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Abstract

In this article, we introduce a new global optimization method to the field of multi-
view 3D reconstruction. While global minimization has been proposed in a discrete
formulation in form of the maxflow-mincut framework, we suggest the use of a con-
tinuous convex relaxation scheme. Specifically, we propose to cast the problem of 3D
shape reconstruction as one of minimizing a spatially continuous convex functional.
In qualitative and quantitative evaluation we demonstrate several advantages of the
proposed continuous formulation over the discrete graph cut solution. Firstly, geomet-
ric properties such as weighted boundary length and surface area are represented in
a numerically consistent manner: The continuous convex relaxation assures that the
algorithm does not suffer from metrication errors in the sense that the reconstruction
converges to the continuous solution as the spatial resolution is increased. Moreover,
memory requirements are reduced, allowing for globally optimal reconstructions at
higher resolutions.
We study three different energy models for multiview reconstruction, which are based
on a common variational template unifying regional volumetric terms and on-surface
photoconsistency. The three models use data measurements at increasing levels of
sophistication. While the first two approaches are based on a classical silhouette-based
volume subdivision, the third one relies on stereo information to define regional costs.
Furthermore, this scheme is exploited to compute a precise photoconsistency measure
as opposed to the classical estimation. All three models are compared on standard data
sets demonstrating their advantages and shortcomings. For the third one, which gives
the most accurate results, a more exhaustive qualitative and quantitative evaluation
is presented.

1. Introduction

1.1. Problem Statement

We consider the classical problem of inferring a dense 3D structure reconstruction
of an object from a collection of calibrated 2D views. Being one of the fundamental
problems in computer vision with many applications outside its field, it has gained
considerable attention and remains an active research area. There are different types
of approaches according to the exploited image information. All these methods aim at
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modeling the inverse process of image formation. However, in a mathematical sense,
the inverse projection mapping does not exist, since all 3D points along a visual ray
are projected onto the same image point. This makes the problem of multiview 3D
reconstruction ill-posed. Thus, additional constraints are needed in order to allow for
reasonable shape retrieval. A straightforward condition covering a large range of real
scenes is the Lambertian assumption. It states that the appearance of a scene does not
depend on the viewing direction, i.e., intensity is reflected uniformly in all directions.
This property is the basic justification for stereo-based approaches, which search for
matching image regions and infer corresponding surface locations. Multiview stereo is
known to produce highly detailed reconstructions with quality close to that of laser-
scanned models (Seitz et al., 2006) and exhibits one of the most commonly used image
cues.
The earliest dense multiview stereo algorithms use carving techniques to obtain a
volumetric representation of the scene by repeatedly eroding inconsistent voxels (Seitz
and Dyer, 1997; Kutulakos and Seitz, 2000). These methods introduce a bias towards
maximal photoconsistent shapes and do not enforce smoothness, which often results in
rather noisy reconstructions. Later, mathematically more elegant energy minimization
techniques have become more popular.

1.2. Previous Work on Energy Models for Multiview Stereo

Variational methods for multiview 3D reconstruction inherit the active contour frame-
work proposed originally for image segmentation (Kass et al., 1988). They pose the
problem as one of modeling a continuous two-dimensional surface in space by mini-
mizing an appropriate energy functional. This methodology allows to combine a data
fidelity criterion on the unknown surface with desired properties like regularity, thus
achieving a considerable increase in robustness to image noise.
The first approaches are based on the geodesic active contour model (Caselles et al.,
1995; Kichenassamy et al., 1995) by measuring weighted surface area, where weights
reflect local photoconsistency. The corresponding flow acts as a smoothness term, while
at the same time attracting the evolving shape towards photoconsistent locations.
Different techniques have been applied to model the surface: level sets (Faugeras and
Keriven, 1998), triangle meshes (Hernandez and Schmitt, 2004; Duan et al., 2004)
and graph cuts (Vogiatzis et al., 2005). A generalization of this approach has been
developed in (Pons et al., 2007), which allows to replace the classical pointwise pho-
toconsistency estimation with a global matching score on the entire image domain.
A grave drawback of the minimal surface model is that it couples data fidelity and
regularization. As a result, it is difficult to adjust the regularizing behavior (Soatto
et al., 2003). In particular, the global minimum of the underlying functional is always
the empty set, which makes the initialization crucial.
In order to react on the shrinking behavior of the minimal surface model an addi-
tional weighted balloon term preferring shapes of larger volumes has been introduced
(Vogiatzis et al., 2005; Lempitsky et al., 2006). However, although the empty set can
be excluded as a solution, oversmoothing effects still persist making it difficult to
reconstruct simultaneously thin protrusions and deep concavities (Hernández et al.,
2007; Kolev et al., 2007a).
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A straightforward alternative to the ballooning model is the incorporation of data-
aware volumetric terms instead of the constant one. Different techniques to achieve
this have been proposed in the literature. In (Boykov and Lempitsky, 2006) the pos-
sibility to use surface orientation to define foreground/background subdivision of the
volume based on the divergence of the corresponding vector field is demonstrated.
The authors propose to approximate surface orientation based on the gradient of the
photoconsistency map. While this method improves on the constant ballooning model,
it still does not provide state-of-the-art reconstructions. Another approach consists in
merging precomputed depth maps to label voxels as interior or exterior with respect
to the estimated surface (Hernández et al., 2007; Zach et al., 2007). Although this
technique could produce very high-quality reconstructions, it is suboptimal in the
sense that the process of 3D modeling is split into two stages. Erroneous decisions in
the first stage could propagate to the final estimate, especially at locations of specular
reflections or low texture. Limitations of depth-map merging approaches are discussed
in section 1.4 in more detail.

