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Abstract. A model called lateral coupled snakes is proposed to describe
the contours of moving C. elegans worms on 2D images with high accu-
racy. The model comprises two curves with point correspondence between
them. The line linking a corresponding pair is approximately perpendic-
ular to the curves at the two points, which is ensured by shear restoring
forces. Experimental proofs reveal that the model is a promising tool for
locating and segmenting worms or objects with similar shapes.

1 Introduction

Active contour models (snakes), introduced by Kass et al. in 1987 [1], are dy-
namic curves that evolve to minimize the energy functional, which is composed
of internal and external parts. The internal energy defines the physical property
of the curve and serves to impose regularity constraints on the snake. The ex-
ternal energy is calculated from the image and gives rise to forces that push the
snake toward the desired image features such as lines and edges.

A snake must be initialized near the real boundary to ensure convergence. To
overcome this limitation, Cohen added a pressure force to the model so that it
acts like a balloon [2]. Xu and Prince proposed a new type of external forces:
the gradient vector flow (GVF), which is computed as a diffusion of the gradient
of the edge map derived from the image [3]. GVF snakes are insensitive to ini-
tialization and can be attracted to boundary concavities. Neither balloon forces
nor GVF can be derived from a potential. The models must now be formulated
directly in terms of forces instead of energies.

Snakes are an example of deformable models, the essence of which is to take
account of prior information about the objects and the image contents simul-
taneously. With more (correct) prior knowledge being incorporated, the results
can become more reliable and robust. In this paper, we will show a model de-
veloped for describing and finding the exact contours of Caenorhabditis elegans.
The model will be introduced mainly in the force-balance framework.

The roundworm C. elegans is one of the prime model organisms in medical
biology, and is used e.g. for the functional analysis of human disease genes. The
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small size and plethora of manipulations possible with this animal allow the setup
of large-scale genetic and pharmacological analysis with C. elegans. Automated
readouts, e.g., the measurement of behavioral differences of worms being treated
are essential for high-throughput experiments. Appropriate description of the
shape and position of a worm is crucial towards successful behavior analysis. In
the state-of-the-art system for C. elegans movement analysis [4], the position
of a worm is represented by the skeleton of its binary image, obtained through
thresholding and morphological operations. This approach is simple but has low
accuracy and may fail when a worm forms a loop while moving (see Fig. 4).

On 2D microscopic images, the contour of a worm consists of two sides that
are almost parallel to each other but meet at the ends. Based on the physical
property of the worm body, we have developed a model for describing its contour
using its internal coordinates. The model is made up of two curves and each point
on one curve corresponds to a point on the other. The line linking a corresponding
pair is approximately normal to the two curves at the two points, which is
ensured by shear restoring forces. The two curves support and constrain each
other through the coupling. We call this model Lateral Coupled Snakes (LCS).
As will be shown in the experiments, the LCS model yields highly accurate
description of worm contours.

A model called ribbon snake [5] has similar applications as the LCS model. It
is made up of only one snake with each point associated with a width. It has been
applied to road extraction from aerial imagery [6]. Despite the similarity, the two
models differ in many ways. Unlike ribbon snakes, with LCS, the external forces
act directly on the model points and the regularity of the two sides is directly
controlled. The two models therefore often have different behaviors, especially
near the ends. There is a mechanism for the LCS model to grow naturally along
the object boundary. When extended to 3D, the two models will have different
extensions. In addition, we have studied how to employ the LCS model to find
the contours of worms from bad starting points. The technique can be used for
segmenting other elongated objects with two almost parallel sides. This work,
as far as we know, has not been done with the ribbon snake model.

In the very first paper on snakes [1], coupling was already proposed for a
pair of stereo snakes for surface construction. The additional energy is defined
as a function of the distance of snake contours on the left and right images. In
[7], it is proposed to impose epipolar geometry constraints to a pair of stereo
snakes to achieve consistency and robustness in stereo tracking. The dual active
contour technique [8] was developed to overcome the problems of sensitivity to
initialization and parameters. With this technique, one contour expands from
inside the target features, the other contracts from the outside. The two con-
tours are interlinked to provide an ability to reject “weak” local energy minima.
Hohenhuser and Hommel [9] put these models as well as the original snakes into
a general framework and called it coupled active contour. They then used two
snakes which are interlinked beyond different image domains (intensity and dense
range images, more specifically) for segmentation. Our model also falls largely
into this framework. What makes it distinct is the property of the coupling.
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2 The Model

The LCS model is made up of two curves x0(s) and x1(s), s ∈ [0, 1] and

xk(s) =
[
xk(s), yk(s)

]
, k = 0, 1 . (1)

Optionally one can include the constraints

x0(0) = x1(0) and x0(1) = x1(1) (2)

to make their ends meet. The line linking the coupled pair x0(s) and x1(s) should
be approximately perpendicular to the curves at the two points. See Fig. 1a for
illustration.

