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Abstract—In this paper, polar and spherical Fourier analysis are defined as the

decomposition of a function in terms of eigenfunctions of the Laplacian with the

eigenfunctions being separable in the corresponding coordinates. The proposed

transforms provide effective decompositions of an image into basic patterns with

simple radial and angular structures. The theory is compactly presented with an

emphasis on the analogy to the normal Fourier transform. The relation between

the polar or spherical Fourier transform and the normal Fourier transform is

explored. As examples of applications, rotation-invariant descriptors based on

polar and spherical Fourier coefficients are tested on pattern classification

problems.

Index Terms—Invariants, Fourier analysis, radial transform, multidimensional.
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1 INTRODUCTION

NOTHING needs to be said about the importance of Fourier
transform in image processing and pattern recognition. Usually,
Fourier transform is formulated in Cartesian coordinates, where a
separable basis function in 3D space without normalization is
given by

eik�r ¼ eikxxeikyyeikzz; ð1Þ

where ðx; y; zÞ are coordinates of the position r and ðkx; ky; kzÞ are

components of the wave vector k along the corresponding axis.

The basis function (1) represents a plane wave, which is a periodic

pattern. Fourier analysis of an image is, therefore, the decomposi-

tion of the image into the basic patterns represented by (1).
The Laplacian is an important operator in mathematics and

physics. Its eigenvalue problem gives the time-independent wave

equation. In Cartesian coordinates, the operator is written as

rr2 ¼ r2
x þr2

y þr2
z ¼

@2

@x2
þ @2

@y2
þ @2

@z2
:

Equation (1) is an eigenfunction of the Laplacian and is separable

in Cartesian coordinates.
When defined on the whole space, functions given in (1) are

mutually orthogonal for different k; wave vectors take contin-

uous values and it is said that one has a continuous spectrum.

Over finite regions, the mutual orthogonality generally does not

hold. To get an orthogonal basis, k can only take values from a

discrete set and the spectrum becomes discrete. The continuous

Fourier transform reduces to Fourier series or to the discrete

Fourier transform.
For objects with certain rotational symmetry, it is more effective

for them to be investigated in polar (2D) or spherical (3D)

coordinates. It would be of great advantage if the image can be

decomposed into wave-like basic patterns that have clear radial

and angular structures. Ideally, this decomposition should be an

extension of the normal Fourier analysis and can, therefore, be

called Fourier analysis in the corresponding coordinates. To fulfill

these requirements, the basis functions should take the separation-

of-variable form

RðrÞ�ð’Þ ð2Þ

for 2D and

RðrÞ�ð#Þ�ð’Þ ¼ RðrÞ�ð#; ’Þ ð3Þ

for 3D, where ðr; ’Þ and ðr; #; ’Þ are the polar and spherical

coordinates, respectively. They should also be the eigenfunctions

of the Laplacian so that they represent wave-like patterns and that

the associated transform is closely related to the normal Fourier

transform. The concrete form of the angular and radial parts of the

basis functions will be investigated and elaborated in the coming

sections but will be briefly introduced below in order to show

previous work related to them.
For polar coordinates, the angular part of a basis function is

given by

�ð’Þ ¼ 1ffiffiffiffiffiffi
2�
p eim’; ð4Þ

where m is an integer. The associated transform in angular

coordinate is just the normal 1D Fourier transform. For spherical

coordinates, the angular part is a spherical harmonic

�ð#; ’Þ ¼ Ylmð#; ’Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðl�mÞ!
ðlþmÞ!

s
Plmðcos#Þeim’; ð5Þ

where Plm is an associated Legendre polynomial and l and m are

integers, l � 0 and jmj � l. The corresponding transform is called

Spherical Harmonic (SH) transform and has been widely used in

representation and registration of 3D shapes [6], [7], [8].
The angular parts of the transforms in 2D and 3D are, therefore,

very familiar. Not so well known are the transforms in the radial

direction. The radial basis function is a Bessel function JmðkrÞ for

polar coordinates and a spherical Bessel function jlðkrÞ for spherical

coordinates. In both cases, the parameter k can take either

continuous or discrete values, depending on whether the region is

infinite or finite. For functions defined on ð0;1Þ, the transform with

JmðkrÞ as integral kernel and r as weight is known as the Hankel

transform. For functions defined on a finite interval, with zero-value

boundary condition for the basis functions, one gets the Fourier-

Bessel series [1]. Although the theory on Fourier-Bessel series has

long been available, it, mainly, has applications in physics-related

areas [16], [17]. Zana and Cesar’s work [10] and a few references

therein are the only ones we can find that employ Fourier-Bessel

series expansion for 2D image analysis. Methods based on Zernike

moments are, on the other hand, much more popular in applications

where we believe the Fourier-Bessel expansion also fits.
The SH transform works on the spherical surface. To describe

3D volume data, one can use a collection of SH features calculated on

concentric spherical surfaces of different radii, as suggested in [7].

This approach treats each spherical surface as independent to one

another; therefore, it cannot describe the radial structures effec-

tively. This observation motivated the whole work presented here.
In this paper, the operations that transform a function into the

coefficients of the basis functions, given in (2) and (3) and

described above, will simply be called polar and spherical Fourier

transform, respectively. It should be noted though that, in the

literature, the former often refers to the normal Fourier transform
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with wave vectors expressed in polar coordinates [14] and the

latter often refers to the SH transform [15].

