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Abstract

In this article we present the integration of 3-D shape knowledge into a variational
model for level set based image segmentation and contour based 3-D pose tracking.
Given the surface model of an object that is visible in the image of one or multiple
cameras calibrated to the same world coordinate system, the object contour extracted
by the segmentation method is applied to estimate the 3-D pose parameters of the
object. Vice-versa, the surface model projected to the image plane helps in a top-
down manner to improve the extraction of the contour. While common alternative
segmentation approaches, which integrate 2-D shape knowledge, face the problem that
an object can look very differently from various viewpoints, a 3-D free form model
ensures that for each view the model can fit the data in the image very well. Moreover,
one additionally solves the problem of determining the object’s pose in 3-D space. The
performance is demonstrated by numerous experiments with a monocular and a stereo
camera system.
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1 Introduction

Image segmentation and pose estimation are two principal problems in computer vision.
Segmentation determines the location and shape of objects in the image plane, thereby
performing a significant abstraction step from the raw pixel data to object regions. Pose
estimation, on the other hand, determines the pose of objects in 3-D space given some
sensor data, e.g., images from one or multiple cameras.
Both tasks have been intensively investigated and a lot of progress has been made
in recent years, as shown by many seminal papers and textbooks on segmentation
[29, 5, 35, 49, 75, 64, 39, 15, 53, 21] and pose estimation [41, 42, 31, 40, 1, 43, 50, 28,
25, 6]. See also the theses [30, 58] on pose estimation. Nevertheless, both segmentation
and pose estimation still face severe difficulties, in particular in natural scenes. The
reason for such difficulties is in most cases a violation of model assumptions. In image
segmentation, for instance, the model usually assumes homogeneous (e.g. constant [15]
or smooth [49]) object regions. Due to noise, texture, shading, or occlusion, however,
this model is often not appropriate to delineate object regions. A successful remedy is
the statistical modeling of regions and the supplement of additional information, such
as texture and motion, which greatly extends the number of situations where image
segmentation can succeed [75, 44, 54, 59]. Another strategy is to impose additional
constraints like the restriction to a certain object shape. This introduction of shape
priors into segmentation models has been proposed in [39] and has been extended and
modified in a large number of successive works [18, 61, 16, 21, 56, 20, 17].
Also pose estimation, or the related task of pose tracking, work very reliably and often
even in real-time when applied to controlled situations. In this paper, we focus on
2D-3D pose tracking of a rigid body, i.e., we seek a 3-D rigid motion that fits the
model to some 2-D image data1. The difficult part in this task is to reliably match
some 2-D features to their 3-D counterparts on the model. Numerous different types of
features have been used in the past, e.g., lines [4], viewpoint dependent point features,
such as vertices, t-junctions, cusps, three-tangent junctions, edge inflections, etc. [38],
multi-part curve segments [72], and complete contours [24, 58].
In this paper, we follow the concept of matching the modeled object surface to the
object contour(s) extracted from one or multiple images by level set segmentation.
While segmentation and 2D-3D pose estimation have so far been investigated more or
less independently from each other, the main contribution of the present paper, is to
formulate a joint energy functional and a corresponding optimization scheme that solves
both tasks simultaneously.
From the segmentation perspective, our approach extends the above mentioned seg-
mentation methods that integrate 2-D prior knowledge. Compared to these existing
methods, the 3-D model in our approach ensures a good description of the model con-
tour from arbitrary viewpoints by directly taking the 3-D nature of most real objects
into account.
Moreover, from the perspective of pose tracking, our method integrates the feature
extraction step into the pose estimation process, i.e., there is a back-coupling of the
pose result that helps to improve the features used for matching, in our case the object
contour.

1Extensions from rigid bodies to kinematic chains have been suggested in [7, 8].
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Figure 1: Basic idea: iterating segmentation and pose estimation. The projected pose
result is used as a-priori knowledge for segmentation, the contour as matching feature
for pose estimation.