Each curve is like a traditional snake and has internal energy

dEk(s) =
1
2

(
α(s)‖x′

k(s)‖2 + β(s)‖x′′
k(s)‖2

)
ds , (3)

where α and β are weight parameters that control the elasticity and rigidity of
the curve. The internal energy (3) gives rise to forces

felasticity
k (s) = α(s)x′′

k(s) and f rigidity
k (s) = −β(s)x′′′′

k (s) . (4)

To insure that the linking line is approximately perpendicular to the curves,
we introduce shear restoring forces to resist shear deformation tanϑ (see Fig.
1b). For simplicity, first assume the two sides are perfectly parallel at x0(s) and
x1(s). Let the unit normal vector be n and the unit vector pointing from x0(s)
toward x1(s) be nc, the shear restoring forces can be written as

f shear
0 (s) = μ(s)

nc − (nc · n)n
‖nc · n‖ and f shear

1 (s) = −f shear
0 (s) . (5)

where μ is the shear modulus. When the two sides are not perfectly parallel, the
mean normal direction should be used in place of n.

Above the parameters α, β and μ are written as functions of s for flexibility.
For common applications, it is usually enough to assign constant values for the
whole model. The same also applies to other weight parameters introduced later.

(a) LCS model with meeting ends (b) Shear restoring forces

Fig. 1.
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One can also apply balloon forces to the sides or introduce new types of forces
that are defined on coupled pairs. Some examples of the latter are: 1. Forces that
keep the width vary smoothly. Define the width at s as w(s) = ‖x1(s)− x0(s)‖.
The forces are proportional to w′′(s) and act along the coupling direction. 2.
Repulsion and attraction between a coupled pair. They can be used to control
the allowed maximal and minimal widths.

Forces on the ends need to be treated specially, which we defer until section
2.2 after the discrete formulation of the model is given. To deal with the self-
occlusion problem as shown in Fig. 3, forces between different parts of the model
are necessary to prevent the two tips of the model from occupying the same
position. Due to limitation of space, we will not elaborate on them.

2.1 Discrete Formulation

When formulated discretely, curves are given by a set of ordered points. Suppose
there are l + 1 points for each snake. The LCS model is represented by

{
xk(i) | i = 0, 1, · · · , l and k = 0, 1

}
. (6)

The formulas with the continuous model imply natural parameterization of the
curve, which means that the points should be evenly spaced along the curve. For
the LCS model, we define

dk(i) = ‖xk(i) − xk(i − 1)‖ i = 1, · · · , l and k = 0, 1 , (7)

and require that
(
d0(i) + d1(i)

)
/2 = h be constant with regard to i after repa-

rameterization. We call the constant h the spacing.
As dk(i) are not constant, we need to be careful with the elasticity and rigidity

forces. To ensure that the parameters α and β can be chosen largely invariant
to the spacing, we define

ak(i) =
xk(i) − xk(i − 1)

dk(i)
i = 1, 2, · · · , l (8)

bk(i) =
ak(i + 1) − ak(i)

(
dk(i + 1) + dk(i)

)
/2

i = 1, 2, · · · , l − 1 . (9)

The elasticity force on point xk(i) (i = 1, 2, · · · , l − 1) is formulated as

f elasticity
k (i) =

1
h

(
α(i + 1)ak(i + 1) − α(i)ak(i)

)
(10)

and the rigidity force on point xk(i) (i = 2, 3, · · · , l − 2) is given by

f rigidity
k (i) =

1
h2

(
2β(i)bk(i) − β(i − 1)bk(i − 1) − β(i + 1)bk(i + 1)

)
. (11)

To calculate the shear restoring forces, we find first the tangential direction of
the curves at xk(i):

Tk(i) = NNN (
ak(i) + ak(i + 1)

)
(12)
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where NNN is the normalization operator defined as NNNv ≡ v/‖v‖ for any non-
zero vector v. As T0(i) usually differs somewhat from T1(i), we use their mean
direction as the effective tangential direction

t(i) = NNN (
T0(i) + T1(i)

)
. (13)

The effective normal direction n(i) can be obtained by turning t(i) by π/2. The
unit vector pointing from x0(i) toward x1(i) is

nc(i) = NNN (
x1(i) − x0(i)

)
. (14)

Given n(i) and nc(i) we are able to calculate shear restoring forces using (5).

2.2 Forces on the Ends and Their Neighbors

The forces on the ends and the points next to them need to be treated separately.
In the following we only give the forces on xk(0) and xk(1). Forces on xk(l − 1)
and xk(l) can be derived accordingly.