Due to the extreme importance of the Laplacian in physics, the

expansion of functions with respect to its eigenfunctions is

naturally not new there (e.g., [18], [19]). The idea that these

eigenfunctions can be used as basis functions for analyzing 2D or

3D images is unfamiliar to the pattern recognition society. There

also lacks a simple and systematic presentation of the expansion

from the point of view of signal analysis. Therefore, although part

of the derivation is scattered in books like [1], we rederive the basis

functions to emphasize the analogy to the normal Fourier trans-

form. Employment of the Sturm-Liouville theory makes this

analogy clearer and the derivation more compact.
The proposed polar and spherical Fourier transforms are

connected with the normal Fourier transform by the Laplacian.

We investigate the relation between them so that one can under-

stand the proposed transforms from another point of view. It is

found that the relation also provides computational convenience.

An advantage of the polar and the spherical Fourier transforms is

that rotation-invariant descriptors can be very easily extracted from

the transform coefficients. We will show how to do this.
Section 2 deals with the polar Fourier transform. Besides

presentation of the theory, issues about calculation of the

coefficients are discussed. A short comparison between polar

Fourier basis functions and Zernike functions is made at the end.

Parallel to Section 2, the theory for the spherical Fourier

transform is summarized in Section 3. As examples for the

application of the theory, rotation-invariant descriptors based on

the polar and spherical Fourier coefficients are applied to object

classification tasks in Section 4. At the end, conclusion and

outlook are given.
To avoid the ideas being hidden by too much mathematics, the

derivation and theories are only outlined in this paper. Those who

are interested in more details are referred to [23].

2 POLAR FOURIER TRANSFORM

2.1 Basis Functions

2.1.1 Helmholtz Equation and Angular Basis Functions

As an extension from the Cartesian case, we begin with the

eigenfunctions of the Laplacian, whose expression in polar

coordinates is given by

rr2 ¼ r2
r þ

1

r2
r2
’; ð6Þ

where

r2
r ¼

1

r

@

@r
r
@

@r

� �
and r2

’ ¼
@2

@’2
ð7Þ

are the radial and angular parts. The eigenvalue problem can be

written as

r2
r�ðr; ’Þ þ

1

r2
r2
’�ðr; ’Þ þ k2�ðr; ’Þ ¼ 0; ð8Þ

which is the Helmholtz equation in polar coordinates. Only

nonnegative k2 are of interest. We further require k � 0. By

substituting the separable form �ðr; ’Þ ¼ RðrÞ�ð’Þ into (8), one gets

@2

@’2
�þm2� ¼ 0; ð9Þ

1

r

@

@r
r
@

@r

� �
Rþ k2 �m

2

r2

� �
R ¼ 0: ð10Þ

The solution to (9) is simply

�mð’Þ ¼
1ffiffiffiffiffiffi
2�
p eim’; ð11Þ

with m being an integer.

2.1.2 Radial Basis Functions

The general nonsingular solution to (10) is

RðrÞ ¼ JmðkrÞ; ð12Þ

where Jm is the mth order Bessel function. Bessel functions satisfy
the orthogonality relationZ 1

0

Jmðk1rÞJmðk2rÞrdr ¼
1

k1
�ðk1 � k2Þ; ð13Þ

just like the complex exponential functions satisfyZ 1
�1

eik1x eik2x
� ��

dx ¼ 2��ðk1 � k2Þ: ð14Þ

Actually, JmðkrÞwith k � 0 forms an orthogonal basis for functions
defined on ð0;1Þ.

For the normal Fourier transform, an infinite space corre-
sponds to a continuous spectrum and a finite space to a discrete
spectrum, which is selected by proper boundary conditions. The
same also applies to the radial basis functions (12). Over the finite
interval ð0; aÞ, the orthogonality relation, like in (13), generally
does not hold any more, instead,Z a

0

Jmðk1rÞJmðk2rÞr dr

¼ a

k2
1 � k2

2

k2Jmðk1aÞJ 0mðk2aÞ � k1Jmðk2aÞJ 0mðk1aÞ
� �

:
ð15Þ

Boundary conditions need to be imposed onRðrÞ ¼ JmðkrÞ to select
a set of k values so that the corresponding functions are mutually
orthogonal. According to the Sturm-Liouville (S-L) theory [2], for
all the nonnegative k satisfying the boundary condition

RðaÞ cos� � aR0ðaÞ sin � ¼ 0; � 2 ½0; �Þ; ð16Þ

and leaving RðrÞ ¼ JmðkrÞ as nonzero functions, the eigenfunc-
tions fRðrÞ ¼ JmðkrÞg form an orthogonal basis on ð0; aÞ.

