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Abstract

Gradient vector flow based snakes are a very common method in bio-
medical image segmentation. The use of gradient vector flow herein brings
some major advantages like a large capture range to strong gradients and
a good adaption of the snakes in concave regions. In some cases though,
the application of gradient vector flow can also have undesired effects,
e.g. if only parts of an image are strongly blurred, the remaining weak
gradients will be smoothed away. Also, large gradients resulting from
small but bright image structures usually have strong impact on the overall
result. To tackle this problem, we present an improvement of the gradient
vector flow, using the mean shift procedure and show its advantages on
the segmentation of 3D cell nuclei.

1 Introduction

Active surfaces are a widely used method in the field of bio-medical image seg-
mentation tasks. Especially when dealing with 3D microscopic data, one has
to handle several challenges as there are blurred object edges due to the point
spread function (PSF) of the microscope as well as artifacts caused by inhomo-
geneities in the fluorescent stains. If the data comes from widefield microscopy,
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the PSF strongly blurs the recording and can even artificially cause edges in
the dataset, that can even become stronger, if we try to linearly deconvolve the
data. To make the segmentation robust against those artifacts, one often tries
to include as much prior shape knowledge as possible into the model, e.g. [3],
[4]. Thus, one tries to weaken the ill-posedness of the segmentation task.
For the segmentation of DAPI-stained nuclei in a Drosophila cell line (so called
S2 or Schneider cells) recorded with 3D widefield fluorescence microscopy, an
active surface model has thus been adapted to the segmentation of sphere-like
objects in [4]. In that paper, the force field has been adapted by projecting
the gradients onto their radial components such that only the desired gradients
have impact on the segmentation result. This indeed leads to better contours
but still, artifacts can be observed. One of the major problems is that the
resulting active surfaces seem to be elongated and subjected to PSF artifacts
compared to what would be expected. See figure 3 for an example of the data in
two orthogonal views and the PSF of the used microscopy setting in xz-view. In
[4], gradient vector flow (GVF) [6], [5] was used to smooth the gradient field be-
fore adapting the active surfaces. This leads to some desired effects like a large
capture range for the active surface model as well as smooth gradient fields. On
the other hand, the weak but important gradients in upper and lower image
regions are smoothed away by the classical GVF.
To diminish the artifacts caused by the dataset blurring, we are presenting a
vector diffusion method that not only preserves strong image gradients but also
preserves weak gradients if they are dense i.e. if all gradients in a neighborhood
have similar direction and length. This method is the result of combining the
basic GVF with the mean shift procedure [1], [2].

2 Gradient Vector Flow

The currently best established method to smooth vector fields is the gradient
vector flow (GVF)[6], [5]. This diffusion method aims at providing a smooth
vector field in regions where no edges are given in the dataset, and in keeping
the original gradient information in regions with strong edges. Thus, when the
vector field is used as an external force field e.g. for active contours, the capture
range is much larger than it would be, if the original gradient information were
used.
The three dimensional gradient vector flow field is the vector field v(x) : R3 →
R3 that minimizes the energy functional

E(M) =
∫

R3
µ(|∇v|2) + |∇M |2|v −∇M |2dx, (1)

where M is the edge map of the original dataset and the grad operator ∇ is
applied to each component of v separately. Using the calculus of variations, the
following Euler Equation can be found [5]:

µ∇2v − (v −∇M) |∇M |2 = 0, (2)
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where ∇2 is applied to each component of the vector field v separately. A
solution to this equation is derived by introducing a time variable t and finding
the steady-state solution of the partial differential equation (PDE)

∂v
∂t

= µ∇2v − (v −∇M) |∇M |2. (3)

For a discrete grid of cubic voxels, the iteration rule resulting from equation (3)
is given by:

vn+1
i (x, y, z) =(1− |∇M |2)vn

i (x, y, z) (4)
+ µ(vn

i (x+ 1, y, z) + vn
i (x− 1, y, z) + vn

i (x, y + 1, z)
+ vn

i (x, y − 1, z) + vn
i (x, y, z + 1) + vn

i (x, y, z − 1)

− 6vn
i (x, y, z)) + |∇M |2 ∂M(x, y, z)

∂i
,

where vn
i is the i-th component of the vector field v at iteration step n.

See fig.1 for a toy example. The 2D toy data 1(a)(120×120 pixels) is designed to
simulate the blurred recordings of spherical objects with three undesired spots
(spot 1-3) that should influence the overall force field as little as possible. The
edge image 1(b) is the magnitude of the smoothed gradients of the toy data and
the gradient field is displayed in 1(c). The colors indicate the vector direction.
In 1(d), the GVF field (300 iterations with µ = 0.15) of the toy data is displayed.