1.3. Previous Work on Optimization for 3D Reconstruction

Apart from the energy model at hand, another crucial issue concerning the quality of
the reconstructions is the optimization.
The first approaches rely on local minimization to optimize the underlying functionals
(Faugeras and Keriven, 1998; Duan et al., 2004; Hernandez and Schmitt, 2004), which
makes them sensitive to initialization and local minima. The introduction of discrete
global minimization in the context of the maxflow-mincut framework (Greig et al.,
1989; Kolmogorov and Boykov, 2004) has brought a considerable increase in robustness
and removed the need for an initial guess. The potential of graph cut optimization has
rapidly attracted the attention of researchers (Vogiatzis et al., 2005; Lempitsky et al.,
2006; Hornung and Kobbelt, 2006) and replaced local schemes like gradient descent.
However, graph cuts come along with some important shortcomings. Firstly, globality
is guaranteed only in a discrete sense. In particular, the representation of geometric
quantities such as boundary length or surface area is based on an L1-metric, which
is dependent on the choice of the underlying grid. As a consequence, respective re-
construction algorithms are not rotationally invariant and produce metrication errors.
Although such inaccuracies can be alleviated by increasing the neighborhood structure,
they cannot be removed in a discrete framework. For any choice of connectivity there
exists a metrication error, which persists despite resolution refinement. (Kirsanov and
Gortler, 2004) proposes a strategy to couple spatial resolution and graph connec-
tivity and shows that this scheme converges to the continuous solution when the
discretization goes to infinity. However, the practical applicability of this approach in
the field of multiview reconstruction is limited, since it involves building huge graph
structures and thus entails considerable memory requirements. The relatively large
memory consumption of graph cuts can be decisive when computing reconstructions
at a high resolution. A possible remedy is to use an adaptive multi-resolution scheme
(Sinha et al., 2007) or a sparse grid (Labatut et al., 2007), but these techniques can
not give any guarantee about globality of the computed solution.
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1.4. Motivation and Contributions

The main contribution of the present work is the development of a novel continuous
global optimization technique for multiview reconstruction, which allows to avoid
previously mentioned limitations of shape recovery via graph cuts. A preliminary
version has been presented in a conference article (Kolev et al., 2007b) and is, to
our knowledge, the first method for continuous global optimization in the context of
multiview 3D reconstruction. It shares similarities to continuous maxflow formulations
presented for the task of 2D image segmentation (Chan et al., 2006; Appleton and Tal-
bot, 2005) and volumetric 3D segmentation (Appleton and Talbot, 2006). However, a
direct comparison to the approach of (Appleton and Talbot, 2006) is not possible, since
it does not allow to incorporate regional information, which makes it inappropriate
to our energy models. In the context of multiview reconstruction the use of convex
minimization schemes has been independently developed in (Zach et al., 2007). While
(Zach et al., 2007) use it merely to merge sets of precomputed range images, in this
work we show how classical non-convex formulations for multiview 3D reconstruction
can be globally optimized in a continuous manner. All these techniques have been
inspired by the pioneering works of (Hu, 1969), (Strang, 1983).
Additionally, we propose and compare different energy models amenable to the dis-
cussed optimization method. They all consist of a combination of a photoconsistency-
based discontinuity term and regional labeling terms. The difference is in the way the
photoconsistency function is computed as well as in the definition of regional costs.
The first model has been introduced in (Kolev et al., 2007b). It is based on color
information from the input images to construct foreground/background subdivision of
the 3D volume. More precisely, it is built upon the probabilistic formulation of (Kolev
et al., 2006). Since for computing photoconsistency one needs the visibility of surface
points, the photoconsistency term is collapsed at the beginning. With the resulting
approximate visibility information determined by the gradient of the corresponding
signed distance function, we can globally optimize the energy that includes both
constraints. The approach is related to the one introduced in (Vogiatzis et al., 2005).
Beyond the fact that the optimization is performed in a continuous setting, the main
difference is that the sought surface is not restricted to lie within some predefined band,
which imposes different weighting of silhouette and stereo costs. In the second energy
model the classical photoconsistency estimation is replaced by the voting scheme of
(Hernandez and Schmitt, 2004), which results in more precise photoconsistency maps.
The regional terms are constructed in the same way as in the first model. In contrast,
the third model replaces the silhouette-based foreground/background subdivision of
the volume by a more sophisticated one using stereo information, which allows to
capture also surface indentations not “visible” by the image silhouettes. This approach
has been originally introduced in (Kolev et al., 2007a). It is related to depth map fusion
methods (Curless and Levoy, 1996; Hernández et al., 2007; Zach et al., 2007). However,
our formulation is entirely volumetric and does not involve any preprocessing on the
image domain. This entails a series of advantages:

− It avoids discretization problems that could arise in a per-pixel visual ray de-
termination, since a ray through a pixel will generally not capture the volume
subdivision.
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− A crucial issue when measuring photoconsistency along viewing rays is the sam-
pling rate of the discretization. A too dense sampling leads to high computational
costs, whereas a too sparse sampling could result in a miss of the maximizing
location. In the volumetric framework, the sampling is naturally given by the
volume resolution.

− The computational time of the proposed mechanism does not depend on the
resolution of the input images but only on the volume resolution.

The paper is laid out as follows. The next section contains a brief review of related
continuous global optimization techniques in the context of image segmentation. In
Section 3 we present and discuss the underlying energy models. Section 4 is devoted to
the optimization technique including implementation details. We show experimental
results and quantitative evaluation in Section 5 and conclude the paper with a brief
summary in Section 6.

2. Convex Formulations of Image Segmentation

In a series of works (Chan et al., 2006; Chambolle, 2005; Bresson et al., 2005) image
segmentation functionals, namely the two-phase piecewise constant Mumford-Shah
model (Mumford and Shah, 1989) and the snakes (Kass et al., 1988) were addressed
by means of convex formulations. The key idea is to represent region-integrals by means
of a binary variable u : Ω ⊂ R2 → {0, 1} indicating foreground/ background and sub-
sequently to relax this constraint to a convex one. The weighted length term proposed
in the snakes and the geodesic active contours (Caselles et al., 1995; Kichenassamy
et al., 1995) can then be expressed by means of a weighted total variation (TV) norm
(Rudin et al., 1992):

TVg(u) =
∫
Ω

g(|∇I|) |∇u| dx, (1)

with an edge indicator function g(|∇I|) that provides the local metric.
Since the space of binary functions is a non-convex space, also the respective opti-
mization problems are non-convex. However, in (Chan et al., 2006) it was found that
when minimizing the total variation norm over all real-valued functions u : Ω → R,
the values of u(x) converge to ±∞ almost everywhere. Therefore the segmentation
can be cast as a convex problem on the convex space of functions u : Ω → [0, 1] by
enforcing 0 ≤ u(x) ≤ 1 via a convex penalizer (Chan et al., 2006)

θ(u) := max
{

0, 2
∣∣∣∣u− 1

2

∣∣∣∣− 1
}

. (2)

Minimization over the space of real-valued functions and subsequent thresholding will
then lead to a global minimizer of the respective segmentation problem.
In this work, particularly in Section 4, we will revisit these ideas and show that
under appropriate assumptions the multiview reconstruction problem can be cast as
a spatially continuous convex optimization problem. Moreover we will introduce an
efficient numerical solution by means of Successive Overrelaxation (SOR).
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3. Continuous Energy Models for Multiview Reconstruction