While the coupling of segmentation and pose estimation (registration) has already been
investigated in case of 2-D segmentation and 2-D shape models as well as in case
of volumetric segmentation and 3-D shape models, e.g. [71, 62], to the best of our
knowledge, we present here the first approach that integrates segmentation in the image
plane and pose estimation in 3-D, see Figure 1. Compared to the previous cases, this
comes along with additional difficulties, as the approach implies a projection as well as
an inverse projection to match the 3-D shape to 2-D image data and vice-versa2. Related
works on 2D-3D pose estimation, on the other hand, either work on pre-computed
contours that are independent from the pose result [24, 57], or rely on simpler features
such as edge maps and line segments [32, 47].
This paper comprises and extends an earlier work presented on a conference [9]. In
comparison to this introduction of the basic idea, the present paper contains a much
more detailed description of the approach, suggests a confidence measure in the coupling
of segmentation and pose estimation, and demonstrates the generality of the method by
means of additional experiments that rule out many alternative techniques for solving
the task.

Paper organization. We start in the next section with a review of the level set
based image segmentation model that provides the basis for our variational approach.
The section further includes a region model based on local statistics that aims at the
handling of inhomogeneous objects and backgrounds. Section 3 extends the variational
segmentation model by an additional term that integrates the 3-D surface and its pose
parameters. The section describes step by step the optimization procedure that yields
the object contour and the sought pose parameters. Experiments in Section 4 demon-
strate the performance of the proposed technique and illustrate the conceptual difference
to other methods. The paper is concluded by a short summary in Section 5.

2A related problem appears in certain works on shape reconstruction, e.g. in [26, 69, 70].
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2 Image Segmentation

2.1 Level Set Formulation

Our method is based on variational image segmentation with level sets [23, 51, 13, 45,
52, 14, 15, 67, 53]. Level set formulations of the image segmentation problem have
several advantages. One is the convenient embedding of a 1-D curve into a 2-D, image-
like structure. This allows for a convenient and sound interaction between constraints
that are imposed on the contour itself and constraints that act on the regions separated
by the contour. Moreover, the level set representation yields the inherent capability
to model topological changes. This can be an important issue, for instance, when the
object is partially occluded by another object and is hence split into two parts.
In the prominent case of a two-phase segmentation, a level set function Φ ∈ Ω 7→ R

splits the image domain Ω into two regions Ω1 and Ω2, with Φ(x) > 0 if x ∈ Ω1 and
Φ(x) < 0 if x ∈ Ω2. The zero-level line thus marks the boundary between both regions,
i.e., it represents the object contour that is sought to be extracted.
Most works on level set segmentation focus on this special case with two regions. It
automatically rules out overlapping or vacuum regions and therefore eases implemen-
tation. Since the present paper is concerned with the extraction of exactly one known
object and its pose, we will also restrict to two regions: the object and the background.
However, the reader can find numerous works that extend the level set framework to
multiple regions in a more or less simple and efficient manner [74, 68, 46, 10].

As an optimality criterion for contour extraction, three constraints are imposed:

1. the data within each region should be similar

2. the data between regions should be dissimilar

3. the contour dividing the regions should be minimal

These model assumptions can be expressed by the following energy functional [75, 15,
53]:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2

)
dx + ν

∫

Ω

|∇H(Φ)| dx (2.1)

where ν > 0 is a weighting parameter between the third and the two other constraints,
and H(s) is a regularized Heaviside function with lims→−∞ H(s) = 0, lims→∞ H(s) = 1,
and H(0) = 0.5 (e.g. the error function). It indicates to which region a pixel belongs.
Minimizing the first two terms maximizes the total a-posteriori probability given the
probability densities p1 and p2 of Ω1 and Ω2, i.e., pixels are assigned to the most probable
region according to the Bayes rule. The third term minimizes the length of the contour.

