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Abstract. Autonomous collision avoidance in vehicles requires an accurate seper-
ation of obstacles from the background, particularly near the focus of expansion.
In this paper, we present a technique for fast segmentation of stationary obsta-
cles from video recorded by a single camera that is installed in a moving vehicle.
The input image is divided into three motion segments consisting of the ground
plane, the background, and the obstacle. This constrained scenario allows for
good initial estimates of the motion models, which are iteratively refined during
segmentation. The horizon is known due to the camera setup. The remaining bi-
nary partitioning problem is solved by a graph cut on the motion-compensated
difference images.
Obstacle segmentation in realistic scenes a monocular camera setup has not been
feasible up to now. Our experimental evaluation shows that the proposed ap-
proach leads to fast and accurate obstacle segmentation and distance estimation
without prior knowledge about the size, shape or base point of obstacles.

1 Introduction

Year by year, thousands of people die in car accidents. Many of those accidents could be
avoided or alleviated by autonomous collision avoidance systems providing for faster
and more adequate reaction of the driver. In this paper we propose a key component for
an assistance system, namely a framework for segmenting stationary distant obstacles in
the direction of the moving vehicle. See Fig. 1 for an example of a stationary obstacle in
the vehicle corridor. Stationary objects pose a particular challenge. Moving objects can
easily be detected by optical flow based methods or - in vehicle application - by radar.
Accurate segmentation allows for the verification of obstacle hypotheses and enables
the driver assistance system to decide whether there is enough space to drive around the
obstacle.

Three aspects are of critical importance for such an obstacle segmentation system.
Firstly, the segmentations must be generic in the sense that they cannot rely on specific
assumptions regarding the color or shape of the obstacles. Secondly, it needs to provide
reliable segmentations in particular when objects are still far from the driving vehicle,
i.e. where the obstacle is close to the focus of expansion (FOE), thus leaving enough
time to induce obstacle avoidance strategies. This is typically a challenge, because at
such an early stage the obstacle covers only a small portion of the image and the relative
pixel motion is very small [10]. Thirdly, a useful collision avoidance system requires
the segmentations results in real-time.
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Fig. 1. Motion segmentation of a stationary obstacle in 36 m distance from monoc-
ular video. Notice the two cones, which are difficult to capture by means of their gray
value.

In recent time, the graph cut has become very popular for fast computation of glob-
ally optimal solutions to binary partitioning problems [2,3,6]. The graph cut method
gave rise to numerous interesting applications in computer vision. In [9], a stereo cam-
era and ternary graph cuts are employed to separate a person in front of the camera from
the background. In two successive works, the approach was modified to work also with
monocular video by relying (predominantly) on the difference image of a moving per-
son [5,13] in front of a static background. For our application, such approaches would
not work as the entire scene is moving due to the strong ego-motion of the car. General
motion segmentation with graph cuts, without a specific application in mind, has been
suggested [1,12]. Mathematically, such unconstrained motion segmentation is a highly
ill-posed problem. In addition to the partitioning also the motion fields in the regions
have to be estimated. In contrast to segmentation based on difference images as used
in [5] and [13], motion segmentation cannot be solved in a globally optimal manner
anymore. The iteration of segmentation and motion estimation is likely to end up in
unsatisfactory local minima.

It turns out that the obstacle segmentation task considered here actually does provide
additional information and constraints. In the following, we will show which additional
information is available and how it can be imposed in the graph cuts based segmentation
scheme. Experimental results confirm that the integration of additional information will
lead to reliable segmentations of obstacles from a driving vehicle.

2 Obstacle Segmentation with Graph Cut

The system is continuously fed with live gray scale video data I : Ω × [0,∞) → R
represented as 2-D gray value fields It(x, y) at time t and image points x = (x, y)>

in camera coordinates. As soon as another frame becomes available, it is segmented
into obstacle and non-obstacle regions, based on the last two frames and the previous
segmentation. This is done by computing a binary labeling Lt(x) of each pixel x =
(x, y)> in a region of interest (ROI) Ωs ⊂ Ω of the image It at time t, such that

Lt(x) =
{

1 if x obstacle
0 otherwiese. (1)
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Fig. 2. Motion-compensated difference images. From left to right: original gray value
input images and difference images for foreground (Ef ) and background (Eb) based
on the quadratic difference between the motion-compensated image It−1 and image It

after the last iteration. The camera translation was 1.9 m. Hf and Hb denote foreground
and background motion.

