matrices D` ∈ U2`+1, for the
rotation in the `th band. Let Ug be the rotation matrix in Cartesian coordinate, D`

g will keep
the SH basis fixed under the rotation as

[gY`](r) = D`
gY`(Ug

T r) = Y`(r) (3)

If we apply a rotation on the 3D function f (r) in Equation 2, we get [g f ](r) = f (Ug
T r) =

∑` f̂`(r)>Y`(Ug
T r) = ∑`(D`

g f̂`(r))>Y`(r). So the SH expansion coefficients for a rotated
function just look like D`

g f̂`.
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2.2 Spherical Tensors
Spherical tensors were first proposed for image processing in [16]. A function f :R3→C2`+1

is called a rank-` spherical tensor field (denoted by T`), if it transforms with respect to
rotations as

[gf](r) = D`
gf(Ug

T r) (4)

Clearly this rotation behaviour is simpler than Cartesian tensors. Y`(r) is an example for a
spherical tensor field of rank `. Spherical tensors have the same component-wise addition
rule as Cartesian tensors. But for multiplication, a different operation to couple two spherical
tensors ◦` : C2`1+1×C2`2+1→ C2`+1 is defined as

(v◦` w)m = (e`m)
T (v◦` w) := ∑

m=m1+m2

< `m|`1m1, `2m2 > vm1wm2 (5)

where v ∈T`1 , w ∈T`2 , e`m is the `-dimensional natural basis. <̀ m|`1m1, `2m2> are real co-
efficients (called Clebsch-Gordan coefficients [20]), which only have non-zero values when
m = m1 +m2 and |`1− `2| ≤ ` ≤ `1 + `2. The coupling result v◦` w is a spherical tensor of
rank `. This operation provides a complete and orthogonal expansion for the angular part of
arbitrary spherical tensor fields, that is, for f ∈T`:

f(θ ,φ) =
∞

∑
j=0

j

∑
k=− j

â j
k ◦` Y j(θ ,φ) =

∞

∑
j=0

j

∑
k=− j

j+k

∑
m=−( j+k)

â j
k,mZ j

k,m(θ ,φ) (6)

where â j
k ∈ T j+k are tensorial expansion coefficients, Z j

k,m := e( j+k)
m ◦` Y j is the tensorial

basis for rank-` spherical tensor fields. Refer to [17] for more details and proofs. A variant
of this coupling is defined as v•` w := 1

<`0|`10,`20>v◦` w, which will be used later.

3 Spherical HOG Representation
The most straightforward way to use gradient information in spherical coordinates is to trans-
form the gradient into a spherical vector, namely the rank-1 spherical tensor. This kind of
approaches are reported in [7, 24]. But those approaches do not have the advantage like
HOG feature has. The local contrasting gradient information could be compromised when
smoothing is applied to address small deformation and disturbance.

In contrast, we will start with the construction of a spherical HOG feature in 3D. A small
trick which connects HOG to SH framework comes from a simple observation: although
a histogram is often shown in a discrete manner, the original information it encodes is a
continuous distribution. A typical image of 2D gradient histograms is shown in Figure 2(a).
In comparison, the representation as circular signals shown in Figure 2(b) are equal and
even more accurate, while only low-order Fourier series are enough to encode them. If we
construct a 3D HOG as a signal on the 2-sphere, we can work in a fully continuous setting
(some discrete quantization error can be avoided), and rotations could be easily addressed
by using SH coefficients to represent the signal. Following is the detail. Refer to [6] for the
construction of 2D HOG features in Cartesian coordinates.

The first step is to create raw histograms voxel-wisely. Let the intensity gradient com-
puted in the image be a vector field d(r) and its spherical coordinate representation be
[θd(r),φd(r),d(r)]. A raw spherical HOG, which only describes the gradient distribution
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(a) (b)

π 2π

gradient angle

(c)

Figure 2: (a) Histogram of oriented gradient (b) Circles representing the histograms (c) 1D
illustration of the histogram at bottom (All the continuous signals are reconstructed from
first 8 Fourier coefficients after Gaussian filtering in the frequency domain.)

at one voxel, should be an oriented impulse signal on the 2-sphere. That is, a Dirac function
δ (θd(r),φd(r)) of height d(r). Its SH coefficients compute to

d̂` =
2`+1

4π

<Y`,d ·δ (θd ,φd)>=
2`+1

4π

dY`(θd ,φd) =
2`+1

4π

dY`(d) =
2`+1

4π

R`(d) (7)

where R` := |r|Y`(r). The projected SH coefficients look redundant as a representation for
only one vector. However, what we start building are “histograms”. Here SH is nothing more
than a convenient basis chosen for the continuous histogram, which has the same role as the
natural basis ei for discrete histogram vectors.