3 Mean Shift Filtering

The mean shift procedure as presented in [1] aims at analyzing the density dis-
tribution of arbitrary feature spaces and can be used to detect density maxima
or to perform filtering or clustering of feature points. The theoretical basis for
the application of the procedure as an image filter has been presented in [2].
The prospect of applying the mean shift procedure on gradient vector fields is to
analyze, which gradient vectors correspond to more important structures in the
dataset and accordingly, to shift the gradient vectors towards their local density
maxima. Thus, gradients corresponding to smaller, less important structures
can be filtered out.
The mean shift algorithm is based on the kernel density estimation which is also
known as Parzen window technique. Here, we summarize the derivation of the
mean shift algorithm as described in [2].

3.1 Kernel Density Estimation

For n independent data points xi, i = 1, . . . , n in d-dimensional space Rd, that
are generated by an unknown probability distribution f , a kernel density esti-
mate is given by

f̂(x) =
1
nhd

n∑
i=1

K

(
x− xi

h

)
, (5)
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where the d-variate kernel K(x) is a bounded function with compact support,
that satisfies ∫

Rd

K(x)dx = 1 lim‖x‖→∞ ‖x‖dK(x) = 0∫
Rd

xK(x)dx = 0
∫

Rd xxTK(x)dx = cKI, (6)

where cK is a constant. h is the kernel bandwidth parameter. For radially
symmetric kernels, the multivariate kernel can be generated by

f̂h,K(x) =
ck,d

nhd

n∑
i=1

k

(∥∥∥∥x− xi

h

∥∥∥∥2
)
, (7)

where the function k(x) is the radial profile of the kernel K(x):

K(x) = ck,dk(‖x‖2). (8)

The function k(x) with k(x) ≥ 0 only needs to be defined for x ≥ 0. The
constant ck,d with ck,d > 0 ensures, that K(x) integrates to one. For complexity
reasons, we are using the Epanechnikov kernel (compare [2]), with the profile
kE(x) = 1− x, for 0 ≤ x ≤ 1 and 0 for x > 1. The radially symmetric kernel is
given by

KE(x) =

{
1
2c
−1
d (d+ 2)(1− ‖x‖2), if ‖x‖ ≤ 1

0, otherwise
(9)

where cd is the volume of the d-dimensional unit sphere. kE is not differentiable
for x = 1, for x 6= 1, k′E(x) is uniform.
The main step of the mean shift procedure is to determine local maxima in
this density distribution of the feature space. Thus, zero positions of the actual
density gradient ∇f(x) = 0 are estimated by gradient ascent of the estimate
f̂h,K(x). For differentiable profiles k, the gradient of f̂h,K(x) is given by

∇f̂h,K(x) (10)

= 2ck,d

nhd+2

∑n
i=1(x− xi)k′

(∥∥x−xi

h

∥∥2
)

= 2ck,d

nhd+2

[∑n
i=1 k

′
(∥∥x−xi

h

∥∥2
)] [

x−
Pn

i=1 xik
′
“
‖ x−xi

h ‖
2”

Pn
i=1 k′

“
‖ x−xi

h ‖
2”
]
,

where the first term is proportional to the density estimate with kernel G(x) =
cg,dg(‖x‖2) with g(x) = −k′(x) and the second term is the mean shift

mh,G(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) − x, (11)
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from which the gradient ascent iteration is derived as:

yj+1 =

∑n
i=1 xig

(∥∥∥yj−xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥yj−xi

h

∥∥∥2
) . (12)

With each iteration step, the points are shifted towards the next local density
maximum.

3.2 Mean Shift on Gradient Vectors

In [2], the authors show how the mean shift procedure can be employed as a
discontinuity preserving image filter. This is done by interpreting the image
as a two-dimensional lattice of p-dimensional vectors (p = 1 in the gray level
case, p = 3 for color images). The lattice then forms the spatial domain, the
color information forms the range domain of a d = p + 2 dimensional feature
vector in the joint spatial-range domain. The mean shift is performed using a
multivariate kernel