The ROI is the area around the focus of expansion, where potential obstacles in the
driving corridor are located. Its size corresponds to the image size of mapped obstacles.
Approximate obstacle distance estimates are given from an obstacle detection system,
which will be described in Section 4.

Segmentation by grouping similar gray values is not sensible in our context because
the gray value of different obstacles is not fixed and may be similar to the gray value
of the street. We therefore base base the labeling on motion information. The classical
approach to segmentation minimizes an energy on the labeling of the form

E(Lt) = EData(Lt) + αESmooth(Lt) . (2)

2.1 WarpCut

In the following we show how to design the data term in Eq. 2 which is optimally suited
for the segmentation of obstacles in the driving corridor of a moving vehicle. While
traditionally the data term aims at segmenting the intensities [2] or the motion field
[1,12], in this paper we propose to segment the warped image.

We assume that the scene is static and all image motion is caused by the camera
installed in the moving vehicle. The camera motion is approximately known from odo-
metric measurements of the vehicle. Due to the given scenario we impose the following
assumptions:

1. The street is approximately planar. Hence, the image motion in this area is de-
scribed by a homography Hs. The homography can be approximated from the
known camera motion and the camera parameters.

2. Visible object points on distant obstacles have approximately the same depth. Ap-
plying the weak perspective camera model, the motion field in the obstacle region
is affine, which can be expressed by another homography Ho.

3. Finally, the background region, i.e., the region above the horizon can be approxi-
mated as a plane at infinity, which leads to a third homography Hb.
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Consequently, there are three regions, each with a different motion model. The sep-
aration of the obstacle region from the other two regions is done by the sought seg-
mentation of the obstacle. The street and background region are separated a-priori by a
horizontal line y = yhor that can be derived analytically from the camera parameters
which leaves us with a binary partitioning problem.

The key idea of differentiating between obstacles and background is to penalize
the difference between the current frame and motion-compensated (warped) previous
frame. Separate motion predictions are computed for the obstacle and the non-obstacle
regions. Notice that for the presented application this is much more sensible than the
approaches described in [5,13] as it allows to drop the assumption of a static camera.
The motion-compensated images are composed as follows:

Imc
0,t−1(x) =

{
It−1(Hb(x)) y < yhor

It−1(Hs(x)) y ≥ yhor
, (3)

Imc
1,t−1(x) = It−1(Ho(x)) . (4)

Values between grid points are determined by bilinear interpolation. Figure 2 shows
the motion-compensated difference images of the introductory example in Figure 1 for
Lt = 1 and Lt = 0, respectively. The data term evaluates the consistency between the
warped previous image and the current image. It consists of the sum over the squared
differences between both images:

EData(Lt) =
∑

x∈Ωs

(It(x)− Imc
Lt(x),t−1(x))2 . (5)

2.2 Spatio-temporal Regularity of the Labeling

Additionally to the data consistency term, our energy model incorporates assumptions
on the spatial and temporal regularity of the labeling:

ESmooth = ESpatial + βETemporal . (6)

The spatial regularity is measured by the geodesic length of the segmentation bound-
ary. In particular, the boundary length is locally weighted by the gray value difference
along the boundary. With N being the set of pairs of pixel neighbors (here we use N8
neighborhood) the spatial regularity constraint reads

ESpatial(Lt) =
1
2

∑
(p,q)∈N

[Lt(p) 6= Lt(q)]
‖p− q‖

(
1− |It(p)− It(q)|

Imax

)
(7)

with Imax being the maximum possible gray value. Given two boundary pixels, the
energy takes its maximum for equal gray values and decreases linearly.

In addition to spatial regularity, we impose temporal regularity of the labeling set-
ting

ETemporal(Lt) =
∑
x∈It

[Lt(x) 6= Lt−1(x)] . (8)
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Two aspects are considered here: the continuity of labels and the size of segments. For
relatively small camera movement in stationary scenes one expects the current segmen-
tation to be close to the most recent one. Additionally, we set the parameter β according
to the validity of the most recent segmentation. As we explain in the next section, the
scale of the foreground region is used to determine the obstacle distance. With known
distance, segmentation size, and calibrated camera an obstacle size is deduced. β in our
case can be seen as a switch. The parameter is set to zero for unrealistic obstacle size or
distance from a given prior (for example in the beginning β is set to zero as no prior seg-
mentation exists). However, β could be continuously changed if other post-processing
algorithms are used to evaluate the current segmentation result.