“Soft binning” for both gradient direction and spatial aggregation are considered in the
2D HOG feature. In our setting, the angular smoothing for gradient direction surely could be
done by a Gaussian smoothing on the sphere, which is called Spherical Diffusion[4]. Based
on the convolution theory on the 2-sphere, the smoothing could be applied efficiently as a
weighting in the frequency domain d̂` ′ = e−l(l+1)t d̂`, where the diffusion time t controls the
smoothing extent. The diffusion will restrict the bandwidth of the represented signal, so
it also has the anti-aliasing effect for the band-limited SH transform. However, we found
this weighting is not critical for performance, as we keep working in the frequency domain.
Except aliasing, the band-limited SH transform fulfils the “soft binning” automatically.

For the spatial aggregation with “soft binning”, we just need to convolve a Gaussian
kernel gσ with all SH coefficients component-wisely, as d̃`

m = d̂`
m ∗ gσ . Finally, the local

variance normalization can also be implemented with convolutions which have isotropic
effect, instead of using any grid-block based operations.

Now we have the SH coefficients d̃`(r) at every voxel, representing the local Gaussian-
weighted spherical HOG. Because of the “soft binning”, we only need low-band SH coeffi-
cients. The construction of spherical HOG is illustrated in Figure 1(b)(c). The signals shown
on the spheres are reconstructed from SH expansion up the 5th band. The spherical HOG
has all the advantages of the 2D HOG feature. The spatial smoothing blurs the localization
of gradient, and only the neighbouring gradient signals in similar directions will aggregate
together.

4 Tensor Operations for Regional Description
The spherical HOG constructed in the last section collects gradient information locally. Only
with smoothing, we can not effectively expand the description range without losing detail.
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In SIFT and sliding window techniques, histograms at neighbouring grids are concatenated
into a region description. Now we come to the same step.

As the spherical HOG will rotate together with the image, it follows that the spherical
HOG coefficients d̃`(r) form spherical tensor fields, based on the preliminaries. Formally,
we know that a gradient field d(r) transforms under a rotation g as [gd](r) = Ugd(Ug

T r), so
the spherical HOG coefficients computed on a rotated image f (Ug

T r) are

[gd̂`](r) = cR`([gd](r)) = cR`(Ugd(Ug
T r)) = cD`

gR`(d(Ug
T r)) = D`

gd̂`(Ug
T r) (8)

where c= 2`+1
4π

, and we need Equation 3 to know R`(Ugd)=D`
gR`(d). Hence, d̂`(r) and the

smoothed d̃`(r) are both spherical tensor fields of rank `, and we will use tensor operations
to create regional descriptions from the spherical HOG field.

The basic approach to describe a region around one point, is to compute features on
multiple concentric shells centred at the selected point [12]. Here we can also sample d̃`(r)
at multiple shells, and project them onto the tensorial basis, as Equation 6. For efficiency,
the SH expansion of each individual tensor component will be computed first, as proposed in
[24]. According to Equation 2, for the Mth component of d̃`(r), we have the scalar expansion

d̃`
M(r) = ∑

∞
j=0 ∑

j
n=− j b̂ j

M,n(r)Y
j(r) . Then the tensorial expansion coefficients for d̃`(r) can

be computed from these component-wise expansions by a derived relation as

â j
k,m(r) =

2( j+ k)+1
2`+1 ∑

M,n
b̂ j

M,n(r)<`M|( j+ k)m, jn> (9)

See [17] for proofs. Using this orthogonal expansion, we can get a large group of expansion
coefficients â j

k (r, `) ∈ T j+k for each tensor field d̃` on the shell of radius r. For any coeffi-
cients of the same rank ( j+k = j′+k′), they will transform with the same Wigner-D matrix
under rotations. Because the Wigner-D matrices are unitary, their effect will be compensated
in the complex inner product. So a general formula of our rotation-invariant features is

||
√
<â j

k (r, `), â
j′

k′ (r
′, `′)>||= ||

√
<D j+k

g â j
k (r, `),D

j′+k′
g â j′

k′ (r
′, `′)>|| when j+ k = j′+ k′ (10)

Clearly, there is no restriction about ` and r. This formula is also consistent with the L2-
norm of coefficient ‖â j

k‖. In fact, under certain conditions, the tensor coupling v•0 w, which
creates rank-0 tensors, just coincides with the complex inner product. The features created
in this way can be very effective, as the coupling between tensors of the same rank provides
the possibility to create much more invariant features comparing to only taking magnitude
of expansion coefficients.

