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Georges-Köhler-Allee Geb. 052, 79110 Freiburg, Deutschland

{ronneber,qwang,burkhardt}@informatik.uni-freiburg.de

ABSTRACT

In this article we present an approach for a precise segmentation of
spherical particles in transmitted light image stacks. A main goal
was its fast operation and a high robustness to occlusions and ag-
glomerations of the particles. The system is based on a voting proce-
dure that finds the centers and radii of the particles and a subsequent
precise segmentation with an active contour approach. To meet the
demands of an online pollenmonitor for high speed and low mem-
ory consumption a multi-scale approach was applied. The proposed
techniques successfully segmented the pollen grains in a vast amount
of different air samples (about 2.7TB of raw data). The results on one
of the most cluttered samples are presented in this paper.

Index Terms— Spherical, segmentation, detection, Hough
transform, snakes, pollen, pollenmonitor

1. INTRODUCTION

Motivation. Reliable detection and segmentation of touching and
partially occluded objects in 3D volumetric data sets is a difficult
problem, even if the data is recorded with high-end microscopes un-
der well controllable laboratory conditions and the computation time
does not matter.

In this paper we present a detection and segmentation technique
for spherical particles, which was developed for the first prototype
of an online pollenmonitor. The pollenmonitor is a fully automated
machine for measuring real-time pollen concentration in the air. It
was developed within the BMBF-founded project OMNIBUSS. It
can collect and prepare air samples and record them with an inte-
grated microscope. In online operation the hourly air samples have
to be evaluated within one hour. For a reliable estimation of the
pollen concentration about 2 m3 of air have to be analyzed, which
corresponds to an area of about 26mm2 on the air sample. Due to
large size variances of pollen grains, and their important fine details,
a 3D volumetric data set of the air sample is recorded. This data set
consists of about 200 transmitted light image stacks, each containing
1392×1040×70 voxels of size 0.3225×0.3225×1.5μm3. There-
fore, in the online operation of the pollenmonitor each image stack
of about 100 megavoxels needs to be completely processed in about
18 sec, or less. As segmentation is only one step in the recognition
pipe, it should be finished in even shorter time.

A further challenge in this setup is the automated unattended
operation on ambient air samples. It must be robust to occlusions
with any type of particles that might be found in the ambient air.
Moreover it was not possible to completely isolate the microscopy
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part from the rest of the machine. Therefore vibrations from outside
caused some jitter in the recorded image stacks.

Our work with this dataset was first presented in [1], where the
emphasis was on the derivation of invariant features. Here we will
concentrate on the detection and segmentation of pollen grains.

State of the art. A reliable segmentation of pollen in air sam-
ples is difficult and only a few publications describe appoaches for
the solution. Bonton et al. [2] use the color information after a
special staining of the air samples, but such staining procedures are
impractical for our automated system. Rodriguez-Damian et al. [3]
tried different standard segmentation techniques, among them also
a circular Hough transform, followed by a snake approach. Due to
the use of manual prepared pure pollen samples without occlusions
or agglomerations, the standard circular Hough transform was suf-
ficient there. The standard snake failed for many pollen grains, be-
cause it was attracted to the wrong borders. Ranzato et al. [4] use
the DOG (difference of Gaussian) interest point detector for the de-
tection of pollen grains in ambient air samples. According to these
authors, “a segmentation based approach has never given good re-
sults”. Therefore they only determine a coarse bounding box and use
all pixels therein for feature extraction, such that the features are dis-
turbed by neighboring dust. The obtained recognition rate of 64.9%
recognition rate at a precision of 30% for 8 different pollen taxa are
significantly lower than the best segmentation based approaches of
84.3% recognition rate at a precision of 96.7% for 33 different taxa
[1].

2. APPROACH

The proposed approach is based on an extension of the generalized
Hough transform [5] for the detection of spherical objects and a sub-
sequent precise segmentation with an active contour approach.

There are basically three parts that need to be considered, when
a hough transform shall be used: First, the selection of the voting
pixels (usually done by an edge detector or thresholding), second, the
contribution of this voter to the accumulator (usually the positions
are computed from the local gradient direction, and the contribution
is either constant or the gradient magnitude), and third, the way how
the different votes are combined to the final vote (usually a simple
summation). Due to speed and robustness considerations we had to
replace each of these standard algorithms with faster or more robust
ones.

The extraction of invariant features is based on the boundary of
a pollen grain, which makes precise segmentation necessary. Active
contour method is employed to find a smooth and complete bound-
ary. But the standard method suffers from a severe problem: the
snake is often attracted to undesired edges. The problem was solved
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by using a modified Canny edge detection and by careful edge anal-
ysis.

3. DETECTION OF SPHERICAL OBJECTS

Detection of spherical objects is carried out in the following steps:
1. Calculating voting vector fields. The voting vector fields

have to be chosen according to the characteristics of the dataset.
The pollen data is recorded on image stacks by transmitted light mi-
croscopy, for which the recording properties in z-direction differ sig-
nificantly from those in xy-direction. The borders in z-direction of
the pollen grain are hidden by the diffraction patterns (see Fig. 1). It
makes sense to omit the z-component of the gradient vector.