Khs,hr
=

C

h2
sh

2
r

k

(∥∥∥∥xs

hs

∥∥∥∥2
)
k

(∥∥∥∥xr

hr

∥∥∥∥2
)
, (13)

defined as a product of two radially symmetric kernels with the common profile
k(x). xs is the spatial part, xr the range part of the feature vector. The
Euclidean metric allows the use of a single bandwidth parameter in each domain,
hs and hr respectively. These bandwidth parameters control the size of the
kernel and thus determine the resolution of the density maximum detection. C
is the corresponding normalization constant.
An extension of the algorithm presented in [2] to the three dimensional space
is straightforward. In the case of a three dimensional vector field ∇M(xs) :
R3 → R3, where M is a 3D scalar field (the edge map), the mean shift is
computed on the d̄ = 3 + 3 dimensional feature vector, where the first three
components contain the spatial information, the last three dimensions contain
the corresponding vector information. As in the two dimensional case, the
Epanechnikov kernel performs satisfactorily.
When applying this edge preserving mean shift filter to gradient vector fields,
the result is quite similar to what we know from 2D color images. Depending on
the chosen spatial and range bandwidth parameters, the discontinuities at the
dataset gradients are preserved and the vectors converge to equal length and
direction in the neighborhood defined by the spatial bandwidth parameter.
In fig. 1(e) we have displayed the result of applying the 3D mean shift filter
to our toy example (with the parameters hs = 6, hr = 0.4). Because of the
round shape of the object, the gradient vectors converge to the mean direction
in their neighborhood, i.e. all vectors are pointing towards the edges. The result
is depending on the filter bandwidth. Vectors with ‖vi − vj‖ ≤ hr converge to
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equal length if they are spatially close to one another. Maxima in gradient
magnitude are not preserved. Below the actual gradient image in 1(e), we have
plotted the profile of the original gradient field (blue) and the mean shifted field
(red) along the red line in 1(a).

4 Mean Shift GVF

With the GVF, an isotropic vector diffusion is performed. The regularization
only depends on the vector length disregarding the meaning of the vectors in
their local neighborhood. In regions, where the gradients are generally weaker,
the Laplace term dominates equation 1 and a strong smoothing is performed.
In our example of the microscopic recordings of cell nuclei, this is not always
desirable. First, we do not want to promote strong gradients, if they are origi-
nating from small structures. Second, in the strongly blurred upper and lower
dataset regions, we want to keep the gradients pointing towards the cell nuclei
even though they are weak.
Generally, we want that large gradients originating from small structures are
preserved but do not diffuse as strongly as in GVF, i.e. have less impact on the
overall force field. On the other hand, if in a certain region there are many weak
gradient vectors pointing into the same direction, these valuable gradients shall
not be altered by larger neighboring gradients (as it would happen in GVF), but
all gradients in the same neighborhood shall converge to their mean direction
and length. This is why we are using the advantages of the mean shift filtering
method and the GVF simultaneously, performing a minimization of the energy
functional (1) and a maximization of the gradient kernel density estimate (7)
at the same time, which we call mean shift gradient vector flow (MSGVF). The
new energy functional we are minimizing is given by

E(M, v̄) =
∫

R3
µ
(
|∇ (v̄)|2

)
+ |∇M |2 |v̄ −∇M |2 dx, (14)

where

v̄ = v + ĉ
∇f̂h,k(v)

f̂h,g(v)
. (15)

Thus, we are searching for a minimal energy E(M, v̄), constraining every vector
to be at its kernel density maximum, i.e. mh,G(v) = 0. As in [5], this energy
functional is minimized by the following Euler-Lagrange equation:

µ∇2(v + mh,g(v))− (v + mh,g(v)−∇M) |∇M |2 = 0, (16)

with the resulting PDE

∂v
∂t

=µ∇2(v + mh,G(v))

− ((v + mh,G(v))−∇M) |∇M |2.
(17)

Unlike for GVF, the optimization cannot be done for each channel separately,
because mh,g(v) is depending of all channels. The new iteration scheme is
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(a) toy data (b) edge map (c) gradient vectors

(d) GVF (e) Mean Shift filter (f) Mean Shift GVF

Figure 1: The methods on toy data.

generated be plugging the mean shift criterion (12) into the GVF iteration
scheme. This yields

vn+1
i (x, y, z) =(1− |∇M |2)v̄n

i (x, y, z) (18)
+ µ(v̄n

i (x+ 1, y, z) + v̄n
i (x− 1, y, z) + v̄n

i (x, y + 1, z)
+ v̄n

i (x, y − 1, z) + v̄n
i (x, y, z + 1) + v̄n

i (x, y, z − 1)

− 6v̄n
i (x, y, z)) + |∇M |2 ∂M(x, y, z)

∂i
,

where, at iteration step n,

v̄n =

∑m
j=1 vn

j g

(∥∥∥vn−vn
j

h

∥∥∥2
)

∑m
j=1 g

(∥∥∥vn−vn
j

h

∥∥∥2
) . (19)

and v̄n
i is the i-th component of the vector field v̄ at iteration step n.

