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Abstract—Gradient vector flow snakes are a very common
method in bio-medical image segmentation. The use of gradient
vector flow herein brings some major advantages like a large
capture range and a good adaption of the snakes in concave
regions. In some cases though, the application of gradient
vector flow can also have undesired effects, e.g. if only parts of
an image are strongly blurred, the remaining weak gradients
will be smoothed away. Also, large gradients resulting from
small but bright image structures usually have strong impact
on the overall result. To tackle this problem, we present an
improvement of the gradient vector flow, using the mean shift
procedure and show its advantages on the segmentation of 3D
cell nuclei.
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I. INTRODUCTION

Active surfaces are a widely used method in the field
of bio-medical image segmentation tasks. Especially when
dealing with 3D microscopic data, one has to handle several
challenges as there are blurred object edges due to the point
spread function (PSF) of the microscope as well as artifacts
caused by inhomogeneities in the fluorescent stains. If the
data comes from widefield microscopy, the PSF strongly
blurs the recording and causes artifacts. To get acceptable
segmentation results and to weaken the ill-posedness of the
segmentation task, one often tries to include as much prior
shape knowledge as possible into the model, e.g. [1], [5].
For the segmentation of DAPI-stained nuclei in a Drosophila
cell line (so called S2 or Schneider cells) recorded with 3D
widefield fluorescence microscopy, an active surface model
has thus been adapted to the segmentation of sphere-like
objects in [5]. In that paper, the force field has been adapted
by projecting the gradients onto their radial components
such that only the desired gradients have impact on the
segmentation result. This indeed leads to better contours but
still, artifacts can be observed. One of the major problems
is that the resulting active surfaces seem to be elongated
and subjected to PSF artifacts compared to what would
be expected. See fig. 3 for an example of the data in
two orthogonal views and the PSF of the used microscopy
setting in xz-view. In [5], gradient vector flow (GVF) [2]

was used to smooth the gradient field before adapting the
active surfaces. This leads to some desired effects like a large
capture range for the active surface model as well as smooth
gradient fields. On the other hand, the weak but important
gradients in upper and lower image regions are smoothed
away by the classical GVF.
To diminish the artifacts caused by the dataset blurring,
we are presenting a vector diffusion method that not only
preserves strong image gradients but also preserves weak
gradients if they are dense i.e. if all gradients in a neigh-
borhood have similar direction and length. This method is
the result of combining the basic GVF with the mean shift
procedure [3], [4].

II. GRADIENT VECTOR FLOW

The currently best established method to smooth vector
fields is the gradient vector flow (GVF)[2]. This diffusion
method aims at providing a smooth vector field in regions,
where no edges are given in the dataset, and in keeping the
original gradient information in regions with strong edges.
Thus, when the vector field is used as an external force field
e.g. for active contours, the capture range is much larger than
it would be, if the original gradient information were used.
The three dimensional gradient vector flow field is the vector
field v(x) : R3 → R3 that minimizes the energy functional

E(M) =
∫

R3
µ(|∇v|2) + |∇M |2|v −∇M |2dx, (1)

where M is the edge map of the original dataset and the grad
operator ∇ is applied to each component of v separately.
This energy minimization is solved by introducing a time
variable t and finding the steady-state solution of the partial
differential equation (PDE) (compare [2]):

∂v
∂t

= µ∇2v − (v −∇M) |∇M |2. (2)

See fig.1 for a toy example. The 2D toy data 1(a)(120 ×
120 pixels) is designed to simulate the blurred recordings of
spherical objects with three undesired spots (spot 1-3) that
should influence the overall force field as little as possible.
The used edge image M (fig. 1b) is the magnitude of the



smoothed gradients of the toy data (object borders). The
gradient field ∇M is shown in 1(c). Colors indicate the
vector direction. In 1(d), the GVF field (300 iterations with
µ = 0.15) of the toy data is displayed. Below the GVF in
1(d), we have plotted the profile of the original gradient field
1(c) (blue) and the GVF field (red) along the red line in 1(a).

III. MEAN SHIFT FILTERING

The mean shift procedure as presented in [3] aims at
analyzing the density distribution of arbitrary feature spaces
and can be used to detect density maxima or to perform
filtering or clustering of feature points. The theoretical basis
for the application of the procedure as an image filter has
been presented in [4]. The prospect of applying the mean
shift procedure on gradient vector fields is to analyze, which
gradient vectors correspond to more important structures in
the dataset and accordingly, to shift the gradient vectors
towards their local density maxima. Thus, gradients corre-
sponding to smaller, less important structures can be filtered
out.
The mean shift algorithm is based on the kernel density
estimation. Here, we briefly summarize the mean shift
algorithm as described in [4].

A. Kernel Density Estimation

For n independent data points xi, i = 1, . . . , n in d-
dimensional space Rd, that are generated by an unknown
probability distribution f , a kernel density estimate can be
given by

f̂h,k(x) =
ck,d

nhd

n∑
i=1

k

(∥∥∥∥x− xi

h

∥∥∥∥2
)
, (3)

where the function k(x) is the radial profile of a d-
dimensional kernel K(x), that is a bounded function and
integrates to one: K(x) = ck,dk(‖x‖2).