In this section we present and discuss three different energy models for multiview
reconstruction. All three functionals have the same structure combining on-surface
photoconsistency and regional costs.
Let V ⊂ R3 be a volume, that contains the scene of interest, and I1, . . . , In : Ω → R3

a collection of calibrated color images with perspective projections π1, . . . , πn. We are
looking for some surface Ŝ ⊂ V that gives rise to these images. According to a certain
surface estimate S, all points in V can be divided into two classes: lying inside S or
belonging to the background, i.e. V = RS

obj ∪ RS
bck, where RS

obj denotes the interior
and RS

bck the exterior. Considering the given image content we can assign each point
x ∈ V photoconsistency costs ρ(x) ∈ [0, 1] describing the probability of a voxel for
lying on the surface, based on its projections onto the images, where it is visible.
The basic idea is that under the Lambertian assumption points on the surface are
expected to have consistent appearance on the images, whereas distant points will
generally give inconsistent projections. In a similar manner, we can compute costs
ρobj(x), ρbck(x) ∈ [0, 1] describing probabilities of a point x to belong to RS

obj and RS
bck,

respectively. Hence, we can formulate the following energy minimization problem:

E(S) =
∫

RS
obj

ρobj(x) dx +
∫

RS
bck

ρbck(x) dx + ν

∫
S

ρ(x) dS

Ŝ = arg min
S⊂V

E(S).

(3)

The first two terms of the functional impose correct subdivision of the volume into
interior/exterior according to the respective regional costs. The last term acts as a
constraint both for smoothness and photoconsistency by seeking the minimal surface
with respect to a Riemannian metric. Hence, it can be considered as a weighted
smoothness term. Note that the cost functions may also depend on the orientation
of the surface estimate S in order to take distortion of the compared image patches
into account. This dependency is suppressed here for simplicity.
In the following, the three energy models and the differences between them are dis-
cussed in more detail.

3.1. Energy Model I: Silhouette-based Regional Constraints &
Classical Photoconsistency

This model relies on a classical foreground/background subdivision of the 3D space
based on silhouette cues (Vogiatzis et al., 2005; Hornung and Kobbelt, 2006). However,
in many cases, silhouettes are not easy to extract automatically. Thus, it is beneficial
to consider a probabilistic model, which deals with uncertainty by taking all views into
account. To this end, we introduced in (Kolev et al., 2006) the conditional probabilities
for observing intensities Il(πl(x)) in images 1, ..., n as

Pobj(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
obj)

Pbck(x) := P ( {Il(πl(x))}l=1,...,n | x ∈ RS
bck).

(4)
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Note that in this formulation Pobj(x) and Pbck(x) will generally not sum to 1. Consid-
ering dependence of the image observations we can write

Pobj(x) = n

√√√√ n∏
i=1

P (Ii(πi(x)) | x ∈ RS
obj)

Pbck(x) = 1− n

√√√√ n∏
i=1

[
1− P (Ii(πi(x)) | x ∈ RS

bck)
]
.

(5)

The probability of a voxel being part of the foreground is equal to the probability that
all cameras observe this voxel as foreground, whereas the probability of background
membership describes the probability of at least one camera seeing background. The
root is for normalization with respect to the number of camera views, since both
products will converge to 0 for n → ∞. Thus, dependency between single image
observations is expressed in terms of their geometric mean. The simultaneous use
of all available image information in a probabilistic manner leads to a considerable
increase of robustness compared to the classical carving technique (see (Kolev et al.,
2006)).
The foreground/background probabilities for the single image observations

P (Ii(πi(x)) | x ∈ RS
obj) ∼ N (µobj ,Σobj)

P (Ii(πi(x)) | x ∈ RS
bck) ∼ N (µbck,Σbck).

(6)

are modeled to be Gaussian distributed. The parameters of both models, i.e. mean
vectors and covariance matrices, are estimated interactively by marking a small object
and background region in one of the images. This is a requirement for the energy to
be globally minimizable. Minimization of the first two terms in (3) results in the most
probable surface with respect to the probability distributions Pobj and Pbck.
A classical methodology to derive cost terms based on probability values is to apply
the negative logarithm. In our formalism this reads

ρobj(x) = − log Pobj(x)

ρbck(x) = − log Pbck(x).
(7)

Both values could be additionally normalized to lie within [0, 1].
Now, we will concentrate on the definition of the photoconsistency function ρ in the
last term of (3). A basic requirement to compute this photoconsistency 3D map is
that camera visibility is available. To this end, we minimize the energy with Euclidean
regularizer ρ(x) = 1. From the resulting surface, one can compute a signed distance
function φ : V → R, which in turn allows for normal estimation Nx = ∇φ

|∇φ| to each
voxel x ∈ V . Hence, visibility is determined by front-facing cameras according to the
estimated normal direction. In particular, photoconsistency is computed in terms of
the normalized cross-correlations by averaging over front-facing cameras

c(x) =
1

|N (x)|
∑

(i,j)∈N (x)

NCC(πi(x), πj(x)), (8)
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where N (x) denotes the set of all front-facing camera pairs according to the normal
direction Nx. In particular

N (x) = {(i, j) ∈ {1, ..., n}2 | ∠(Vi, Nx) 5 γmax,∠(Vj , Nx) 5 γmax, i 6= j},

where Vk is the viewing direction of camera k. In our experiments we used γmax = 60◦.
Another important issue associated with the computation of the matching score is
estimation of patch distortion. A square patch in one of the images does not in general
correspond to a square patch in the other images due to the nonlinear nature of the
projection mapping. In order to take distortion into account, we locally approximate
the surface by its tangent plane according to (Faugeras and Keriven, 1998). As a result,
distortion can be estimated via a homography mapping. For a camera pair (i, j) it is
given by

Hij = RT
ij −

RT
ijTijN

T
x

NT
x x

, (9)

where Rij ∈ R3×3 and Tij ∈ R3 denote the relative rotation and translation between
the local coordinate systems of both cameras. All involved entities are defined in the
coordinate system of the reference camera. Note that Hij is only determined up to a
scale factor. Now, we can compute a NCC score based on the proposed local distortion
model

NCC(πi(x), πj(x)) =
1

c1c2

∑
p∈P

〈Ii(p)− Īi(πi(x)), Ij(Hij(p))− Īj(πj(x))〉, (10)

where P stands for a square patch around πi(x) in the reference image i, Īi and Īj

are the corresponding mean values, and c1, c2 are normalization constants. Note that
the size of each patch is determined according to its projection on the reference image
plane rather than being set to a fixed size on the tangent plane. This avoids sampling
problems on the image domain. For the experiments presented here we used 7×7 pixel
windows. For each point x ∈ V we get some measure c(x) between −1 and 1, where
1 stands for perfect correlation. This value is then mapped to the unit interval [0, 1]
using the following function proposed in (Vogiatzis et al., 2005):

f(s) = 1− exp

(
− tan

(
π

4
(s− 1)

)2

/σ2

)
. (11)

The parameter σ controls the fidelity of the surface to the data and exhibits a trade-off
between smoothness and fitness to the observed measurements. We used σ = 0.5 in
our experiments. Finally, we obtain ρ(x) = f(c(x)).