With x ¼ ka and RðrÞ ¼ JmðkrÞ, (16) becomes

JmðxÞ cos� � xJ 0mðxÞ sin � ¼ 0: ð17Þ

Suppose ðxm1 < xm2 < � � � < xmn < � � �Þ are the nonnegative solu-
tions to (17) and Jmðxmnr=aÞ are nonzero functions,

knm ¼
xmn
a
; n ¼ 1; 2; . . . ð18Þ

(the indices n and m now exchange their order for the sake of
convention) are then the solutions to (16). The corresponding
eigenfunctions are orthogonal to each other:Z a

0

JmðknmrÞJmðkn0mrÞr dr ¼ N ðmÞn �nn0 ; ð19Þ

where N ðmÞn can be determined from (10) and (15) as

N ðmÞn ¼ a
2

2
J 0m

2ðxmnÞ þ 1� m2

x2
mn

� �
J2
mðxmnÞ

� �
: ð20Þ

The normalized radial function can therefore be defined as

RnmðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
N
ðmÞ
n

q JmðknmrÞ: ð21Þ
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The set of functions Rnmjn ¼ 1; 2; . . .f g forms an orthonormal basis

with weight r on ð0; aÞ. A function fðrÞ defined on this interval can

be expanded as

fðrÞ ¼
X1
n¼1

Z a

0

fð�ÞRnmð�Þ� d�
� �

RnmðrÞ: ð22Þ

In (17), � can take any values in ½0; �Þ. Two cases are especially

interesting:
Zero-value boundary condition. With sin� ¼ 0, (17) reduces to

JmðxÞ ¼ 0 ð23Þ

(note that x ¼ ka). xmn should be the positive zeros of JmðxÞ. Under

this condition,

N ðmÞn ¼ a
2

2
J2
mþ1ðxmnÞ; ð24Þ

and the right-hand side of (22) is usually known as the mth order

Fourier-Bessel series of fðrÞ.
Derivative boundary condition. With cos� ¼ 0, (17) becomes

J 0mðxÞ ¼ 0: ð25Þ

xmn should be the positive zeros of J 0mðxÞ except for one special

case: x01 ¼ 0. This case is not explicitly covered in [1]. One can

verify that x ¼ 0 is a solution to J 00ðxÞ ¼ 0 and J0ð0 � r=aÞ ¼ 1 is

nonzero and is, indeed, an eigenfunction of the S-L system. Under

the derivative boundary condition, we have

N ðmÞn ¼ a
2

2
1� m2

x2
mn

� �
J2
mðxmnÞ; ð26Þ

with the special case N
ð0Þ
1 ¼ a2=2.

Different boundary conditions lead to different spectra of the

system. The choice should depend on the problems under

investigation. To give an impression how the radial functions look

like, we show the first few of them for m ¼ 2 with zero and

derivative boundary conditions in Figs. 1a and 1b. It is intuitive to

choose the zero boundary condition when the images tend to be

zero at r ¼ a and the derivative condition when the images tend to

be constant in radial direction near r ¼ a. Often, it is necessary to

do some experiments to find the better choice.
The asymptotic behavior of the Bessel functions [1] reveals the

wave-like property of the radial function: for knmr� jm2 � 1
4 j,

RnmðrÞ �
1ffiffiffi
r
p cos knmr�

m�

2
� �

4

	 

: ð27Þ

RnmðrÞ approaches a cosine function with the amplitude decreas-

ing as fast as 1=
ffiffiffi
r
p

. There is a phase shift of �ðm�=2þ �=4Þ, which

corresponds to a “delay” of the function to take the wave-like form

near the origin (see Fig. 6a).

2.1.3 Basis Functions

The basis function for the polar Fourier transform comprises the

radial and the angular parts. Consequently, for the transform

defined on the whole space, the basis function is given by

�k;mðr; ’Þ ¼
ffiffiffi
k
p

JmðkrÞ�mð’Þ ð28Þ

with k taking continuous nonnegative values. For the transform

defined on the finite region r < a, the basis function is given by

�nmðr; ’Þ ¼ RnmðrÞ�mð’Þ: ð29Þ

It satisfies the equation

r2�nm þ k2
nm�nm ¼ 0: ð30Þ

Those familiar with quantum mechanics will recognize k2
nm as the

energy level (except for a constant factor) of the system. The basis

functions �nmðr; ’Þ with the lowest energy levels are shown in

Fig. 2. One can find that the higher the energy level, the finer the

structures. Therefore, for image analysis, the value of k is an

indication of the scale of the basic patterns, which is consistent

with the normal Fourier transform.

2.2 Expansion and Rotation-Invariant Descriptors

A 2D function fðr; ’Þ defined on the whole space can be expanded

with respect to �k;m, as defined in (28):

fðr; ’Þ ¼
Z 1

0

X1
m¼�1

Pk;m�k;mðr; ’Þk dk; ð31Þ

where

Pk;m ¼
Z 1

0

Z 2�

0

fðr; ’Þ��k;mðr; ’Þr dr d’ ð32Þ

are the polar Fourier coefficients (P stands for Polar). The infinite

transform, as given in (31) and (32), is mainly of theoretical

interest. In practice, one should use the transform defined on a
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Fig. 1. The first few radial basis functions for 2D with m ¼ 2 and a ¼ 1: (a) Rnm with
zero boundary condition, (b) Rnm with derivative boundary condition, and
(c) normalized radial Zernike function eZnm. The number beside each curve is
the value of n.



finite region. A function fðr; ’Þ, defined on r < a, can be expanded
with respect to f�nmg as

fðr; ’Þ ¼
X1
n¼1

X1
m¼�1

Pnm�nmðr; ’Þ; ð33Þ

where the coefficients

Pnm ¼
Z a

0

Z 2�

0

fðr; ’Þ��nmðr; ’Þr dr d’: ð34Þ

There are two indices for the expansion. How should the terms be
ordered, and therefore, be truncated for a finite-term expansion? A
natural way is according to the energy levels. In the language of
image analysis, according to the scales of the basic patterns. Larger
scale patterns should be taken into account first. This is often the
best choice if no other information about the data is available. Fig. 3
shows the isolines of knm.