Fig. 1. Orthogonal slices of a transmitted light stack from a Betula
pollen grain. Only the gradients in x- and y- direction should be used
to find the object center. In z-direction the gradients are dominated
by the diffraction patterns.

Furthermore, as can be found from Fig. 1, the borders of pollen
grains are lines of different thickness. It motivated us to use line
information instead of edge information for detection. We do it
by replacing gradient magnitude with the largest eigenvalue of the
Hessian, and by replacing gradient direction with the corresponding
eigenvector.

The Hessian of a function f(x, y) is defined as
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Theoretically Δ should be nonnegative as a12 = a21. Numerically
we can avoid Δ < 0 by replacing a12 and a21 with their average.

If Δ = 0, we assign the voting vector to be 0 as there is no
preferred direction for voting. When Δ > 0, λ+ is the largest eigen-
value, we assign the magnitude of the voting vector v to be v = λ+

and its direction to be
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«
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which is the eigenvector corresponding to λ+.
2. Selecting voting points. The selection of voting points is

made by short line detection in the xy-plane and requiring a local
maximum in z-direction. This is done in two runs: 1.) In xy plane,

two neighboring points are found which lie on each side of the can-
didate point along the direction perpendicular to the vector direction
(These two points usually do not lie on the grid and the vector value
on them are interpolated bilinearly). The candidate point is kept only
when it and the two neighboring points are all local maxima along
the direction of the voting vector (see Fig. 2a). 2.) Compare each
selected point with the selected points in the layers above and below,
if it is not the maximum, it is also discarded.
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Fig. 2. Selection of the voting points in two steps. a) The voting
point must be located on a ridge of the eigenvalues. b) The ridge
must be higher than the corresponding ridges in the layers above and
below.

3. Voting. The votes are collected in an accumulator of five di-
mensions (x, y, z, r, d). The first four parameterize the sphere and
the fifth dimension is the voting direction and is quantized into ndir

bins. Each identified voter contributes to the accumulator. A di-
rect rendering of the voting kernel into the accumulator is too slow.
So a radially symmetric voting kernel is taken, such that each vote
can be approximated by adding a delta peak into the accumulator
and a subsequent convolution of the accumulator with the respec-
tive kernel after the voting is finished [6]. Here this convolution is
approximated with a recursively computed iir-filter (infinite impulse
response), which can be computed in linear time. The width of the
kernel was adapted according to the expected deviation of the true
shape from a perfect circle. The combination of the votes from the
ndir different directions at accumulator-position (x, y, z, r) is done
by sorting the votes and taking the nth element, where n can be in-
terpreted as the number of required voting directions.

4. Searching spheres. The objects are not very dense, we search
the spheres by a two pass-algorithm, which first extracts a list of all
candidates for a sphere by a local maximum criterion, sorts them
according to their probability and then extracts the non-overlapping
spheres from this list.

Speeding up by multi-scale approach. A naive implementa-
tion of the proposed methods needs great amounts of memory and
computation time. But it was straightforward to apply a multi-scale
approach. In the first step a rough estimate of the circle positions and
radii are obtained on a down-scaled image and a coarsely quantized
accumulator. In the second step, each found parameter set (radius,
x, y, z) is refined by a direct search in its surrounding. In this refine-
ment step a much higher number of voting directions can be used,
which significantly improves the accuracy.

4. EXACT SEGMENTATION OF POLLEN GRAINS

It is important to know the exact boundary of a pollen grain to extract
features for pollen recognition. The boundary is only searched on the
sharpest layer near the center of a detected sphere. As parts of object
border are often missing or not clear, we use active contours to find

373



smooth and complete boundaries. Among many different flavors of
active contour methods, the one based on Gradient Vector Flow (will
be called GVF snake later) is chosen due to its various advantages
[7].

The input for GVF snake is an image which is computed from
the image to be segmented and indicates where the snake should be
attracted to. Although the border of the pollen grains usually ap-
pear as dark lines of various thickness, they should be completely
included inside the boundary as their thickness is also characteristic
of pollen species. Therefore we use edge images as input for the
snakes, which are different from the detection step. The simplest
edge image is the gradient magnitude. With it, however, the snake is
often attracted to undesired position. The same is also true with edge
images acquired with standard edge detection methods like Canny
edge detection (see Fig. 4). This problem has its fundamental rea-
son: Edges do not necessarily corresponds to the object boundary.
To solve this problem, we take the following steps for segmentation
(Illustration of these steps are given in Fig. 4):

1. Applying modified Canny edge detection. The modification
is with the gradient vector image, on which Canny edge detection
works. As pollen grains from the species we are interested in have a
nearly round shape, the edges that are approximately perpendicular
to the radial direction (relative to the center obtained from detection
step) are more relevant. We replace the gradient vector with its ra-
dial component so that the strength of other edges will be reduced.
To avoid the influence of the inner contour of the dark lines, the
magnitude of the gradient vector is greatly reduced when it points
approximately to the center instead away from it. In this way, the
inner contours will be detected as very weak edges if they can be
detected at all.