Energy minimization can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)

(

log
p1

p2
+ ν div

( ∇Φ

|∇Φ|

))

(2.2)

where H ′(s) is the derivative of H(s) with respect to its argument. Applying this
evolution equation to some initialization Φ0, and given the probability densities pi, the
contour converges to the next local minimum for the numerical evolution parameter
t → ∞.
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2.2 Region Statistics

A very important factor for the quality of the contour extraction process is the way
how the probability densities p1 and p2 are modeled. This model decides on what is
considered as similar or dissimilar. There are several choices on which image cues to
use for the density model, for instance, gray value, color, texture [65, 54, 59], or motion
[19]. Moreover, there are various possibilities how to model the probability densities
given these image cues, e.g., a Gaussian density with fixed standard deviation [15], a
full Gaussian density [75, 60], a generalized Laplacian [33], or nonparametric Parzen
estimates [36, 59, 34, 37].

For the segmentation here, we use the texture feature space proposed in [11], which
yields M = 5 feature channels Ij for gray scale images, and M = 7 channels if color is
available. The color channels are considered in the CIELAB color space. The texture
features described in [11] contain basically the same information as the frequently used
responses of Gabor filters, yet the representation of this information is less redundant,
so 4 feature channels substitute 12-64 Gabor responses.

The probability densities of the M feature channels are assumed to be independent,
thus the total probability density comes down to

pi =
M∏

j=1

pij(Ij) i = 1, 2. (2.3)

Though assuming independence of the probability densities is only an approximation of
the true densities, it keeps the density model tractable. This has to be seen particularly
with regard to the fact that the densities have to be estimated by means of a limited
amount of image data given.

Estimating both the probability densities pij and the region contour works according
to the expectation-maximization principle [22, 48]. Having the level set function ini-
tialized with some partitioning Φ0, the probability densities in these regions can be
approximated. With the probability densities, one the other hand, one can compute an
update on the contour according to (2.2), leading to a further update of the probability
densities, and so on. Since the process converges to a local minimum, the initialization
matters. In order to attenuate the dependency on the initialization, one can apply a
continuation method in a coarse-to-fine manner [5].

It has been shown in [60] that in case of Gaussian densities, the expectation-maximization
procedure is equivalent to a gradient descent in both the contour Φ and the densities
pi. For other density models, the gradient descent contains additional terms that are
neglected by the expectation-maximization procedure. In [33] it has been shown em-
pirically for the Laplacian density model that the influence of these higher order terms
is very small. In the appendix we show that for the local region statistics described in
the next section, the influence of the additional term is restricted, too.

2.3 Local Region Statistics

While most image segmentation methods assume a global model for the probability
density of each region, i.e., the probability density function only depends on the re-
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gion but does not change within one region, it has been suggested in [34] to consider
density functions that may vary within regions. This can be advantageous in scenes
with complex objects, shadows, and highlights, where differences between object and
background are often only locally visible. A global statistical model looses this local
information and can thus loose the capability to separate the regions.
We model the regions by the following local Gaussian probability density that varies
with the position x in the image:

pij(s, x) =
1√

2πσij(x)
exp

(
(s − µij(x))2

2σij(x)2

)

. (2.4)

The parameters µij(x) and σij(x) are computed in a local Gaussian neighborhood Kρ

around x by:

µij(x) =

∫

Ωi

Kρ(ζ − x)Ij(ζ) dζ
∫

Ωi

Kρ(ζ − x) dζ
σij(x) =

∫

Ωi

Kρ(ζ − x)(Ij(ζ) − µij(x))2 dζ
∫

Ωi

Kρ(ζ − x) dζ
(2.5)

where ρ denotes the standard deviation of the Gaussian window. In order to obtain
reliable estimates for the parameters µij(x) and σij(x), it is recommended to choose
ρ ≥ 6.

It should not be concealed that also two major drawbacks come along with these local
statistics. Firstly, they demand a considerably larger amount of computation time than
global estimates (about one order of magnitude). Secondly, they induce more local
minima in the energy functional. It is mainly due to the latter reason that we choose
Gaussian densities and not a non-parametric model like in [34]. With global statistics,
non-parametric region models are often advantageous, since they can better adapt to
multimodal densities. Within a local window, however, such multimodal situations are
rare. Consequently, one can expect the less complex model to be more reliable.