Till now the approach is only defined for computing features for a selected centre point,
so that the the shell-wise orthogonal expansion is affordable. However, in some applications,
it is necessary to get voxel-wise descriptions in the whole volume. We then need a more
efficient method for that. In general, to create voxel-wise output with clear rotation behavior,
we just need a filtering operation that maps a spherical tensor field to a spherical tensor
field. The Spherical Gaussian Derivative (SGD) filtering introduced in [17] provides such
a tool. It is comparable to the common Gaussian derivatives[14], but working on spherical
tensor fields. The filtering can be quite efficient when multiple derivatives are required, as
it can be implemented as a Gaussian filtering followed by differentiations. The only special
element here is the differentiation defined on spherical tensor fields. With the spherical
gradient operator ∇ = ( 1√

2
(∂x− i∂y),∂ z,− 1√

2
(∂x+ i∂y)), the spherical up-derivative ∇1 :
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T`→T`+1 and the spherical down-derivative ∇1 : T`→T`−1 are defined as ∇1f = ∇•`+1 f
and ∇1f = ∇•`−1 f.

To apply this SGD filtering on the spherical HOG coefficients, we just need to adjust
the scale of the Gaussian convolved with d̂`, then compute the spherical tensor derivatives
of different orders, and again collect features by coupling the output of the same rank with
inner product, like in Equation 10

||(< ∇
p
q(d̂

` ∗gσ ),∇
p′

q′ (d̂
`′ ∗gσ ′)>)

1
2 ||, when `+ p−q = `′+ p′−q′ (11)

where gσ is the Gaussian kernel e−
r2

2σ2 and ∗ denotes convolution with each component.

5 Experiments

5.1 Rotation-invariant description for 3D Shapes
First we evaluate the proposed description on 3D shapes, with Princeton Shape Benchmark
(PSB) [23] test partition which has 907 objects in 92 classes (examples shown in Figure 3),
and SHREC 2009 Generic Shape Benchmark (SHREC) [1] which run 80 queries on 720
objects in 40 classes. The models are presented in 1503 voxels, after normalization for
translation and scale. Besides the proposed “spherical HOG + spherical tensor”(HOG-ST)
approach, we implemented the standard SH expansion and spherical tensorial expansion on
structure tensor field (StrT-ST)[24]. Following the “SHD” method in [23], we first apply a
distance transform on the binary shapes, then compute local features like HOG or structure
tensor. Voxel-wise spherical HOG representations are only computed up to the 4th band,
leading to 5 spherical tensor fields. Then the tensorial expansion is computed according to
Equation9∼10. For our method, the tensorial expansion computes to jmax = 9. For scalar
SH expansion and structure tensor field, we compute to `max( jmax) = 16. All the features
computed on shells are weighted by the square of radius, and concatenated into a vector. We
only couple the tensorial coefficients from the same shell, except in one test (HOG-STR),
where features from coupling tensors on different shells are also included. The evaluation
is done by computing pair-wise distances among all 3D shapes, then five measures are eval-
uated using the tools provided with these benchmarks: Nearest Neighbour accuracy, First
Tier, Second Tier, E-measure and Discounted Cumulative Gain. In several tested parame-
ter settings, our method gets the best performance with large spatial smoothing σ = 10voxel ,
12 sampled shells and L1-norm distance measure. Results are listed in Table 1. Refer to
[1, 23] for the definitions of these measures and much more methods evaluated on these
benchmarks.

Figure 3: Examples of the 3D shapes in Princeton Shape Benchmark

Comparing to all the SH related methods, our method has a large improvement. It differs
from the tensorial description from structure tensor or vector fields, not only by the rank
of tensors, but also by the fact that the local gradient patterns can be better preserved under
smoothing in our method, as they were represented by spherical histograms. As a frequency-
domain approach, SH related descriptions could be suspected of being vulnerable to small
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Table 1: The retrieval statistics for different methods
Data Method NN(%) FT(%) ST(%) E(%) DCG(%)

PSB HOG-STR 71.8 43.3 53.8 31.3 68.3
HOG-ST 67.4 37.4 47.6 28.0 63.8
StrT-ST 61.7 30.7 39.6 23.2 58.2
SH 56.0 28.4 37.6 22.3 56.0
BoFSHcorr[8] 62.4 / / / /
HOGalign[21] 58 27 35 21 55
LFD[23] 65.7 38.0 48.7 28.0 64.3

SHREC HOG-ST 90.0 50.6 62.0 43.4 80.2
StrT-ST 81.2 39.0 49.3 34.1 71.2
HOGalign[21] 75 41 52 35 71

Table 2: Classification accuracy
for labelling root-layers/cell-
wall using different numbers of
training samples

Ntraining SGDHOG(%) SGD(%)