3.2. Energy Model II: Silhouette-based Regional Constraints &
Denoised Photoconsistency

The classical photoconsistency estimation used by the previous model generally yields
noisy measures due to homogeneity or repeatability of the texture pattern, which could
result in noisy reconstructions. To this end, (Hernandez and Schmitt, 2004) suggests
the use a more elaborate approach to increase the accuracy of the photoconsistency
computation. The basic idea is to ask each camera to give a vote to a point in space. The
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Figure 1. Propagation of photoconsistency. Illustration of the proposed approach to spread stereo
information inside a volume. Spatial labeling of the volume as interior (blue arrow) or exterior (green
arrow) is derived based on the location of maximal photoconsistency (red circle) along the depicted
viewing ray.

vote is accepted only if the optimum is reached at the current point. This methodology
leads to a considerable increase in the precision of the corresponding photoconsistency
maps (see Fig. 2). This scheme is further developed and described in more detail in
Section 3.3.
The current model combines the silhouette-based volume subdivision used by energy
model I and the proposed denoised photoconsisteny estimation. It is similar to the
approach of (Vogiatzis et al., 2007).

3.3. Energy Model III: Stereo-based Regional Constraints & Denoised
Photoconsistency

A great limitation of both previously presented energy models is that they use silhouette-
based regional terms, which do not capture surface indentations, since concavities do
not affect the observed silhouettes. As a result, these functionals introduce a bias to-
wards the maximal silhouette-consistent shape, i.e. the visual hull. In order to address
this shortcoming, the current model replaces previous regional terms by more accurate
ones (see Fig. 2). The basic idea is to propagate classical on-surface photoconsistency
within the volume and thereby define confidence values for lying inside or outside the
observed object (see Fig. 1). In the following, this approach is explained in more detail.
The main difficulty in defining volume subdivision likelihoods is the fact that the
state of each voxel in space (inside/outside the object) is affected by potentially
distant points. We solve this problem by measuring photoconsistency along visual
rays exploiting the following property of silhouette-consistent shapes:

Property: Let S be an arbitrary surface, which is consistent with the silhouettes of a
set of input images I1, . . . , In. Then, each visual ray passing through a point x in the
interior of S intersects the real observed surface Ŝ at least once.

If there exists a visual ray through a point x, which does not intersect the real surface
Ŝ, x does not project within the silhouette of the respective image. Hence, this point
cannot lie in the interior of a silhouette-consistent shape. Note that the above property
is fulfilled for the maximal consistent shape as well as for any subset of it. This leads to
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the following idea. We can compute photoconsistency along each visual ray and take
the position, where its maximum is reached, as a potential intersection with the real
surface Ŝ; see Figure 1. Of course, a viewing ray could intersect Ŝ more than once, but
only the first intersection will be photoconsistent according to a certain set of neigh-
boring cameras. Based on this observation, we can convert classical photoconsistency
describing the likelihood for lying on the surface into regional terms representing an
interior/exterior assignment.
We start with an initial silhouette-based surface approximation SI computed as de-
scribed in 3.1. Due to the above property we consider all voxels x lying in the interior
RSI

obj of SI and corresponding visual rays passing through x. Let rj(x, t) be the visual
ray of camera j, parametrized by t starting at the camera position. Let tcur be the
position of x along the ray. We measure photoconsistency along the ray according to
another camera i:

Cj
i (x, t) = NCC(πi(rj(x, t)), πj(rj(x, t))). (12)

The computation of the NCC score is given in (10). Once again, patch distortion is
approximated by a local homography mapping defined by the normal direction Nx.
Since it is expected that the orientation at the surface intersection point of a viewing
ray corresponding to a front-facing camera is similar to that measured at x, the same
normal direction Nx can be used to estimate distortion along the entire ray rj . Note
that the second term in (12) stays constant for varying t, since points on the ray rj

always project onto the same location in image Ij . This formulation can be extended
to multiple cameras:

Cj(x, t) =
m∑

i=1

wj
i (x)Cj

i (x, t). (13)

We sum only over neighboring cameras according to the normalized viewing direction
Vj(x) of camera j. That is, camera i is excluded if αj

i (x) := ∠(Vi(x), Vj(x)) > αmax

for some bounding angle αmax. The weights wj
i are computed as

wj
i (x) =

αmax − αj
i (x)

m∑
k=1

αmax − αj
k(x)

(14)

in order to compensate for non-linear projective warping and violations of the occlusion
approximation. We set αmax = 45◦ in all our experiments, but a more conservative
smaller value could lead to a considerable reduction of computational time. As men-
tioned above, we determine the maximal photoconsistency along rj together with the
location, where it is reached:

Cj
max(x) = max

t
Cj(x, t)

tmax = arg max
t

Cj(x, t).
(15)

A natural choice for the sampling rate along the ray is the volume resolution, since it
poses a constraint on the reconstructable surface details. Finally, we can define costs
for interior/exterior assignment according to ray rj as

ρj
obj(x) = H(tmax − tcur) · (1− f(Cj

max))

+ (1−H(tmax − tcur)) · f(Cj
max)

ρj
bck(x) = H(tmax − tcur) · f(Cj

max)

+ (1−H(tmax − tcur)) · (1− f(Cj
max)),

(16)
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where H is the Heaviside function

H(z) =

 1, if z ≥ 0

0, otherwise
(17)

and f is defined in (11). The computed values depend on whether the maximal
photoconsistency location tmax lies before or behind the current voxel tcur. If for
example tmax < tcur, ρj

obj decreases and ρj
bck increases with the maximal measured

photoconsistency Cj
max accounting for uncertainties because of mismatches. In effect,

the Heaviside function H realizes this case differentiation. The final regional costs can
be computed by simple averaging over single rays rj , which yields

ρobj(x) =
1
l

l∑
j=1

ρj
obj(x)

ρbck(x) =
1
l

l∑
j=1

ρj
bck(x).