The polar Fourier coefficients provide a complete representa-
tion of the original function. But it is often desirable to have a
rotation-invariant description of an object. A complete set of
descriptors can be obtained by properly normalizing the coeffi-
cients according to the degree of rotational symmetry (similar to
the technique in [21]). However, though phase information is very
important, there still lacks a systematic and robust way of
incorporating this information into the descriptors. For many
problems, the modulus of the coefficients jPnmj make up a robust,
although mathematically not complete, set of rotation-invariant
descriptors. In this paper, jPnmj will be called Polar Fourier
Descriptors (PFD). For real images, jPnð�mÞj ¼ jPnmj, one needs
only to consider descriptors with nonnegative m.

A digital image is usually given on an equally-spaced grid in
Cartesian coordinates. To evaluate the coefficients as in (34), it is
advisable to map the image I into polar coordinates, where the
transform becomes separable and the angular part can be done
fast with FFT. The radial part then only needs to be performed
for each kept term. The grid density of the mapped image Ipolar

should be high enough to accommodate the finest patterns in the
expansion. Let the largest values for m and knm be mmax and kmax.
Denote the radial and angular size of Ipolar as Mr and M’. The
sampling theorem requires M’ � 2mmax. M’ should also be
chosen to facilitate fast calculations. Our numerical experiments

on the radial basis function show that it is enough to have Mr �
akmax=�þ 25 to ensure that (19) holds with a relative error about

or less than 1 percent. Mapping of the image is a process of

interpolating and sampling. It must be handled carefully to avoid

aliasing. If the resolution in Ipolar is coarser than in the original

image I, one can either first smooth I then perform the mapping,

or alternatively, first map I to polar coordinates with proper

resolutions followed by smoothing and downscaling in r or ’.

Which approach to take depends on the aspect ratio of Ipolar.

2.3 Relation to Normal Fourier Transform in 2D

2.3.1 Infinite Transform

To find the relation between the polar and the normal Fourier

transforms, one needs to know the relation of their bases. With the

Jacobi-Anger Identity [4], the basis function for the normal Fourier

transform can be expanded as

1

2�
eik�r ¼ 1

2�
eikr cosð’�’kÞ

¼
X1

m¼�1

imffiffiffiffiffiffiffiffi
2�k
p e�im’k�k;mðr; ’Þ;

ð35Þ

where k is the wave vector and ðk; ’kÞ and ðr; ’Þ are the polar

coordinates of k and r, respectively. �k;m is defined in (28).
Suppose a function fðr; ’Þ is defined on the whole space and its

normal Fourier transform is Ck;’k (C stands for Cartesian, k and ’k
are written as subscripts for consistency of notation although they

take continuous values), then it can be expressed as

fðr; ’Þ ¼
Z 1

0

Z 2�

0

Ck;’k
1

2�
eikr cosð’�’kÞ

� �
k dk d’k: ð36Þ

Substituting (35) into (36), one has the expansion of fðr; ’Þ in

�k;m and can get the polar Fourier coefficient Pk;m expressed in

Ck;’k as

Pk;m ¼
imffiffiffi
k
p 1ffiffiffiffiffiffi

2�
p

Z 2�

0

Ck;’k e
�im’kd’k: ð37Þ

The relation is very simple. Except for the factor ðim=
ffiffiffi
k
p
Þ; Pk;m is

just the Fourier coefficient of Ck;’k by considering ’k as the variable

(see Fig. 4a for an illustration).

2.3.2 Transform on Finite Regions

Strictly speaking, it is ambiguous to talk about the relation between

the polar and the normal Fourier transforms when they are defined

on finite regions because the shapes of the regions are different. We

consider such a situation here: The normal Fourier transform is

defined on a rectangle that is centered at the origin and encloses

the disk where the polar Fourier transform is defined. Let the area

of the rectangle be A.
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Fig. 3. Isolines of knm.

Fig. 2. Basic patterns represented by �nm with zero boundary condition. Shown

are the real parts of the functions. ðn;mÞ pairs are given under each pattern. The

patterns are listed in the increasing order of the value of knm.



We first expand a plane wave in f�nmg on the disk. As shown

in (35), a plane wave can be expanded in �k;m, which, in turn, can

be expanded easily in f�nmg on the disk. We have

eik�r ¼
X
n;m

im
ffiffiffiffiffiffi
2�
p Z a

0

Rnmð�ÞJmðk�Þ� d�
� �

� e�im’k�nmðr; ’Þ
ð38Þ

for r < a. The expression inside the square brackets is the

coefficient of JmðkrÞ in RnmðrÞ. It can be calculated by making

use of (15). If knm are selected with the zero boundary condition,

then

eik�r ¼
X
n;m

ð�1Þnim2
ffiffiffi
�
p

knm
JmðkaÞ
k2 � k2

nm

e�im’k�nmðr; ’Þ: ð39Þ

This equation holds for any k, including naturally those appearing

in the normal Fourier transform defined on the rectangle, which

we denote as k0.
A function fðr; ’Þ defined on the disk can be extended to the

rectangle by padding. Let the normal Fourier coefficients for the

padded function be Ck0
. On the disk,

fðr; ’Þ ¼
X
k0

Ck0

1ffiffiffiffi
A
p eik0 �r: ð40Þ

The function fðr; ’Þ can as well be expanded in f�nmg. Let the

coefficient for �nm be Pnm. With the expansion (39), one can get

Pnm ¼ ð�1Þnim 2
ffiffiffi
�
pffiffiffiffi
A
p knm

X
k0

Jmðk0aÞ
k2

0 � k2
nm

e�im’k0Ck0
ð41Þ

for the zero boundary condition. We rewrite the main parts of Pk;m
and Pnm from (37) and (41) for comparison,