The total energy can be minimized globally via the graph min cut method [6,4].

3 Adaptation of the Motion Fields

The segmentation above was solely based on pre-computed motion fields, derived from
the approximate camera motion and assumptions on the planarity of the involved struc-
tures. In order to improve the segmentation, we propose to iteratively refine these mo-
tion fields. This is related to estimating the camera motion (ego-motion) from the image
data [8] but aims at estimating the scene depth for static scenes. Based on the gray value
constancy in 5, one can apply an incremental warping technique as originally proposed
in [11] and later extended to non-translatory motion. This is detailed for our motion
model in the following.

For the homographic motion model H∗, ∗ ∈ {o, b, s}, a point x in a given frame
is associated with the point

H∗(h,x) =


h1,1·x+h1,2·y+h1,3

h3,1·x+h3,2·y+1

h2,1·x+h2,2·y+h2,3
h3,1·x+h3,2·y+1


in the previous frame, where h ∈ R is a parameter vector. Given an estimate h0 of
these parameters, one can generate an estimate of the motion-compensated frames for
the parameters h0 + ∆h:

Imc
∗,t−1(h

0 + ∆h,x)≈It−1(H∗(h0,x)) +∇It−1(H∗(h0,x))
dH∗(·, ·)

dh

∣∣∣∣
x,h=h0

∆h .

This is introduced into our objective function Edata(·)∑
x∈R∗

(
It(x)− Imc

∗,t−1

(
h0 + ∆h,x

))2

where the region R∗ is given by all points associated with the respective model. When
setting the derivative w.r.t. ∆h to zero, one can solve for the update (with simplified
notation):
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∆h=
∑

x∈R∗

(
dH∗

dh
(x)>∇It−1(x)>∇It−1(x)

dH∗

dh
(x)

)−1

·
∑

x∈R∗

(
It(x− Imc

∗,t−1(h
0,x)

)
∇It−1(x)

dH∗

dh
(x) .

Such warping schemes are also known as the Gauss-Newton method. In our case,
they allow the estimation of homographies without the knowledge of point-correspondences.

In contrast to the segmentation with fixed motion fields, the iteration of graph cuts
and motion field adaptation usually does not result in a global optimum anymore. A
prior for the homography parameters is given by the car odometer.

4 Initial Obstacle Detection and Depth Estimation

Our segmentation model is based on the restriction of the labeling domain to a region
of interest around the focus of expansion. Moreover, the initial motion field in the ob-
stacle region depends on the obstacle’s distance to the camera. Although the detection
of obstacles is not the focus of this paper, we briefly review a method that has recently
been proposed in [14] and which we adopted in order to trigger the segmentation. Al-
ternatively, one could use active sensors, such as radar or lidar, for this purpose.

Assume an image point xt belonging to a static world point at (X, Y, Z)>. The
camera translates by (TX , TY , TZ)> in camera coordinates from frame It to It+1. Then
the world point at t + 1 will be projected to

xt+1 = f
Z+TZ

„
X + TX

Y + TY

«
=

Z

Z + TZ| {z }
s

f

Z

„
X
Y

«
| {z }

x

+ f
Z+TZ

„
TX

TY

«
.

Hence, the distance Z of the point can be inferred from the scaling s of x with
respect to the focus of expansion. For obstacle detection, we track a number of points
over multiple frames using the region tracker in [7]. Distance estimates at locations that
are not consistent with the ground plane are considered as potential obstacle points.
This way, stationary obstacles within 50m are detected at interactive frame-rates. For a
comparative test we refer to [14]. Given the location and distance of potential obstacle
points allows to define the region of interest in which we compute the segmentation. The
interest region is chosen large enough to capture obstacles up to a size of 10 m × 3 m.
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In the same manner, one can derive an accurate depth estimate for the obstacle from
the scaling of the obstacle region segmented by our approach. Such estimates are then
used to verify the depth estimate from region tracking. Notice that the initial region
tracking step can be replaced by other sensors such as radar. The segmentation is veri-
fied by comparing its distance estimate with the distance predicted by the region based
tracker. If the deviation is smaller than 5%, the segmentation is considered trustworthy.