The elasticity forces given in (4) make a snake contract continuously, which is
usually undesired but sometimes necessary (see section 2.4). Depending on the
situation, the elasticity forces on the ends can be set to 0 or be kept as

f elasticity
k (0) =

1
h

α(1)ak(1) . (15)

As no rigidity energy is associated with the ends, the rigidity forces on xk(1)
and xk(0) are

f rigidity
k (1) =

1
h2

(
2β(1)bk(1) − β(2)bk(2)

)
(16)

f rigidity
k (0) = − 1

h2
β(1)bk(1) . (17)

When the ends of the two sides meet, i.e. when x0(0) = x1(0), the elasticity and
rigidity forces applied to an end will be from both sides. For example,

f rigidity(0) = f rigidity
0 (0) + f rigidity

1 (0) . (18)

Usually the model near the ends takes a convex form like in Fig. 2. The sum of
the rigidity forces on an end thus often has a longitudinal component pointing
forward, which enables the model to grow along the object boundary. When
this is not desired, the longitudinal component should be set to 0. The lateral
component shall always be kept so that the end can be swung into the correct
position.

To make the model grow along the boundary of the object, one can also assign
a dragging force along the longitudinal direction on the end:

fdrag(0) = −γ(0) NNN (
a0(1) + a1(1)

)
(19)

where γ is the weight parameter for the dragging forces. It should be small
enough compared to the image force parameter (will be given in section 2.3) so
that the model can be attracted to the desired positions while growing.
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2.3 Evolution and Multiscale Approach

Image forces are calculated from the image. For the experiments in this paper,
we use the GVF derived from the gradient magnitude of the image as the image
force field. Let the GVF field be g(x), the external force acting upon a model
point is then

f image
k (i) = κ(i)g(xk(i)) (20)

where i = 1, 2, · · · , l − 1 and κ is the weight parameter for the external forces.
The net force on a model point is the vector sum of all the internal and

external forces. Let it be fk(i). To enable the model to reach a force balance
state, its movement is defined by

ẋk(i, t) = fk(i, t) (21)

where k = 1, 2 and i = 0, 1, · · · , l. This system of equations can be used directly
to update the model. To free ourselves from the problem of adjusting timesteps
at development phase, however, we use the ordinary differential equation (ode)
solver from the gnu scientific library (gsl) [10] for updating.

It is computationally efficient to take a multiscale approach for the model
evolution, with coarser scales for faster convergence followed by finer scales for
better localization. The scale of the external force field is controlled by the size
of smoothing kernels for calculating edge maps and numbers of iterations for
computing GVF. The scale of the model is represented by its spacing h.

2.4 LCS Model for Object Segmentation

The LCS model is more powerful than what it was designed for. Since the two
coupled curves support, constrain and provide information to each other, the
model is rather robust. It can be used for searching and segmenting worms or
objects of similar shapes with initializations far away from the real positions.
If it is possible to tell whether an end is clearly outside of the object (the LCS
model should make the determination easier), one can follow three steps for
segmentation (see Fig. 5 for an example):

Fig. 2. The model near an end often takes a convex form, enabling the sum of the
rigidity forces on the end to point outward largely along the longitudinal direction
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1. Alignment. The model aligns to the the object boundary. A coarse scale can
be used for fast convergence. The elasticity force should be allowed for an end
when it lies far outside of the object. Weak balloon forces are used to overcome
the attraction of edges from inside the object. Balloon forces also usually ensure
that the ends are in a convex form. The rigidity force on an end can push the
end growth and should be allowed when the end is not far outside of the object.

2. Length Adaption. When the model only covers a part of the object as a
result of the first step, dragging forces are exerted on one or both ends for the
model to grow until it covers the whole object. A finer scale can be used for this
step.

3. Relaxation and exact localization. Dragging forces and balloon forces should
be reduced to a minimum. Fine scale is used for this step.

3 Experiments

Data and preprocessing: In the recording setup, worms move freely on an agar
plate under a microscope. Images with the size of 1392×1040 pixels are taken by
a camera at 3 frames per second. The resulting pixel size is around 10 μm. The
images undergo brightness stabilization and shading correction. For initialization
of the LCS model, binary masks of worms are obtained by thresholding.

Description of worm shapes: The model is initialized as close to the desired
position as possible. If there is no loop present (which can be determined by a
simple analysis of the binary mask), the boundary of the binary mask is care-
fully analyzed and corresponding pairs are searched based on the perpendicular
requirement of LCS. These pairs, combined with interpolation and estimation,
initialize the model. In the presence of loops, the model is initialized with the
result of the preceding frame. In this case, the model usually does not align
completely with the object and it actually takes the steps described in section
2.4 for the model to localize.