Pk;m �
Z
dk0 �ðk0 � kÞ e�im’k0Ck0 ;’k0 ; ð42Þ

Pnm �
X
k0

Jmðk0aÞ
k2

0 � k2
nm

e�im’k0Ck0
: ð43Þ

When the space becomes finite, the integral over the wave vector is

replaced by a summation and the sharp function of the

wavenumber �ðk0 � kÞ is replaced by a more spreading one (see

Fig. 4b for an illustration)

Jmðk0aÞ
k2

0 � k2
nm

; ð44Þ

which has its maximum absolute value at k0 ¼ knm. According to
the asymptotic behavior of Bessel functions, it arrives to its first
zeros approximately at jk0 � knmj ¼ �=a and will oscillatingly
decrease on both sides. Fig. 5 shows the absolute value of (44)
multiplied by k0, which comes from the fact that the number of
pixels at radius k is approximately proportional to k.

For completeness, if f�nmg is determined with the derivative
boundary condition, we can get

Pnm ¼ ð�1Þnim 2
ffiffiffi
�
p

aknmffiffiffiffi
A
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
nma

2 �m2
p X

k0

kJ 0mðkaÞ
k2 � k2

nm

e�im�kCk0
: ð45Þ

Equations (41) and (45) can be used to calculate the polar
Fourier coefficients Pnm from the normal Fourier coefficients Ck0

,
which can be obtained by FFT. This approach implies sinc
interpolation in the spatial domain and is best suited when the
underlying original signal is band-limited.

2.4 Comparison with Zernike Polynomials

Besides the basis functions defined with (29), there exists an
infinity of sets of basis functions on a disk. One of the most famous
are Zernike polynomials. Since Teh and Chin [9] made a
comparison study on different moment methods, which shows
that Zernike moments outperform other moment-based methods
in terms of overall performance, there are a lot of applications
using Zernike moments, e.g., [11], [12], [13]. Zernike functions are
defined on a unit disk, and, when expressed in polar coordinates,
have the following form [3]:

Vnmðr; ’Þ ¼ ZnmðrÞeim’; ð46Þ

where m is any integer, n � 0 is an integer and is the order of the
polynomial, n � jmj, and n� jmj is even. The angular part is the
same as that of (29). The radial Zernike function Znm is a
polynomial in r:

ZnmðrÞ ¼
Xn�jmj2

s¼0

ð�1Þs ðn� sÞ!
s! nþjmj

2 � s
	 


! n�jmj
2 � s

	 

!
rn�2s: ð47Þ

It has ðn� jmjÞ=2 zeros between 0 and 1. The orthogonality relation
of the radial functions is given byZ 1

0

ZnmðrÞZn0mðrÞr dr ¼
1

2nþ 2
�nn0 : ð48Þ

For comparison, we define the normalized radial function as

eZnm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 2
p

Znm: ð49Þ

The first few normalized radial functions for m ¼ 2 are shown
in Fig. 1c. The typical form of eZnm with relatively large m and n is
shown in Fig. 6 together with Rnm for comparison. One can find
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Fig. 5. j k0Jmðk0aÞ
k2

0
�k2

nm
j as a function of k0 for n ¼ 8;m ¼ 5, and a ¼ 32, where

knm ¼ 0:994.

Fig. 4. Illustration of the relation of the polar Fourier coefficients and the normal
Fourier coefficients Ck;’k . (a) When the space is infinite, Pk;m is the Fourier
coefficient of Ck;’k , with ’k as the variable. (b) When the space is finite, Pnm is the
weighted sum of the Fourier coefficients on different circles. With zero boundary
condition, the weight function is proportional to (44).



that eZnm has also a wave-like form. Like Rnm, it has also a “delay”

near the origin for the “wave” to begin. Unlike Rnm, the amplitude

of the “wave” does not decrease monotonically; instead, the

“wavelength” decreases with r.

3 SPHERICAL FOURIER TRANSFORM

The theory on the spherical Fourier transform is only summarized

here. Interested readers are referred to [23] for more details.
The angular part of the basis function is a spherical harmonic