400 92.7/95.1 77.1/94.6
800 95.6/96.1 82.9/95.5
1600 96.4/96.5 87.2/96.0
4000 96.5/97.8 90.6/96.5

disturbance. That might explain why using the HOG feature and large smoothing can bring
a significant improvement. To some other compared methods, our method also benefits from
the rotation-invariance which does not depend on any pose estimation. The approaches tested
on SHREC in [1] employed many state-of-the-art techniques which are specially designed
for 3D shape retrieval. Our approach can challenge them and performs favourably compared
to some of them. Meanwhile, our invariant description is a more general design, which
can be used on grey-value volumetric data too. A shortcoming of our method is that the
dimension of description could go very high when computing on multiple shells. “HOG-
ST” consist of more than 150 coefficients on each shell, and coupling between different
shells in “HOG-STR” leads to several times more. A feasible solution is to introduce a radial
basis (e.g. Bessel function) into the expansion [25], which should lead to more compact
description and even better performance. With an unoptimized implementation, the running
time for the feature extraction is about 10 seconds for each 3D model, on a 3.2GHz CPU.
The spatial smoothing alone costs about 5 seconds, where we apply Gaussian convolutions
on each component of the Spherical HoG.

5.2 Voxel-wise rotation-invariant features for classification
We show a real application of our invariant description on a “segmentation” problem. The
data comes from confocal microscopic imaging of Arabidopsis roots with stained cell walls
(Figure 4(a)). The cell wall gives a representation of the cell outer shape, which could be used
for analysing cell development or as reference structure for sub-cellular event description.
Here we want a preliminary cell segmentation and an additional structural segmentation
which separates cells into different layers, to support model fitting and further analysis. It’s
a difficult problem due to the uneven imaging quality in the data and the large variance of
the cell shapes even in the same layer. We choose to do the segmentation by voxel-wise
classification[18], which means embedding all neighbouring information into voxel-wise
features and labelling each voxel by a trained classifier. Our rotation-invariant description is
necessary for this job, as the cells in the same layer are oriented in different directions.

In this experiment, the pre-processing includes diffusion and Hessian-matrix based edge
enhancement. The proposed approach starts from representing the local gradient with SH co-
efficients up to the 4th band. To get dense descriptions, we apply SGD filtering on the spher-
ical HoG field at 7 scales from 0.25µm to 16µm (the diameter of a root is around 100µm),
limiting p+q≤ 5. The invariant descriptions used here only come from the magnitude (L2-
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(a) 3D rendering of the training root (b) Examples of computed Features

(c) Training labels (d) Another test root(raw/enhanced)

(e) Test result (f) Test result(cross section)

Figure 4: Segmentation on Arabidopsis root. (c) Training labels include 10 classes: back-
ground / cell wall / 6 layers and 2 regions. (e)∼(f) Classification result: some layers are not
continuous because there are cell walls in the depth direction.

norm) of the tensor-valued filter output, without complex coupling. Finally, together with
the local intensity value, we get 240-dimensional voxel-wise features. Some examples are
shown in Figure 4(b). The features at different scales encode information from the local edge
strength to the global geometrical feature. On these features, SVMs with RBF kernel [5] are
trained from one root with manual labels, which is shown in Figure 4(c).1 The classification
are defined as two levels: a two-class problem (cell-wall/none-cell-wall) and a multi-class
problem (different root layers in none-cell-wall regions). We test the performance of the
proposed method as following: we sample 17000 points in the labelled root, and separate
them into two parts by a mid-plane in the root. Then a cross-validation is carried out by
using different numbers of training samples from one part and testing on another part. The
performance is summarized in Table 2, with comparison to applying the SGD filtering on
the intensity value. The clearly better performance of the HOG based approach with very
few training samples demonstrates that it has better description ability, hence it should also
have better generalization ability. Because of the high symmetry in one root, the ascending
accuracy of SGD filtering on intensity possibly comes from over-fitting. When testing on
other roots, the HOG-based feature still gives satisfying results (Figure 4(d∼f)). The ob-

1We created the labels by editing a watershed segmentation result manually. Some very badly segmented regions
were discarded in labelling and were not used for training.
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tained segmentation result will be a good start for model fitting and further analysis. Again,
the most time-consuming part is the 3D convolution for Gaussian smoothing, while the other
steps for feature extraction and classification is fast in comparison.

6 Conclusion
In this paper, we have presented a new approach to create rotation-invariant descriptions for
3D images, which imports the HOG idea into the spherical harmonics framework. The trick
is considering histogram as a continuous signal on a sphere and representing it with spherical
harmonic coefficients. On the obtained spherical tensor fields, we could easily make rotation-
invariance based on the rotation behaviour of spherical tensors. We have demonstrated the
generality and effectivity of our description method on 3D shape retrieval benchmarks and
a biological application - structural segmentation in Arabidopsis roots. They both show
very good performance. With the spherical HOG representation as a bridge, the proposed
approach inherits the robustness of the HOG feature and achieves rotation invariance on the
theoretical base from spherical harmonics and tensor algebra.
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