2. Analyzing edges. The edges obtained from last step undergo
a careful analysis. The curvature of each edge pixel, the location
of each edge relative to the center and to other edges as well as the
strength of the edges are taken into consideration. Weight is assigned
to edge pixel according to carefully-chosen criterion. The edge pix-
els most probably corresponding to the boundary or those having no
much influence to the snake are left with high weights. As a result,
a much clearer weighted edge image is obtained.

3. Running GVF-snake on the weighted edge image. The
initial position of the snake is chosen to be near the circle found
from the detection step.

5. RESULTS

5.1. Detection Results

To obtain quantitative results one of the most cluttered air samples
of the pollenmonitor data set (containing lots of dust particles and
agglomerated pollen grains) was chosen. It was recorded during a
test-operation and contains therefore only 25 image stacks recorded
with the integrated microscope of the pollenmonitor in transmitted
light mode (20x lens, 0.8 N.A.). Each stack has 1392x1040x70 vox-
els (≈ 100 megavoxels). An example is depicted in Fig. 3a. The
computed eigenvalues (only the higher one) of the Hessian for each
position are shown in Fig. 3b. The selected voters are shown in Fig
3c. In the traditional Hough transform the votes are simply added
(Fig. 3d). Our approach requires that votes come from different di-
rections: Correct maxima are emphasized while wrong maxima (e.g.
in the upper right corner) disappear (Fig. 3e). For validation the ob-
tained circles are compared to the manually labeled correct centers
of all pollen (see Fig. 3f).

a) Central plane of raw image b) Higher eigenvalues

c) voters (gray level codes z-coord.) d) Traditional accumulator

e) Our accumulator f) Results: expert labels displayed as small circles

Fig. 3. Detection of spherical pollen grains in a part of a transmitted
light image stack of an air sample

First the direct implementation (without the multi scale ap-
proach) was tested for an accumulator with only 11 different radii
between 10 μm to 60 μm. The computation time for one stack was
about 5 min using a single core of a QuadCore Xeon X5365 with
3GHz. The peak memory usage was about 24GB of RAM. Using
the multi-scale approach the same volume was processed in about
24 seconds, and needed only about 1GB of RAM. Moreover this
approach delivers the circles radius and position with 0.32μm (one
pixel) precision.

The overall recall and precision of the method was evaluated by
counting a found circle as a hit, if the center did not differ more
than 4μm (in xy-direction) from the manually labeled experts cen-
ter. Pollen that are closer than 11μm to the border were discarded.
The overall recall was 98.2%. The missed 14 pollen grains (from
the 789) were all highly cluttered and even hard to detect for the ex-
pert (similar to the pollen grain, which is nearly completely covered
by the black dust particle near the center in Fig. 3f). The number
of false alarms (only 148) is very low compared to the traditional
approaches, and many of them belong to other spherical airborne
particles with are not pollen grains. The details are listed in table 1.

Table 1. Results of the proposed detector

True number of pollen Nexpert 789
Found number of pollen Ncomputer 923
Number of hits Nhits 775
Precision Nhits/Ncomputer 84.0%
Recall Nhits/Nexpert 98.2%
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5.2. Results of exact segmentation

Examples of exact segmention of pollen grains are given in Fig. 4.
To get a quantitative impression how well it works, we evaluate it
on the same air sample used above for detection evaluation. Here
only pollen grains locating completely inside the images are taken
in account. That is 689 objects. Among them, only 35 are wrongly
segmented (some examples are shown in Fig. 5). The other 654
pollen grains have similar segmentation quality as shown in the last
row in Fig. 4. That counts to about 95% correct segmentation. And
this is with a very cluttered air sample, where segmentation is very
difficult. On many other air samples, we have almost 100% correct
segmentation. Furthermore, as mentioned above, correct segmenta-
tion is essential for pollen recognition. The good results of the pollen
recognition [1] is also an indication of the success of the segmenta-
tion.

6. CONCLUSION AND OUTLOOK

The proposed algorithms perform a robust, reliable and very fast seg-
mentation (only 24 sec. for a 100 megavoxel image stack) of pollen
grains in a highly cluttered surrounding.

The system can be used for any other spherical particles. First
experiments on DIC images of Drosophila Schneider cells have
shown nearly perfect results. Due to the fact that the voting is
completely based on local maxima criteria, the proposed algorithms
allow to combine votes from different data channels (e.g. a channel
recorded by fluorescence microscopy and a channel recorded by
transmitted light microscopy) without the need to define arbitrary
factors for the recombination.
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Fig. 4. Exact segmentation of pollen grains. The first row shows
the original images. The second and third rows are segmentation
results with gradient magnitude and original Canny edges as edge
images respectively. The last 6 rows show the important steps of
the proposed methods. They are gradient magnitude, magnitude of
modified gradient, edge images obtained with modified Canny edge
detection, weighted edge images, initial snake position and the final
boundaries.

Fig. 5. Examples of bad segmentation
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