Ylmð#; ’Þ, as defined in (5). The corresponding radial part is

RðrÞ � jlðkrÞ; ð50Þ

where jl is the so-called spherical Bessel function of order l and is

related to the ordinary Bessel function by

jlðxÞ ¼
ffiffiffiffiffiffi
�

2x

r
Jlþ1

2
ðxÞ: ð51Þ

The normalized basis function for spherical Fourier transform

defined on the whole space is

�k;l;mðr; #; ’Þ ¼
ffiffiffi
2

�

r
kjlðkrÞYlmð#; ’Þ; ð52Þ

where k takes continuous values. When defined on a solid sphere

of radius a, the normalized basis function is

�nlmðr; #; ’Þ ¼
1ffiffiffiffiffiffiffiffiffi
N
ðlÞ
n

q jlðknlrÞYlmð#; ’Þ; ð53Þ

where n is a positive integer; knl and N ðlÞn are determined from the

S-L boundary conditions. With the zero-value boundary condi-

tion, let ðxl1 < xl2 < � � � < xln < � � �Þ be the positive solutions to

jlðxÞ ¼ 0, then knl ¼ xln=a and

N ðlÞn ¼
a3

2
j2
lþ1ðxlnÞ: ð54Þ

With the derivative boundary condition, let ðxl1; xl2; . . . ; xln; . . .Þ be

the increasingly ordered positive zeros of j0lðxÞ (except for x01 ¼ 0),

then knl ¼ xln=a and

N ðlÞn ¼
a3

2
1� lðlþ 1Þ

x2
ln

� �
j2
l ðxlnÞ; ð55Þ

with the special case N
ð0Þ
1 ¼ a3=3.

A function fðr; #; ’Þ defined on a solid sphere with radius a can

be expanded in terms of �nlmðr; #; ’Þ:

fðr; #; ’Þ ¼
X1
n¼1

X1
l¼0

Xl
m¼�l

Snlm�nlmðr; #; ’Þ; ð56Þ

where

Snlm ¼
Z a

0

Z �

0

Z 2�

0

fðr; #; ’Þ��nlmðr; #; ’Þr2 sin# dr d# d’ ð57Þ

are the spherical Fourier coefficients (S stands for Spherical).
Extracting rotational invariants of objects in 3D is slightly more

complicated than in 2D as there are two angular coordinates now.

It is well known that Ylm with �l � m � l span a subspace Yl that is

invariant with respect to the rotation group. For a function defined

on the spherical surface and having expansion

fð#; ’Þ ¼
X1
l¼0

Xl
m¼�l

hlmYlmð#; ’Þ; ð58Þ

the magnitude of its projection onto Yl, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

m¼�l jhlmj
2

q
remains

unchanged under rotation and is a rotational invariant (will be

called a SH descriptor) of the function. In [7], it is suggested to use

SH descriptors on spherical surfaces of a set of radii to describe

volume data. These descriptors will be called radius-wise SH

Descriptors (rwSHD) in this paper. It is worth noting that a rwSHD

should be scaled with the square of its radius to account for the

change of the area of the spherical surface with the radius. It is

straightforward to know that, for a function defined on a solid

sphere, its projection onto the subspace spanned by �nlm ¼ RnlYlm

with �l � m � l has also a fixed magnitude under rotation as all

the variance of the basis function �nlm under rotation is captured

by its angular part. That is to say,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
m¼�l

jSnlmj2
vuut ð59Þ

for any n and l is a rotation-invariant property of that function. We

call (59) a Spherical Fourier Descriptor (SFD).
The relation between the spherical Fourier transform and the

normal Fourier transform can be derived similarly as in the 2D case.

Any function fðr; #; ’Þ defined on the whole space can be expanded

in either plane waves ð 1ffiffiffiffi
2�
p Þ3eik�r or in spherical waves �k;l;m:

fðr; #; ’Þ

¼
Z 1

0

Z �

0

Z 2�

0

Ck;#k;’k
1ffiffiffiffiffiffi
2�
p
� �3

eik�rk2 sin#k dk d#k d’k

¼
Z 1

0

X1
l¼0

Xl
m¼�l

Sk;l;m�k;l;mðr; #; ’Þk2dk;

where ðk; #k; ’kÞ are the spherical coordinates of the wave vector k.

A plane wave in 3D can be expanded in spherical waves [5]. As a

consequence, there also exists a relation of the coefficients:

Sk;l;m ¼
il

k

Z �

0

Z 2�

0

Ck;#k;’kY
�
lmð#k; ’kÞ sin#k d#k d’k:

Except for a constant factor, Sk;l;m is the SH coefficient of Ck;#k;’k
with ð#k; ’kÞ as the variables.

A function fðr; #; ’Þ that is defined on a solid sphere of finite

radius a can be expanded either in a normal Fourier series or in a

spherical Fourier series. Here, the normal Fourier series is defined

on a rectangular box containing the solid sphere and is centered at

the origin. Let the volume of the rectangular box be V .
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Fig. 6. (a) Rð11Þ8 as defined in (21) with derivative boundary condition for a ¼ 1 and

(b) eZð28Þ8 as defined in (49). Both have 10 zeros on ð0; 1Þ.



fðr; #; ’Þ ¼
X
k0

Ck0

1ffiffiffiffi
V
p eik�r

¼
X
nlm

Snlm�nlmðr; #; ’Þ:

The coefficients have the following relationship if knm are selected

with the zero boundary condition:

Snlm ¼ ð�1Þnil4�
ffiffiffiffiffi
2a

V

r" # X
k0

knljlðk0aÞ
k2

0 � k2
nm

Y �lm
�
#k0

; ’k0

�
Ck0

:

4 EXPERIMENTS

In this paper, we conduct experiments on the application of PFD

and SFD to pattern classification problems. The aim here is to

compare their performance with other features like Zernike

descriptors or rwSHD. We shall calculate descriptors directly from

the gray-value images instead of trying to get a higher classifica-

tion rate by combination with other techniques that are irrelevant

to the comparison, such as, texture decomposition or image

warping according to the object shape.
The data set for the experiments is 3D confocal laser scanning

microscopic images of pollen grains. It contains 387 images of single

pollen grains from 26 species, with 13-15 objects for each species.