The function k(x) with k(x) ≥ 0 only needs to be defined
for x ≥ 0. The constant ck,d with ck,d > 0 ensures, that
K(x) integrates to one. h is the kernel bandwidth parameter.
For complexity reasons, we are using the Epanechnikov
kernel (compare [4]), with the profile kE(x) = 1 − x, for
0 ≤ x ≤ 1 and 0 for x > 1. kE is not differentiable for
x = 1, for x 6= 1, k′E(x) is uniform.
The main step of the mean shift procedure is to determine
local maxima in this density distribution of the feature
space. Thus, zero positions of the gradient ∇f(x) = 0 are
estimated by gradient ascent, which is done by the mean
shift

mh,g(y) =ĉ
∇f̂h,k(y)

f̂h,g(y)
=

∑n
i=1 xig

(∥∥y−xi

h

∥∥2
)

∑n
i=1 g

(∥∥y−xi

h

∥∥2
) − y, (4)

where g(x) = −k′(x) and ĉ > 0 is constant. From (4), the
gradient ascent iteration, shifting each vector towards the

nearest local maximum, is derived as:

yj+1 = mh,g(yj) + yj . (5)

B. Mean Shift on 3D Vector Fields

In [4], the authors show how the mean shift procedure
can be employed as a discontinuity preserving image filter.
This is done by interpreting the image as a two-dimensional
lattice of p-dimensional vectors (p = 1 in the gray level
case, p = 3 for color images). The lattice then forms
the spatial domain, the color information forms the range
domain of a d = p+2 dimensional feature vector in the joint
spatial-range domain. The mean shift is performed using a
multivariate kernel

Khs,hr =
C

h2
sh

2
r

k

(∥∥∥∥xs

hs

∥∥∥∥2
)
k

(∥∥∥∥xr

hr

∥∥∥∥2
)
, (6)

defined as a product of two radially symmetric kernels with
the common profile k(x). xs is the spatial part, xr the range
part of the feature vector. The Euclidean metric allows the
use of a single bandwidth parameter in each domain, hs and
hr respectively. These bandwidth parameters control the size
of the kernel and thus determine the resolution of the density
maximum detection. C is the corresponding normalization
constant.
An extension of the algorithm presented in [4] to the three
dimensional space is straightforward. In the case of a three
dimensional vector field ∇M(xs) : R3 → R3, where M
is a 3D scalar field, the mean shift is computed on the
d̄ = 3 + 3 dimensional feature vector, where the first three
components contain the spatial information, the last three
dimensions contain the corresponding vector information.
As in the two dimensional case, the Epanechnikov kernel
performs satisfactorily.
When applying this edge preserving mean shift filter to
gradient vector fields, the result is quite similar to what we
know from 2D color images. Depending on the chosen spa-
tial and range bandwidth parameters, the discontinuities at
the dataset gradients are preserved and the vectors converge
to equal length and direction in the neighborhood defined
by the spatial bandwidth parameter. See fig. 1(e) for the toy
example (hs = 6, hr = 0.4). Because of the round shape
of the object, the gradient vectors converge to the mean
direction in their neighborhood, i.e. all vectors are pointing
towards the edges. The result is depending on the filter
bandwidth. Vectors with ‖vi − vj‖ ≤ hr converge to equal
length if they are spatially close to one another. Maxima in
gradient magnitude are not preserved. Find the profile along
the red line below the mean shift filtered gradients 1(e).

IV. MEAN SHIFT GVF

With the GVF, an isotropic vector diffusion is performed.
The regularization only depends on the vectors length
disregarding their importance in their local neighborhood.



In regions, where the gradients are generally weaker, the
Laplace term dominates equation 1 and a strong smoothing
is performed. In our example of the microscopic recordings
of cell nuclei, this is not always desirable. First, we do not
want to promote strong gradients, if they are originating
from small structures. Second, in the strongly blurred upper
and lower dataset regions, we want to keep the gradients
pointing towards the cell nuclei even though they are weak.
Generally, we want that large gradients originating from
small structures are preserved but do not diffuse as strongly
as in GVF, i.e. have less impact on the overall force field.
On the other hand, if in a certain region there are many
weak gradient vectors pointing into the same direction, these
valuable gradients shall not be altered by larger neighboring
gradients (as it would happen in GVF), but all gradients in
the same neighborhood shall converge to their mean direc-
tion and length. This is why we are using the advantages of
the mean shift filtering method and the GVF simultaneously,
performing a minimization of the energy functional (1) and
a maximization of the kernel density estimate (3) at the
same time, which we call mean shift gradient vector flow
(MSGVF). The new energy functional we are minimizing is
given by

E(M) =
∫

R3
µ(|∇v̄|2) + |∇M |2|v̄ −∇M |2dx, (7)

where

v̄ = v + ĉ
∇f̂h,k(v)

f̂h,g(v)
= v + mh,g(v), (8)