(18)

In practice, only visual rays of front-facing cameras due to the normal Nx are con-
sidered, as described in 3.1. Note that ρobj(x) + ρbck(x) = 1 for all x ∈ V . In case
of photometrically difficult scenes containing noise and shading effects, more sophis-
ticated fusion strategies could be used. We experimented with a weighting procedure
based on the variance of the measured photoconsistency values along viewing rays,
but we could not observe any visible improvements in the reconstructions.
The process of maximization of photoconsistency along visual rays can be exploited
in the computation of the on-surface costs ρ(x). In this respect, the voting scheme
proposed in (Hernandez and Schmitt, 2004) naturally fits in our framework. It brings
about significant improvements in the localization of the on-surface cost values ρ(x)
compared to the classical method used in the preliminary conference version (Kolev
et al., 2007a). The basic idea is that all potential causes of mismatches like occlusion,
image noise, lack of texture etc. are uniformly treated as outliers in the matching pro-
cess. Specifically, the photoconsistency value ρ(x) for a given 3D point x is computed
by asking every image j to give a vote for that location and subsequently fusing the
votes to a final score

ρ(x) = exp{−µ
l∑

j=1

VOTEj(x)}, (19)

where VOTEj denotes the vote of camera j, and µ is a rate-of-decay parameter, which
in our experiments was set to 0.15. The central idea is to allow a camera j to give
a vote to the 3D location x only if the correlation measure along the corresponding
viewing ray takes its maximum at x, i.e.

VOTEj(x) =

 Cj
max(x) if tmax = tcur

0 otherwise
(20)

The presented voting scheme accounts for outliers due to occlusions, noise, or shading
effects as well as matching ambiguities.
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cross-section ρobj ρbck ρ

Figure 2. Comparison between the volumetric data terms used by energy models I, II and III on the
“dinoRing” and “templeRing” data sets (see Fig. 3 and 4). Visualized are cross-sections through all
data volumes (at resolution 643 for “dinoRing” and 64× 96× 48 for “templeRing”): ρobj , ρbck and ρ,
respectively. The traditional silhouette-based subdivision technique and photoconsistency estimation
used by energy models I and II (upper row) are opposed to the more elaborate stereo-based approach
and voting scheme used by models II and III (lower row). Intensity values correspond to estimated
costs. Note that stereo information allows to capture surface indentations in contrast to silhouettes
and hence produces more accurate regional terms. Note also that the voting scheme generally produces
more precise photoconsistency maps but could fail in case of occlusions or ambiguous texture.

In order to accelerate the computation of the data terms of the three energy models, we
used a banded multi-resolution scheme by starting with a coarse volume resolution and
subsequently restricting the computations at finer levels. We carried out 1-4 iterations
at each level and updated the data terms iteratively based on the orientation of the
current surface estimate.
Fig. 2 shows a comparison between the data terms used by the models on the “di-
noRing” and “templeRing” data sets (see Fig. 3 and 4). Visualized are cross-sections
through all data volumes at the lowest resolution (643 for “dinoRing” and 64×96×48
for “templeRing”): ρobj , ρbck and ρ, respectively. The traditional silhouette-based sub-
division technique and photoconsistency estimation (upper row) are opposed to the
more elaborate stereo-based approach and voting scheme (lower row). As expected, the
naive silhouette-based method fails to produce accurate regional terms at concavities
like the legs of the dino figurine or the back of the temple model in contrast to the
stereo-based one. As a result, the corresponding subdivision and discontinuity costs
compete each other in such areas, which makes their weighting a very challenging
task (see Fig. 3 and 4). Moreover, the voting scheme used by the second and third
energy models yields notably more precise photoconsistency maps by removing the
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influence of repeated texture patterns or accidental matching. However, as a side
effect, this approach could erroneously suppress photoconsistency in case of occlusions
or ambiguous texture (see, for example, the vertical inside wall of the temple model),
which in turn lets the regional terms play the decisive role (see Fig. 4).

4. Continuous Global Optimization

This section deals with the optimization of the energy functional proposed in (3),
which exhibits the main contribution of the current article.

4.1. An Equivalent Convex Formulation

Energy (3) can be globally optimized for given data terms ρ, ρobj , ρbck. We build upon
the optimization technique described in Section 2 by formulating (3) as a continuous
convex optimization problem.
To this end, the surface S is represented implicitly by the characteristic function
u : V → {0, 1} of RS

bck, i. e. u = 1RS
bck

and 1−u = 1RS
obj

. Hence, changes in the topology
of S are handled automatically without reparametrization. With the implicit surface
representation we have the following constrained, non-convex energy minimization
problem corresponding to (3):

E(u) =
∫

V
(ρbck(x)− ρobj(x))u(x) dx + ν

∫
V

ρ(x)|∇u| dx → min,

s. t. u ∈ {0, 1} .

(21)

The minimization problem stated in (21) is non-convex, since the optimization is
carried out over a non-convex set of binary functions. However, relaxing the binary
condition and extending the optimization to all functions u : V → R, where also
intermediate values can be taken, will cause the values of u(x) to converge to ±∞
almost everywhere. In order to circumvent this difficulty, one can restrict the domain
by enforcing 0 ≤ u(x) ≤ 1 via a convex penalizer θ(u):

E(u) =
∫

V

(
ρbck(x)− ρobj(x)

)
u(x) + νρ(x)|∇u|+ αθ(u(x)) dx, (22)

where α has to be chosen sufficiently large in order to ensure that u does not leave the
interval [0, 1]. A possible choice for θ is given in (2). This leads to a convex formulation,
which allows for global optimization by using standard techniques like gradient descent.
Hence, the above functional does not possess minima that are not global. However,
it is not strictly convex, i.e., its global minimum is not unique. It turns out that the
above energy functional has a very nice property that allows for global minimization
of the original non-convex functional (21). It is stated by the following theorem, based
on the work of (Chan et al., 2006):
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Theorem: If u∗ : V → R is any minimizer of the functional (22), then for any thresh-
old µ ∈ (0, 1) the binary function 1Σµ(u∗)(x) : V → {0, 1} with Σµ(u) := {x : u(x) > µ}
is also a minimizer of (22).