The class of every pollen grain is known. The size of each 3D image

is 128	 128	 128, with the same resolution in each direction.

Essentially, they are the same as used in [20]. We have only applied

new segmentation and downscaling methods on the raw data here.

As pollen grains usually have near-spherical shapes and show

certain rotational symmetry, they make up a good data set for

applying polar and spherical Fourier analysis. We use this data set

for both 3D and 2D experiments, with the xy slice containing the

object center as the 2D data.
Each image is first mapped to polar or spherical coordinates.

The origin is chosen to be the center of the object, found by

segmentation. For 2D, the region
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 64 is mapped into a

rectangular grid of size 90	 512 in polar coordinates ðr; ’Þ. For 3D,

the region
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 64 is mapped into a cuboid of size

111	 512	 512 in spherical coordinates ðr; #; ’Þ. The sizes for #

and ’ are chosen to be the same due to the requirement of S2Kit, a

software package for fast SH transform [26].
Due to the existence of fast programs for Fourier transform [25]

and SH transform [26], the angular-part transformation can be

done first. The radial part needs only to be performed for the kept

terms. We use the Gnu Scientific Library [27] for Bessel functions

and keep a lookup table for the radial functions.

4.1 2D Experiments

We test PFDs with the zero and the derivative boundary

conditions. They will be called PFD-0 (0 for zero) and PFD-d

(d for derivative) respectively. For comparison, Zernike descrip-

tors are also calculated, which are the magnitude of the

coefficients in normalized Zernike functions. The truncation of

the polar Fourier expansion is according to the energy level and

the truncation of the Zernike expansion is according to the order

of the polynomials. We test on descriptor sets of different sizes.

Each set is normalized to have a sum of 1. As a note for the

interested readers, we have mmax ¼ 170 and nmax ¼ 57 for 4,096

PFD-0 features.
We first perform leave-one-out tests using nearest neighbor

classifiers based on the L1-norm distance. As Fig. 7a shows, PFD-0

performs best for most cases, but the difference of performance is

not very distinct. We further employ support vector machines [24]

for classification. The 10-fold cross-validation results are given in

Fig. 7b. Although the Zernike descriptors catch up at large numbers

of descriptors, they are worse when the number is low. The

recognition rate of PFD-0 reaches its highest with 1,024 descriptors

and is “saturated” after that. The other two sets of descriptors

reach a slightly lower “saturation” level with about 2,070 or

more descriptors. PFD-0, therefore, describes this data set more

efficiently for the considered classification problem.

4.2 3D Experiments

For 3D, we test SFDs with the zero boundary condition against

rwSHDs. These two kinds of descriptors correspond to the same

angular transformation and differ in how radial patterns are

represented. As the recognition rates of rwSHDs can vary with the

number of sampling points nr in radius, we compare SFDs and

rwSHDs for the same SH band limits L (l is limited to l < L). The

aim is to find whether the radial spherical Bessel transform has

advantages over direct sampling.
We select the best results of each type for comparison. rwSHDs

are calculated with nr ¼ 8;16;32;64;111. The numbers of SFDs are

limited to powers of two between 256 and 2,048. The best results of

each type for different band limits are shown in Fig. 8. Except for

very low band limits, SFDs perform clearly better.
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Fig. 7. Recognition rates on 2D data with (a) nearest-neighbor classifiers based on

L1-norm distance and (b) support vector machines.

Fig. 8. Recognition rates on 3D data with nearest neighbor classifier based

on L1-norm distance.



5 CONCLUSION AND OUTLOOK

We propose to use the eigenfunctions of the Laplacian that are

separable in polar and spherical coordinates as basis functions for

Image analysis. This idea puts the proposed polar and spherical

Fourier transform and the normal Fourier transform into the

same framework and ensures close resemblance and relation

between them.
Rotation-invariant descriptors based on polar and spherical

Fourier coefficients have been tested in object classification tasks.

For 2D data, it is shown that PFDs generally perform better than

Zernike descriptors for the selected data set, leaving PFDs also as

candidates for applications where Zernike descriptors are used.

For 3D data, SFDs perform better than rwSHDs with the same

SH band limits, showing that the radial structure is effectively

coded into the spherical Fourier coefficients. Also, it should be

emphasized that the radial transform is automatically a multiscale

approach that decomposes the pattern into different scales, just like

the normal Fourier transform does.
In the experiments, the features are calculated for the whole

objects. They can also be calculated pointwise to detect local

structures. In that case, no mapping to the corresponding

coordinates is necessary. The coefficients can be calculated by

convolution, which can be done fast with the help of FFT [22].

Although the experiments are only performed on problems where

rotational invariance is important, the polar and spherical Fourier

analysis can also be applied to other problems like registration,

where the orientation of the patterns is the essential information.

For this kind of application, phases of the coefficients shall be kept

as they carry the information of the angular positions.
In this paper, we are mainly concerned with the numerical

precision of the calculations. The radial transform is calculated for

every coefficient independently, which is surely not an efficient

way. Whether fast algorithms exist for radial transforms is a

question to be answered.