The result of the MSGVF can be seen in fig. 1(f), for 100 iterations with
µ = 0.15, hs = 6 and hr = 0.2. As if applying GVF 1(d), the discontinuities
are preserved and long gradients corresponding to object edges are unaltered.
As opposed to GVF, gradients resulting from smaller objects have less impact
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on the overall result. This can be seen when looking at the magnitude profile in
fig. 1(f). The small spot (spot 1) inside the object does not change the vector
direction at all. For a visualizition of the vector directions, compare also the
streamline plots in fig. 2. When looking at the spot outside the object (spot
3) one can observe, that strong gradients are caused by this structure, that are
preserved by both methods. Only the diffusion behavior is different. In the
case of MSGVF, the zero crossing, indicating the change of vector direction, is
shifted towards the small spot. Thus the capture range for our large object is
larger and, even though we have computed less iterations than for GVF, the
magnitude of the vectors outside the object are larger.

(a) Streamline plot
of the GVF field in
the ROI.

(b) Streamline plot
of the MSGVF field
in the ROI.

Figure 2: Especially when looking at the small spot outside the large object
(spot 3), one can see that it has strong impact on the vector field, and this
impact is significantly larger, when applying GVF (a), than when applying
MSGVF (b). Thus, if we want to segment the main object, our initial surface
must fit better with GVF than with MSGVF. Also, when applying MSGVF,
spot 1 has no impact on the vector direction at all and even the capture range of
spot 2 is less strong. So, both spots will not significantly alter the segmentation
result.

5 Application and Results

We have applied the new method to generate force fields for the segmentation
of Drosophila S2 cell nuclei, see fig. 3(a) for example. In [4], the last step of
the external force field generation is applying GVF to the vector field. We are
showing that by replacing this step with the presented MSGVF, we can improve
the segmentation and diminish the artifacts caused by the PSF. To allow for
comparison, all further steps of the active surface procedure are the same as in
[4].

We applied our method to a dataset of 393 recordings of Drosophila S2 cell
nuclei. To measure the susceptibility of the segmentation surface to artifacts, we
are locally approximating the surface by spheres and estimate their radii. At the
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(a)Drosophila S2 nuclei in two orthog-
onal views.

(b) Measured PSF in xz-
view.

Figure 3: Microscopic data from widefield fluorescent microscopy.

best, most radii should be similar to the radius of the cells that ist somewhere
near 2µm. The more artifacts we have in a surface, the more very small radii can
be found. As we expect to find these artifacts in the lower dataset regions, we
compute the measure of the lower 20% of the segmentation mask and compare
it to the 20% in the center. The result can be seen in fig. 4. The results show

(a)Histogram of the radii in the center. (b)Radii in the lower 20% of the sur-
face.

Figure 4: Fitted radii.

that the surfaces still are more strongly curved in the lower regions than in the
center. Though, compared to GVF, the new method works clearly better. For
GVF, the ratio of the number of triangles forming an angle in a reasonable range
(radii of 1− 3µm) and those forming too small angles (radii < 1µm) is at 0.72,
for MSGVF it is at 0.92. Having a closer look at the data (fig. 5, fig. 6 and fig.
7, the red contour has been computed with GVF the green one with MSGVF),
one can clearly see that in the central z-slices, the segmentation is very similar.
Only in the more difficult lower regions, the result found be MSGVF is smoother
and shows less artifacts. Additionally, one can see that most of the resulting
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surfaces are less elongated than with GVF. This results from the fact that in
MSGVF, the vectors in the lower dataset regions that are pointing towards the
surface are generally better preserved. Sometimes, when applying GVF, this
information is completely lost.

6 Conclusion

We have presented a new method for the generation of external force fields for 2D
and 3D active contours. The resulting vector fields are more robust against noise
or smaller structures that should not influence the overall force field. Especially
small but important gradients in gradient fields from blurred data are preserved.
We could show that the segmentation of strongly blurred data from 3D widefield
microscopy with an active surface model could be improved and the resulting
surfaces show less PSF artifacts.
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Figure 5: Segmentation results. The red contour has been conputed based on
GVF, the green contour based on MSGVF. The red arrow indicate segmentation
artifacts.
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Figure 6: Segmentation results. The red contour has been conputed based on
GVF, the green contour based on MSGVF.
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Figure 7: Segmentation results. The red contour has been conputed based on
GVF, the green contour based on MSGVF.
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