As shown in Fig. 3, the model finds the correct boundaries and describes worm
shapes with high accuracy. The position of a worm is often represented by its
longitudinal center line. In [4], the skeleton of the binary mask is taken as the
center line. With LCS, the center line is just given by

{
(x0(i) + x1(i))/2 | i = 0, 1, · · · , l

}
. (22)

We compare the center lines obtained by the two methods in Fig. 4. LCS yields
smoother and more accurate center lines and can handle the situation when a
worm forms a loop.

Location and segmentation with rough initialization: LCS models can also be
used for segmentation with an initialization that is quite different from the true
boundary. In Fig. 5, the model is initialized as a straight one, overlapping only
a little of the object. When a part of one side aligns with the true boundary, the
corresponding part on the other is dragged or pushed to the correct position.
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(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

(4a) (4b) (4c)

(5a) (5b) (5c)

(6a) (6b) (6c)

Fig. 3. LCS model with close initializations. Scale bar in (1a) corresponds to 20 pixels,
or about 200 μm. The first column shows images of a worm in temporal order cropped
from a video clip. The second column shows the initialization positions of the LCS
model. The last column gives the final contours. In the first row, there is no loop,
the model is initialized by analyzing the binary mask. In the other rows, the model is
initialized with the result of the preceding frame and we take a multiscale approach for
the model to evolve. The main weight parameters are set as α = 0.06, β = 4.0, μ = 1.6
and κ = 1.0.
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(1a) (1b) (1c)

(2a) (2b) (2c)

Fig. 4. Center lines of worms found by skeletonizing the binary masks (1b and 2b) and
by deriving from the LCS model (1c and 2c), respectively

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Evolution of LCS model with a straight initialization. Scale bar in (a) corre-
sponds to 20 pixels, or about 200 μm. (a) Initialization. (b)-(f) Intermediate steps of
alignment. (g) The length having been adapted. (h) Relaxation and exact localization.
The inner image in (h) shows detailed contour with no linking lines being displayed.
With this example, the second step as described in section 2.4 is actually not necessary.
The main weight parameters are set as α = 0.06, β = 4.0, μ = 1.6 and κ = 1.0.
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4 Conclusion and Outlook

The proposed lateral coupled snake model can describe shapes and positions of
worms in their internal coordinates with subpixel accuracy. It also proves to be
a promising tool for segmenting elongated objects with two sides that are largely
parallel.

The evolution of the model in this paper makes use of the gsl ode solver. The
alignment process shown in Fig. 5 takes less than 10 seconds on a mainstream
PC. We will test whether a direct update with timestep adaptation schemes
tailored for the model can reduce the computation time.

A future direction of our work is to extent the model to 3D so that it can be
applied to pipe-like objects. The ideas of coupling snakes through shear restoring
forces and using forces on the ends flexibly shall also be useful there.

Acknowledgment

This study was supported by the Excellence Initiative of the German Federal
and State Governments (EXC294, bioss, FRIAS) and FRISYS (funded by BMBF
FORSYS).

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1(4), 321–331 (1988)

2. Cohen, L.D.: On active contour models and balloons. Computer Vision, Graphics,
and Image Processing. Image Understanding 53(2), 211–218 (1991)

3. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions
on Image Processing 7(3), 359–369 (1998)

4. Geng, W., Cosman, P., Berry, C., Feng, Z., Schafer, W.: Automatic tracking, fea-
ture extraction and classification of c. elegans phenotypes. IEEE Transactions on
Biomedical Engineering 51(10), 1811–1820 (2004)

5. Fua, P.: Model-Based Optimization: An Approach to Fast, Accurate, and Consis-
tent Site Modeling from Imagery. In: Firschein, O., Strat, T.M. (eds.) RADIUS:
Image Understanding for Intelligence Imagery, pp. 903–908. Morgan Kaufmann,
San Francisco (1997)

6. Mayer, H., Laptev, I., Baumgartner, A.: Multi-scale and snakes for automatic road
extraction. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406,
pp. 720–733. Springer, Heidelberg (1998)

7. Cham, T., Cipolla, R.: Stereo coupled active contours. In: Proc. CVPR, pp. 1094–
1099 (1997)

8. Gunn, S.R., Nixon, M.S.: A robust snake implementation; a dual active contour.
IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 63–68 (1997)

9. Hohnhuser, B., Hommel, G., Berlin, T.U., Iv, F.: 3D pose estimation using coupled
snakes. J. WSCG 12, 1213–6972 (2003)

10. gsl: http://www.gnu.org/software/gsl/

http://www.gnu.org/software/gsl/

	Using Lateral Coupled Snakes for Modeling the Contours of Worms
	Introduction
	The Model
	Discrete Formulation
	Forces on the Ends and Their Neighbors
	Evolution and Multiscale Approach
	LCS Model for Object Segmentation

	Experiments
	Conclusion and Outlook