ACKNOWLEDGMENTS

This study was supported by the Excellence Initiative of the

German Federal and State Governments (EXC 294).

REFERENCES

[1] N.N. Lebedev, Special Functions and Their Applications (translated from
Russian by R.A. Silverman), chapters 5, 6, 8. Dover, 1972.

[2] W. Kaplan, Advanced Calculus, fourth ed., pp. 696-698. Addison-Wesley,
1991.

[3] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference, and Diffraction of Light, seventh ed., pp. 523-525.
Cambridge, 1989.

[4] E.W. Weisstein, “Jacobi-Anger Expansion,” From MathWorld—A Wolfram
Web Resource, http://mathworld.wolfram.com/Jacobi-AngerExpansion.
html, 2009.

[5] K.E. Schmidt, “The Expansion of a Plane Wave,” http://fermi.la.asu.edu/
PHY577/notes/plane.pdf, 2009.

[6] S. Erturk and T.J. Dennis, “3D Model Representation Using Spherical
Harmonics,” Electronics Letters, vol. 33, no. 11, pp. 951-952, 1997.

[7] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invariant
Spherical Harmonic Representation of 3D Shape Descriptors,” Proc. Symp.
Geometry Processing, pp. 167-175, 2003.

[8] H. Huang, L. Shen, R. Zhang, F. Makedon, A. Saykin, and J. Pearlman, “A
Novel Surface Registration Algorithm with Medical Modeling Applica-
tions,” IEEE Trans. Information Technology in Biomedicine, vol. 11, no. 4,
pp. 474-482, July 2007.

[9] C.-H. Teh and R.T. Chin, “On Image Analysis by the Methods of
Moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10,
no. 4, pp. 496-513, July 1988.

[10] Y. Zana and R.M. Cesar Jr., “Face Recognition Based on Polar Frequency
Features,” ACM Trans. Applied Perception, vol. 3, no. 1, pp. 62-82, 2006.

[11] A. Khotanzad and Y.H. Hong, “Invariant Image Recognition by Zernike
Moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12,
no. 5, pp. 489-497, May 1990.

[12] W.-Y. Kim and Y.-S. Kim, “Robust Rotation Angle Estimator,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 768-773, Aug.
1999.

[13] E.M. Arvacheh and H.R. Tizhoosh, “Pattern Analysis Using Zernike
Moments,” Proc. IEEE Instrumentation and Measurement Technology Conf.,
vol. 2, pp. 1574-1578, 2005.

[14] A. Averbuch, R.R. Coifman, D.L. Donoho, M. Elad, and M. Israeli,
“Accurate and Fast Discrete Polar Fourier Transform,” Proc. Conf. Record
37th Asilomar Conf. Signals, Systems, and Computers, vol. 2, pp. 1933-1937,
2003.

[15] A. Makadia, L. Sorgi, and K. Daniilidis, “Rotation Estimation from
Spherical Images,” Proc. 17th Int’l Conf. Pattern Recognition, vol. 3,
pp. 590-593, 2004.

[16] R. Skomski, J.P. Liu, and D.J. Sellmyer, “Quasicoherent Nucleation Mode in
Two-Phase Nanomagnets,” Physical Rev. B, vol. 60, pp. 7359-7365, 1999.

[17] B. Pons, “Ability of Monocentric Close-Coupling Expansions to Describe
Ionization in Atomic Collisions,” Physical Rev. A, vol. 63, p. 012704, 2000.

[18] R. Bisseling and R. Kosloff, “The Fast Hankel Transform as a Tool in the
Solution of the Time Dependent Schrödinger Equation,” J. Computational
Physics, vol. 59, no. 1, pp. 136-151, 1985.

[19] D. Lemoine, “The Discrete Bessel Transform Algorithm,” J. Chemical
Physics, vol. 101, no. 5, pp. 3936-3944, 1994.

[20] O. Ronneberger, E. Schultz, and H. Burkhardt, “Automated Pollen
Recognition Using 3D Volume Images from Fluorescence Microscopy,”
Aerobiologia, vol. 18, pp. 107-115, 2002.

[21] H. Burkhardt, Transformationen zur lageinvarianten Merkmalgewinnung,
Ersch. als Fortschrittbericht (Reihe 10, Nr. 7) der VDI-Zeitschriften.
VDI-Verlag, 1979.

[22] O. Ronneberger, J. Fehr, and H. Burkhardt, “Voxel-Wise Gray Scale
Invariants for Simultaneous Segmentation and Classification,” Proc. 27th
DAGM Symp., pp. 85-92, 2005.

[23] Q. Wang, O. Ronneberger, and H. Burkhardt, “Fourier Analysis in Polar
and Spherical Coordinates,” internal report, http://lmb.informatik.uni-
freiburg.de/papers/, 2008.

[24] C.C. Chang and C.J. Lin, “LIBSVM—A Library for Support Vector
Machines,” http://www.csie.ntu.edu.tw/cjlin/libsvm/, 2009.

[25] FFTW Home Page, http://www.fftw.org/, 2009.
[26] Fast Spherical Harmonic Transforms, http://www.cs.dartmouth.edu/

geelong/sphere/, 2009.
[27] The Gnu Scientific Library, http://www.gnu.org/software/gsl/, 2009.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1722 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 9, SEPTEMBER 2009


	copyright
	1715