Fig. 3. Closeup of segmentation for an obstacle in 17 m distance. The middle image
shows the warped foreground with the foreground energy. The right image shows the
warped ground plane and according energy. Color warmth denotes higher gray value
difference compared to the current image. Notice the correct segmentation across the
shadow boundary and the incorrect segmentation of the traffic cone due to occlusion.

5 Results

We evaluated the method in some real world scenarios. For all the experiments we show
in this section, the parameters have been kept fixed. In particular, we set α = Imax and
β = 5

Imax
with Imax = 255. The camera had a focal length of 8mm, which corresponds

to approximately 800 pixels.
Figure 3 demonstrates the accuracy of the segmentation even in areas close to the

base point of the obstacle. In these areas the motion model of the street is almost iden-
tical to the motion field of the obstacle. As the segmentation is based on differences
between those models, the segmentation is much more sensitive to noise here. The
correct segmentation even along the bottom of the car reveals the robustness of the
overall method even in these critical areas. Another reason for inaccuracies are occlu-
sions of the ground plane by the obstacle. The traffic cone, for instance, is not perfectly
segmented due to this fact. Apart from occlusion artifacts, however, the segmentation
result is very precise. Moreover, the algorithm runs at interactive frame rates of 5 fps
including obstacle detection and segmentation.

Figure 4 shows another result for a scenario with two differently colored obsta-
cles. The color of the gray car actually fits very well to large parts of the background
region. Clearly, an intensity based segmentation with graph cuts, as shown in the Fig-
ure, is not appropriate here. On the other hand, the motion cues used in the proposed
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Fig. 4. Motion segmentation and distance estimation for different color obstacles in
53 m distance from monocular vision alone. The camera translation was 2.6 m between
the frames. The right plots show the region of interest with motion segmentation (top)
and gray value segmentation (bottom) for the same frames. Clearly, gray value segmen-
tation is not suitable for the segmentation of different colored obstacles in scenes with
arbitrary background.

Fig. 5. Distance and obstacle size estimation for the example with one obstacle
(ground truth: 4.19 m×1.83 m) in Figure 1.

Fig. 6. Detection of a gap between obstacles. Taking the center of mass for the distance
measurements results in one detected object. The gap between the two trucks is ignored.
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approach can segment the two obstacles very well, though they are still 53 m away.
However, with the general motion segmentation approach the obstacles are not seg-
mented from the background and, hence, distance and size estimates are not possible.
The motion parallax (motion difference between ground plane and obstacle) decreases
non-linearly with increasing distance. Thus, it is quite small in this case. Nevertheless,
there is enough difference to outline the shape of the obstacles without implying any
prior shape knowledge using our WarpCut algorithm.

The plots in Figure 5 show the size and distance estimates of the approaching ob-
stacle from Figure 7 by means of segmentation . The ideal values are indicated by the
straight lines. The estimates by the segmentation are very good. This emphasizes the
precise segmentation of the obstacle throughout the video sequence, pictured with ex-
tracted frames in Figure 7.

Figure 6 shows that obstacle segmentation is more than just obstacle detection. The
segmentation allows to detect gaps between obstacles and to measure the size of these
gaps in order to decide whether it is possible to drive through this gap. Common radar
sensors, for instance, would only consider the center of mass and detect a single ob-
ject. This example demonstrates the relevance of segmentation for autonomous colli-
sion avoidance. Similar scenarios appear in robot navigation.

Fig. 7. Segmentation and distance estimation from monocular video. The segmen-
tation and distance estimation of the stationary obstacle proves to be precise throughout
the video sequence. The early detection and localization of the obstacle leaves time to
induce obstacle avoidance strategies.

6 Conclusions

We presented a method for accurate stationary obstacle segmentation from motion in
monocular video. In particular, we propose to obtain segmentations based on inten-
sity differences of the current frame and motion-compensated versions of the previous
frame. As spatially regularized segmentations are desired in a real-time context, en-
ergy minimization via graph cuts on such warped images proved to be very useful. For
the motion segmentation to be robust, we exploited a number of assumptions that are
reasonable in the context of obstacle segmentation. Experimental results confirmed the
validity of these assumptions in several scenes and demonstrated the robust and accurate
segmentation of obstacles. Moreover, we showed that from the scaling of the obstacle
region in time, one can accurately estimate the obstacle’s distance. Also conclusions
about obstacle dimensions can be deduced.
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