Proof: Let u∗ be a global minimum of (22). The convex penalizer θ(u) (2) effects
u ∈ [0, 1]. We express the energy (22) in terms of the level sets of u and then minimize
pointwise in µ. For these purposes we use the following layer cake representation of
u ∈ [0, 1]:

u(x) =
∫ 1

0
1{x:u(x)>µ} dµ

For the data fidelity term we obtain∫
V

(
ρbck(x)− ρobj(x)

)
u(x) dx

=
∫

V
ρbck(x)u(x) dx−

∫
V

ρobj(x)u(x) dx

=
∫

V
ρbck(x)

∫ 1

0
1[0,u(x)](µ) dµ dx−

∫
V

ρobj(x)
∫ 1

0
1[0,u(x)](µ) dµ dx

=
∫ 1

0

∫
V

ρbck(x)1[0,u(x)](µ) dx dµ−
∫ 1

0

∫
V

ρobj(x)1[0,u(x)](µ) dx dµ

=
∫ 1

0

∫
V ∩{x:u>µ}

ρbck(x) dx dµ−
∫ 1

0

∫
V ∩{x:u>µ}

ρobj(x) dx dµ

=
∫ 1

0

∫
V ∩{x:u>µ}

ρbck(x) dx dµ−
∫

V
ρobj(x) dx

+
∫ 1

0

∫
V ∩{x:u>µ}c

ρobj(x) dx dµ

=
∫ 1

0

∫
Σµ

ρbck(x) dx +
∫

V \Σµ

ρobj(x) dx dµ− C

where C :=
∫
V ρobj(x) dx is independent of u.

The coarea formula (Strang, 1983) for the TVρ-Norm (1) and the fact that u ∈ [0, 1]
yield ∫

V
ρ(x) |∇u| dx =

∫ ∞

−∞
Perρ({x : u(x) > µ}) dµ =

∫ 1

0
Perρ(Σµ) dµ

where Perρ(Σ) is the perimeter of the set Σ weighted by ρ.
The layer cake formula for the penalizing function θ (2) yields for u ∈ [0, 1]:∫

V
θ(u(x)) dx =

∫ 1

0
1{x:θ(u)>µ} dµ =

∫ 1

0
1∅ dµ = 0

Putting all together, we obtain the following level set representation of (22):

E(u) =
∫ 1

0

(∫
Σµ

ρbck(x) dx +
∫

V \Σµ

ρobj(x) dx + ν Perρ(Σµ)

)
dµ− C
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Note that the sets Σµ depend on u but this dependence is suppressed here for simplicity
of notation. Now, we can define

Eu(Σµ) =
∫
Σµ

ρbck(x) dx +
∫

V \Σµ

ρobj(x) dx + ν Perρ(Σµ)

and minimize this functional pointwise in µ.
Let Σ∗ be a global minimizer of Eu∗ . This implies that

Eu∗(Σµ) ≥ Eu∗(Σ∗) for µ ∈ (0, 1) .

And therefore

E(u∗) =
∫ 1

0
Eu∗(Σµ)dµ− C ≥ Eu∗(Σ∗)− C = E(1Σ∗).

Hence, 1Σ∗ is also a minimizer of (22).
2

Any “thresholded” (global) minimizer of (22) is binary and fulfills the constraints in
(21). Trivially, it is also a global minimizer of the non-convex functional given in (21),
since the only effective difference between both functionals is the domain of admissible
functions.
Finally, we obtain the following approach for globally optimizing (21):

1. Find a minimizer u of (22).

2. Threshold the result: RS
obj = {x ∈ V | u(x) < µ for some µ ∈ (0, 1)}.

In our experiments, we chose µ = 0.5, but we obtained virtually the same results with
µ ∈ [0.1, 0.9].
A necessary condition for a minimum of (22) is stated by the associated Euler-Lagrange
equation

0 = (ρbck − ρobj)− νρdiv
( ∇u

|∇u|

)
− 〈∇ρ,

∇u

|∇u|
〉+ αθ′ε(u)

= (ρbck − ρobj)− ν div
(

ρ
∇u

|∇u|

)
+ αθ′ε(u), (23)

where θε is a regularized version of the derivative of θ with respect to its argument.

4.2. Fast Minimization by Successive Overrelaxation

One way to solve the nonlinear system in (23) is via gradient descent. However, gradient
descent converges very slowly. Thus, we suggest to use a fixed point iteration scheme
that transforms the nonlinear system into a sequence of linear systems. These can be
efficiently solved with iterative solvers, such as Gauss-Seidel, successive over-relaxation
(SOR), or even multi-grid methods.
First, we neglect the term αθ′ε(u) and replace it by simply clipping values of u that
fall out of the interval [0, 1]. The only remaining source of nonlinearity in (23) is
the diffusivity g := ρ

|∇u| . Starting with an initialization u0 = 0.5, we can compute g
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and keep it constant. For constant g, (23) is linear and discretization yields a linear
system of equations, which we solve with the SOR method. This means, we iteratively
compute an update of u at voxel i by

ul,k+1
i = (1− ω)ul,k

i + ω

ν
∑

j∈N (i),j<i
gl
i∼ju

l,k+1
j + ν

∑
j∈N (i),j>i

gl
i∼ju

l,k
j − bi

ν
∑

j∈N (i)
gl
i∼j

. (24)

N (i) denotes the 6-neighborhood of i and bi := ρbck,i − ρobj,i contains the constant
part of (23) that does not depend on u, i.e., the righthand side of the linear system.
Finally, gi∼j denotes the diffusivity between voxel i and its neighbor j. It is defined as

gl
i∼j :=

gl
i + gl

j

2
, gl

i :=
ρi√

|∇ul
i|2 + ε2

, (25)

where ε := 0.001 is a small constant that prevents the diffusivity to become infinite
when |∇ul

i|2 = 0 and |∇ul
i|2 is approximated by standard central differences. The

over-relaxation parameter ω has to be chosen in the interval (0, 2) for the method to
converge. The optimal value depends on the linear system to be solved. Empirically,
for the system at hand, we obtained the fastest convergence rate for ω = 1.85. After
the linear solver yields a sufficiently good approximation (we iterated for k = 1, ..., 10),
one can update the diffusivities and solve the next linear system. Iterations are stopped
as soon as the energy decay in one iteration is in the area of number precision.