3 Integration of a 3-D Surface Model and

Estimation of its Pose

Segmentation approaches from the type described in the last section can perform very
well, if all model assumptions are satisfied. In many images, however, the model will
prefer to separate other regions than the object regions. Additional constraints have to
be introduced in order to restrict the sought contour to stay close to a certain shape.
This concept is already well-established in the segmentation of 2-D images using 2-D
shape knowledge, [39, 18, 61, 21] or the segmentation of 3-D volume data and 3-D shape
knowledge [71, 62].
In this section, we will implement this concept when 2-D images and a 3-D shape
model are given. Compared to the above-mentioned situations, this comes along with
additional difficulties. The integration of prior shape knowledge always includes an
estimation of the shape’s pose in the image. This is necessary since usually one wants
the method to be invariant to a certain class of pose transformations, e.g. rigid trans-
formations. In contrast to matching 2-D images to a 2-D shape or 3-D volumes to a
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3-D shape, the case investigated here implies a projection as well as an inverse projec-
tion to match the 3-D shape to 2-D image data and vice-versa. In the following, we
introduce a way how a joint evolution of the contour and the pose can be integrated in
the variational setting from the last section.

3.1 Extending the Energy by a Shape Term

To this end, the energy functional in (2.1) is extended by an additional term. This term
implements the new model assumption that the shape in the image should be close to
the projection of a given object model that can be obtained, e.g., as the mean surface
of a set of 3-D training shapes. The extended energy reads:

E(Φ, θξ) = −
∫

Ω

(
H(Φ) log p1 + (1 − H(Φ)) log p2

)
dx + ν

∫

Ω

|∇H(Φ)| dx

+ λ

∫

Ω

(Φ − Φ0(θξ))
2 dx

︸ ︷︷ ︸

Shape

.
(3.6)

The parameter λ ≥ 0 determines the variability of the estimated contour from the mod-
eled one. This variability could as well be estimated in a more sophisticated manner
from a set of training shapes. Since this work, however, does not focus on the statis-
tic modeling of shapes but on the general integration of 3-D shapes into 2-D image
segmentation, we keep the shape model simple.
The quadratic error measure in the shape term of (3.6) has been proposed in the context
of 2-D shape priors, e.g. in [61], and is not new. However, the prior Φ0 ∈ Ω → R is
now derived from a 3-D model and depends on a 3-D rigid transformation θξ.

3.1.1 Surface representation

There exist different ways to represent 3-D shapes [3, 12]: a common way is to use local
representations, e.g. point sets, line segments or curve segments. Global representa-
tions can roughly be divided into implicit representations, e.g., by using superquadrics,
generalized cylinders, or 3-D level set functions, and explicit ones, e.g. two-parametric
meshes, triangulated surfaces, or by using Fourier descriptors. An overview of free-form
representations can, e.g., be found in [12], though the focus of their work is on object
recognition and not on pose estimation.
In this work we use a parametric model in terms of a two-parametric surface. This
means, a surface F is represented by two sampling parameters φ1 and φ2 and points on
the surface are given as

F (φ1, φ2) = (f 1(φ1, φ2), f
2(φ1, φ2), f

3(φ1, φ2))
T .

Thus, the surface is represented by three 2-D functions f i(φ1, φ2) : R
2 → R acting on

the three Euclidean basis vectors. Although other free form models of the surface are
applicable as well, we have chosen this representation, since it provides instant access
to surface points and allows for quickly computing image silhouettes and projections of
the surface mesh. To project the surface mesh to an image plane, just the sample points
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need to be projected. These points are then connected by line segments. Moreover,
one can derive a low-pass object description from this representation by using Fourier
descriptors. This has proven beneficial to avoid local minima in the pose estimation.
For details we refer to [58].