Thus, we are searching for a smooth vector field, where
the original vector length is low, while at the same time
searching for maxima of the kernel density, i.e. mh,G(v) =
0. By analogy to [2], this energy functional is minimized by
the following Euler-Lagrange equation:

µ∇2(v + mh,g(v))− (v + mh,g(v)−∇M) |∇M |2 = 0,
(9)

with the resulting PDE
∂v
∂t =µ∇2(v + mh,g(v))

− ((v + mh,g(v))−∇M) |∇M |2. (10)

Unlike for GVF, the optimization cannot be done for each
channel separately, because mh,g(v) is depending of all
channels. The result of the MSGVF can be seen in fig. 1(f),
for 100 iterations with µ = 0.15, hs = 6 and hr = 0.2. As
if applying GVF 1(d), the discontinuities are preserved and
long gradients corresponding to object edges are unaltered.
As opposed to GVF, gradients resulting from smaller objects
have less impact on the overall result. This can be seen
when looking at the streamline plot in fig. 2. Spot 1 does
not change the vector direction at all. When looking at spot
3, one can observe, that strong gradients are caused by this
structure. These are preserved by both methods. Only the
diffusion behavior is different. In the case of MSGVF, the

(a) toy data (b) edge map (c) gradient vectors

(d) GVF (e) Mean Shift fil-
ter

(f) MSGVF

Figure 1. The methods on toy data.

zero crossing (see profile), indicating the change of vector
direction, is shifted towards spot 3. The capture range for
our main object is thus larger (see also the streamline plots).
Even spot 2, lying directly on the boundary, has less impact
on the vector field.

(a) Streamline plot of
the GVF field in the
ROI.

(b) Streamline plot of
the MSGVF field in the
ROI.

Figure 2. Especially when looking at the small spot outside the large
object (spot 3), one can see that it has strong impact on the vector field,
and this impact is significantly larger, when applying GVF (a), than when
applying MSGVF (b). Thus, if we want to segment the main object, our
initial surface must fit better with GVF than with MSGVF. Also, when
applying MSGVF, spot 1 has no impact on the vector direction at all and
even the capture range of spot 2 is less strong. So, both spots will not
significantly alter the segmentation result.

V. APPLICATION AND RESULTS

We have applied the new method to generate force fields
for the segmentation of Drosophila S2 cell nuclei, see
fig. 3(a) for example. In [5], the last step of the force
field generation is applying GVF to the vector field. We
are showing that by replacing this step with the presented
MSGVF, we can improve the segmentation and diminish the



artifacts caused by the PSF. To allow for comparison, all
further steps of the active surface procedure are the same
as in [5]. For GVF as for MSGVF, we set µ = 0.15 in xy-
direction, which is the parameter advised in [2] for 3D GVF.
In z-direction, we scaled µ with the voxelsise, which is three
times lower, than in xy-direction. The MSGVF parameters
were set to hs = 2 and hr = 0.2. We performed 300
iterations for both GVF and MSGVF which was sufficient
for convergence.
We applied our method to a dataset of 393 recordings of

(a) Drosophila S2 nuclei in two
orthogonal views.

(b) Measured PSF in
xz-view.

Figure 3. Microscopic data from widefield fluorescent microscopy.

Drosophila S2 cell nuclei. To measure the susceptibility
of the segmentation surface to artifacts, we are locally
approximating the surface by spheres and estimate their
radii. At the best, most radii should be similar to the radius
of the cells that is somewhere near 2µm. The more artifacts
we have in a surface, the more very small radii can be
found. As we expect to find these artifacts in the lower
dataset regions, we compute the measure of the lower 20%
of the segmentation mask and compare it to the 20% in
the center. The result is shown in fig. 4. The results show

(a) Histogram of the radii in the
center.

(b) Radii in the lower 20% of
the surface.

Figure 4. Radii of the fitted spheres in the central and in the lower 20%
of the segmentation mask.

that the surfaces are still more strongly curved in the lower
regions than in the center. Though, compared to GVF, the
new method works clearly better. For GVF, the ratio of the
number of triangles forming an angle in a reasonable range
(radii of 1−3µm) and those forming too small angles (radii
< 1µm) is at 0.72, for MSGVF it is at 0.92. Having a closer
look at the data (fig. 5, the red contour has been computed
with GVF the green one with MSGVF), one can clearly see

that in the central z-slices, the segmentation is very similar.
Only in the more difficult lower regions, the result found
by MSGVF is smoother and shows less artifacts. For more
examples, see [6].

Figure 5. Results of the active surface segmentation for six nuclei.

VI. CONCLUSION

We have presented a new method for the generation of
external force fields for 2D and 3D active contours. The
resulting vector fields are more robust against noise or
smaller structures that should not influence the overall force
field. Especially small but important gradients in gradient
fields from blurred data are preserved. We could show that
the segmentation of strongly blurred data from 3D widefield
microscopy with an active surface model could be improved
and the resulting surfaces show less PSF artifacts.
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