5. Experiments

5.1. Experimental Comparison of the Three Cost Functionals

First, we provide a comparison between the presented energy models I, II and III
(see Section 3). They were tested on the well-known “dinoRing” and “templeRing”
data sets, which are part of the Middlebury multiview stereo evaluation project (Seitz
et al., 2006). The data sets contain 48/47 calibrated images of resolution 640 × 480
of a plaster dinosaur and a reproduction of a temple in Sicily. Both objects exhibit
very different properties. While the dinosaur figurine is relatively smooth and weakly
textured, the temple duplicate is well-textured but of complex geometry in terms of
small-scale details and sharp corners.
Fig. 3 shows a comparison on the first data set including some of the input images
and multiple views of the reconstructed surfaces at volume resolution 2563. The first
two energy models clearly fail to recover the concavities (e.g. at the legs) due to
the use of silhouette-based regional terms, that act in contradiction to the stereo-
based on-surface term. An increase of the weighting parameter ν will not lead to the
desired effect, since this will also cut protruding parts (e.g. the spikes). ν was chosen
as the largest value that retains all relevant surface details, but it is still insufficient
to capture the concavities, even with the improved photoconsistency estimation. This
limitation of such models has been observed by other researchers (Tran and Davis,
2006; Hernández et al., 2007) and addressed via different heuristics like search space
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reconstruction with energy model I

reconstruction with energy model II

reconstruction with energy model III

Figure 3. Comparison of energy models I, II and III on the “dinoRing” data set. 4 of 48 input images of
resolution 640×480 and multiple views of the reconstructions obtained with the three energy models.
Note that the first two models completely fail to recover deep concavities due to the limitations
discussed previously. In contrast, energy model III is able to retrieve accurately deep indentations as
well as thin protrusions.
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reconstruction with energy model I

reconstruction with energy model II

reconstruction with energy model III

Figure 4. Comparison of energy models I, II and III on the “templeRing” data set. 4 of 47 input
images of resolution 640×480 and multiple views of the reconstructions obtained with the three energy
models. Although the first model captures the deep concavity at the back, it produces a very noisy
reconstruction. The second model successfully suppresses noise but fails at locations of ambiguous
texture. In contrast, the third model achieves the highest accuracy by retrieving all large-scale details.
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multiresolution evolution scheme

evolution of the minimization process

Figure 5. Surface evolution towards the final result. First row: Successively refined reconstructions
with increasing resolutions of the volume: 643 (initialization and final result), 1283 and 2563. Second
row: Surface evolution at the finest resolution, obtained by thresholding the evolving function u at
0.5 (see Section 4). In contrast to level set schemes the evolution process is not coherent.

restriction (Vogiatzis et al., 2005) or additional post-processing (Tran and Davis, 2006).
Energy model III presents a data-driven formulation to circumvent the mentioned
shortcomings and produces a visibly more accurate reconstruction.
Analogously, Fig. 4 depicts a comparison on the second data set. Here, the first energy
model captures the deep indentation at the back, but the reconstruction is pretty
noisy and imprecise due to the noisy photoconsistency map (see Fig. 2). Although the
second model produces a generally more accurate reconstruction, it completely fails in
areas of weak or ambiguous texture (for example the wall at the back; see Fig. 2). In
contrast, the third model achieves the highest accuracy by generating a smooth shape
preserving all large-scale details.
The computational times of the three methods, which were measured on a 2.66 GHz
Intel Core2 architecture, range from 40-50 minutes for the first classical approach to
more than 10 hours for the third one. Note that these runtimes can be reduced by a
more conservative choice for the parameters αmax and γmax and/or a GPU implemen-
tation, but such an analysis is beyond the scope of this article. Not surprisingly, the
increased accuracy of the third model comes at the expense of increased computational
efforts.

5.2. Analysis of Energy Model III

In the sequel, we give a more detailed evaluation of energy model III. As mentioned
in Section 3.3 a banded multi-resolution scheme was applied in order to accelerate
the computation of the data terms. Reconstructions at intermediate levels for the
“dinoRing” data set are shown in Fig. 5. Moreover, the evolution of an initial surface
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Table I. Quantitative evaluation on the Middlebury data sets (see Fig. 3 and 4).

data set # images completeness accuracy runtime

dinoSparseRing 16 98.3 % 0.53 mm 55min

dinoRing 48 99.4 % 0.43 mm 9h 48min

templeSparseRing 16 91.8 % 1.04 mm 1h 08min

templeRing 47 97.8 % 0.72 mm 10h 18min

towards the final result is depicted for the finest volume resolution of 2563. Note that
the final reconstruction does not depend on the initialization, since global minimization
is performed. A closer look at the evolution process reveals the difference to local
optimization techniques like level sets (Sethian, 1996). While the surface always evolves
coherently for level set methods, there are no such constraints for the method proposed
here as structures can appear and fade freely.
In Table I we give a quantitative evaluation of the proposed approach on four of the
Middlebury datasets. Laser-scanned models of both objects are used as ground-truth
in order to evaluate the quality of the reconstructions. The accuracy metric shown is
the distance d (in millimeters) that brings 90% of the reconstructed surface within
d from some point on the ground truth surface. The completeness score measures
the percentage of points in the ground truth model that are within 1.25mm of the
reconstructed model. The used volume resolution was 2563 for “dino(Sparse)Ring”
and 256×384×192 for “temple(Sparse)Ring”, respectively. See (Seitz et al., 2006) and
the accompanying website for comparison to other methods. Note that the reconstruc-
tion of the dinosaur figurine, that exhibits a challenge to many previous approaches
due to the lack of texture, demonstrate the potential of the proposed approach and
ranks currently among the top-performers in both metrics. The reconstruction of the
sufficiently textured temple replication, where most of the previous methods perform
well, is less impressive but still satisfactory.
Finally, Fig. 6 and 7 illustrate two high-quality reconstructions on sequences with
33 images of resolution 1024 × 768. The volume resolution was set to 216 × 288 ×
324 (“bunny” sequence) and 240 × 288 × 360 (“Beethoven” sequence) respectively,
and the measured computational time was in the range of 2 − 4 hours. The input
images are challenging due to the presence of homogeneous texture (“bunny” sequence)
or the absence of texture (“Beethoven” sequence). Despite these difficulties, which
can introduce ambiguities in the matching process, the proposed approach produces
accurate, highly detailed reconstructions.

5.3. Continuous vs. Discrete Global Shape Reconstruction

In this article, we introduced a spatially continuous global optimization technique
for shape recovery from multiple views. Corresponding energy functionals (see (3))
describe a typical space partitioning problem and can be also optimized globally in
a spatially discrete setting via graph cuts (Kolmogorov and Zabih, 2002). However,
globality is guaranteed in a discrete manner, which does not preclude the presence of
metrication errors. Compared to graph cuts, the proposed technique for continuous
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Figure 6. Bunny sequence. Two of 33 input images of resolution 1024 × 768 and three views of the
reconstructed surface at volume resolution 216× 288× 324.