3.1.2 Representation of Rigid Transformations using screw transformations

Every 3-D rigid body motion (RBM) can be represented as a 4 × 4 matrix

M =

(
R3×3 t3×1

01×3 1

)

(3.7)

for a given rotation matrix R3×3 ∈ SO(3), with SO(n) := {R ∈ R
n×n : RR

T =
I, det(R) = +1}, and a translation vector t3×1. By using homogeneous coordinates,
a point x can be transformed by matrix-vector multiplication x′ = Mx. The 3-D
rigid body motion has six degrees of freedom, three for the rotation and three for the
translation [28]. A common way to represent rigid body motions is by using Euler
angles and a translation vector [50], thus resulting in a consecutive evaluation of the
RBM.
In fact, M is an element of the one-parametric Lie group SE(3), known as the group of
direct affine isometries. Elements of a Lie-Group can be represented in an exponential
form, thus resulting in a continuous representation of the RBM (i.e. the rotation and
translation is evaluated simultaneously for a velocity parameter θ). A main result of
Lie theory is that to each Lie group there exists a Lie algebra which can be found in
its tangential space by derivation and evaluation at its origin; see [28, 50, 66] for more
details. The corresponding Lie algebra to SE(3) is se(3) = {(v, ω)|v ∈ R

3, ω ∈ so(3)},
with so(3) = {A ∈ R

3×3|A = −A
T}. The elements in se(3) are called twists, which

can be denoted as

θξ̂ = θ

(
ω̂ v

03×1 0

)

, with ω̂ =





0 -ω3 ω2

ω3 0 −ω1

-ω2 ω1 0



 . (3.8)

A twist is sometimes written as vector

θξ = θ(ω1, ω2, ω3, v1, v2, v3)
T , with

‖ω‖2 = ‖(ω1, ω2, ω3)
T‖2 = 1. (3.9)

It contains six parameters, namely θ, v1, v2, v3 and ω with ‖ω‖2 = 1. To reconstruct
a group action M ∈ SE(3) from a given twist, the exponential function exp(θξ̂) =
M ∈ SE(3) can be used. The parameter θ ∈ R corresponds to the motion velocity, i.e.,
the rotation velocity and pitch. For varying θ, the motion can be identified as screw
motion around an axis in space. This is proven by Chasles Theorem [50] from 1830.
Representing a rigid body motion as a screw transformation means to evaluate the
rotation and translation simultaneously. This is an important aspect for the later used
gradient descent approach for minimizing the constraint equations for pose estimation.
Indeed, computing the exponential of a matrix is not trivial, but the RBM from a given
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Figure 2: The pose estimation scenario: the aim is to estimate the rigid transformation
exp(θξ̂) = R,t that produces the object contour seen in the image.

twist can be calculated efficiently by using the Rodriguez formula [50],

exp(ξ̂θ) =

(
exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT

vθ
01×3 1

)

, for ω 6= 0 (3.10)

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1 − cos(θ)), (3.11)

i.e., only sine and cosine functions of real numbers need to be computed.

3.1.3 Projection of the 3-D surface to yield a 2-D prior

For interacting with the segmentation in the image, the surface has to be projected to
the image plane. Moreover, the projected shape Φ0 in the energy (3.6) is assumed to be
represented by the signed Euclidean distance function, i.e., Φ0(x) yields the Euclidean
distance of x to the silhouette of the projected object surface.
For each pose configuration θξ̂ one can derive Φ0(θξ̂, x) as follows: let XS denote the set
of points X on the object surface. Projection of the transformed points exp(θξ̂)XS into
the image plane yields the set xS of all 2-D points x on the image plane that correspond
to a 3-D point on the surface

x = P exp(θξ̂)X, ∀X ∈ XS (3.12)

where P denotes a projection with known camera parameters3. This set of points yields
the binary function Φ̃0 representing the projected surface by setting

Φ̃0(x) =

{
1 if x ∈ xS

−1 otherwise.
(3.13)

3In case of a discrete mesh representation of the surface, as assumed above, one has to fill the gaps
in the projected mesh to obtain a continuous representation of the projected surface.
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By applying the signed distance transform to Φ̃0, one obtains

Φ0(x) =

{
dist(x, C) if Φ̃0(x) > 0

−dist(x, C) otherwise
(3.14)

where dist(x, C) denotes the Euclidean distance of x to the zero-level line C of Φ̃0. An
efficient implementation of the Euclidean distance transform can be found in [27].