Figure 7. Beethoven sequence. Two of 33 input images of resolution 1024 × 768 and three views of
the reconstructed surface at volume resolution 240× 288× 360.

optimization does not suffer from similar discretization artifacts while computing a
globally optimal solution.
This claim is emphasized on a synthetic experiment with missing data shown in Figure
8. We compared both minimization methods on a scenario with a known analytic
solution - a bounded catenoid defined by

x = 2 cosh
(

v
2

)
cos u

y = 2 cosh
(

v
2

)
sinu

z = v

(26)

with (u, v) ∈ [0, 2π]× [−1, 1]. To this end, the photoconsistency function ρ was set to
a constant and the regional terms ρobj , ρbck used to fix the base circles (v = ±1) only.
In effect, this formulation describes a minimal surface problem with given boundary
constraints. The result of the proposed optimization technique at a volume resolution
of 180× 180× 60 is depicted in Fig. 8 (c) and the graph cut estimates are illustrated
in Fig. 8 (a) for the 6-connectivity system and in Fig. 8 (b) for the 26-connectivity,
respectively. The 6-neighborhood system completely fails to reconstruct the correct
surface topology in contrast to the full 26-neighborhood, since the Euclidean metric is
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Figure 8. Continuous vs. discrete shape optimization (see text). (a) Graph cut reconstruction with a
6-neighborhood system at a volume resolution of 180×180×60 (the highest in the plot). (b) Graph cut
reconstruction with a 26-neighborhood system at the same volume resolution. (c) Surface produced
by the proposed optimization technique. (d) Known analytic solution. (e) Deviation of the recovered
surface from the analytic ground-truth for increasing volume resolution. The experiment demonstrates
that graph cut solutions can indeed be improved by reverting to larger neighborhood connectivity (26
instead of 6 neighbors). Yet, for any connectivity there is a metrication error, which persists with
increasing resolution. The proposed continuous global optimization, on the other hand, is consistent
as the discretization error decays to zero.

better approximated in the latter case (Kolmogorov and Zabih, 2002). However, dis-
cretization artifacts are still visible in terms of polyhedral blocky structures. In fact, for
a fixed connectivity structure the computed graph cut solution is not consistent with
respect to the volume resolution in contrast to the solution of the proposed continuous
minimization. This is demonstrated in Fig. 8 (e), where for both optimization models
the deviation of the estimated surface from the analytic ground-truth is plotted for
increasing spatial resolution. This measure was computed in terms of the Hausdorff
metric

ε =
∫

Strue

d(x, Snum)d2x, (27)

where Strue and Snum denote the ground-truth and the computed numerical solution
respectively, and d(x, S) is the distance from a point x to the nearest point on S.
As expected, the proposed continuous model produces shapes that converge to the
analytic one. In contrast, the deviation of the graph cut generated surfaces contains
a constant error that is independent of the spatial resolution. Although the reached
value can be improved by increasing the graph connectivity, the discrete model will
always exhibit an asymptotic behavior for a fixed graph structure.
To further demonstrate the practical applicability of the proposed convex optimization
technique, we provide an additional comparison to graph cuts on the “dinoRing” data
set, shown in Fig. 9. For the sake of a fair comparison, we ran both optimization
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Figure 9. Comparison between graph cuts and the proposed continuous convex optimization on the
“dinoRing” data set. First row: Graph cut reconstruction at volume resolution 2563. Second row: Sur-
face generated with the proposed optimization technique at the same resolution. Both reconstructions
are computed on the same cost volumes, obtained with energy model III. Note that the presented
continuous method leads to visual improvements at areas of noisy data due to the lack of texture or
occlusions.

Table II. Quantitative evaluation of the reconstructions shown in Fig. 9.

optimization neighborhood completeness accuracy runtime

technique system

graph cuts (CPU) 6 99.2 % 0.44 mm 41 s

convex TV (CPU) 6 99.4 % 0.43 mm 588 s

convex TV (GPU) - - - 23 s

techniques on the same cost volumes at resolution 2563, obtained with energy model
III. A graph structure of 6-connectivity was used for the graph cuts due to memory
restrictions. Note however that the continuous method also relies on a 6-neighborhood
system to impose surface smoothness. At first glance, both reconstructions look similar.
However, a closer look reveals that the presented continuous approach achieves more
success in suppressing noise. This leads to visual improvements at areas of inaccurate
data due to lacking texture or erroneous occlusion handling. A quantitative evaluation
of both reconstructions is shown in Table II. As expected, the convex optimization
registers minor improvements. Note that the difference between both techniques con-
sists in the representation of surface regularization. Hence, the overall quality of the
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reconstructions is determined by the utilized data terms. However, we argue that in
case of noisy data, when surface smoothing becomes crucial, a continuous PDE-based
approach should be preferred over a discrete one.
Apart from metrication errors, the proposed continuous optimization method entails
additional practical advantages like parallelizability, which allows for a GPU imple-
mentation. Table II lists also the runtimes of both optimization techniques. For the
graph cuts, only a CPU implementation is proposed, since a GPU implementation
of classical graph cut algorithms is not straightforward. The continuous convex op-
timization was implemented for both CPU and GPU and carried out on a PC with
a NVIDIA GeForce GTX 280 graphics card. The CPU runtimes were measured on a
2.66 GHz Intel Core2 architecture. Although discrete approaches are generally faster
on the CPU due to their non-iterative nature, they do not make use of recent progress
in parallel computing. Moreover, continuous methods involve a considerable reduction
of memory requirements compared to graph cuts (in our implementation about a factor
of 20), which allows to perform global minimization at higher volume resolutions. For
that reasons, such techniques seem to have more potential in the long run in time- and
memory-consuming applications like shape optimization. A detailed recent discussion
on these issues can be found in (Klodt et al., 2008).

6. Conclusion

We cast multiview 3D reconstruction as a continuous convex optimization problem.
As for graph cuts this allows to compute globally optimal shapes. However, in contrast
to discrete techniques, the proposed continuous formulation does not suffer from
metrication errors and requires considerably less memory (about a factor of 20),
thereby allowing for optimal reconstructions at higher resolutions. In particular, we
considered three different energy models, that can be optimized with the presented
approach. While the first two models are based on established paradigms, the third
one introduces the concept of propagated photoconsistency, thereby addressing some
of the shortcomings of classical methodologies. In both qualitative and quantitative
experiments we demonstrated that precise and spatially consistent reconstructions can
be computed by minimizing continuous convex functionals.
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