3.1.4 Interpretation of the Energy

The shape term in (3.6) penalizes deviations of the contour Φ from the contour of the
projected object model Φ0. This ensures that Φ cannot deviate too much from the
modeled shape. The weighting parameter λ ≥ 0 thereby determines just how far the
contour can deviate from the prior. If the correct pose parameters were known, a large
value of λ would ensure that the contour fully converges to the shape of the projected
object model.
However, the pose parameters are not known but are free variables and supposed to be
optimized together with the contour. Thus the shape term in (3.6) not only draws the
contour towards the projected object model, but also makes the object model to change
its pose such that the projection Φ0 resembles the contour Φ. While Φ0 thereby has to
respect the constraint of a 3-D rigid motion, Φ has to respect the data in the image.
In order to minimize the total energy, we suggest an explicit iterative scheme where one
optimization variable is kept constant while the other is optimized, and vice-versa.

3.2 Optimization with Respect to the Contour

Since the shape term is modeled in the image domain, minimization of (3.6) with respect
to Φ is straightforward and equal to the approach in [61]. It yields the gradient descent
equation

∂tΦ = H ′(Φ)

(

log
p1

p2
+ ν div

( ∇Φ

|∇Φ|

))

+ 2λ (Φ0(θξ) − Φ). (3.15)

One can see again from this evolution equation that the shape term pushes Φ towards
the projected surface model, while on the other hand, Φ is still influenced by the image
data trying to ensure homogeneous regions according to the maximum a-posteriori
criterion.

3.3 Optimization with Respect to the Pose Parameters

Optimization with respect to the pose parameters needs considerably more care, since
the way how the projection of the shape varies with a certain 3-D rigid transformation
is quite complex. Thus, it is far from straightforward to solve the inverse problem,
i.e., to find the 3-D rigid transformation that minimizes the distance of the contours in
2-D. In the following we describe step by step how such an optimization scheme can be
derived.
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3.3.1 Point Correspondences between the Contours

Due to Φ and Φ0 being signed distance functions, the error measure in (3.6) integrates
for each point on one contour the distance to the closest point on the other contour.
Therefore, we collect the point correspondences from all points on the zero-level of Φ0

to their closest point on the zero-level of Φ and vice-versa. For each point on the zero-
level of Φ0 we know its 3-D coordinates (Φ0 was obtained by projecting these 3-D points
to the image). Consequently, we obtain a set of correspondences between 2-D points
stemming from Φ and 3-D points from the surface model4.
Since a rigid transformation changes Φ0, it may also change the points that correspond
to each other. Thus, each iteration has to update the point correspondences. One may
note the strong similarities to iterated closest point (ICP) algorithms [2, 73].

3.3.2 Inverse Projection and Plücker Lines

In order to estimate a 3-D transformation from the correspondences, we change the 2-D
points into 3-D entities, i.e., their projection rays need to be constructed. A projection
ray contains all 3-D points that, when projected to the image plane, yield a zero distance
to the contour point there. Hence, for minimizing the distance in the image plane, one
can as well minimize the distance between the model points and the rays reconstructed
from the corresponding points.

There exist different ways to represent projection rays. As we have to minimize distances
between correspondences, it is advantageous to use an implicit representation for a 3-D
line. It allows instantaneously to determine the distance between a point to a line.
One implicit representation of projection rays is by means of so-called Plücker lines[63,
66]. A Plücker line L = (n, m) is given as a unit vector n and a moment m with
m = x × n for a given point x on the line. An advantage of this representation is its
uniqueness (apart from possible sign changes). Moreover, the incidence of a point x on
a line L = (n, m) can be expressed as

x ∈ L ⇔ x × n − m = 0. (3.16)

This equation provides us with an error vector. Let L = (n, m), with m = v × n as
shown in Figure 3, and x = x1 + x2, with x /∈ L and x2 ⊥ n.
Since x1 × n = m, x2 ⊥ n, and ‖n‖ = 1, we have

‖x × n − m‖ = ‖x1 × n + x2 × n − m‖ = ‖x2 × n‖ = ‖x2‖ (3.17)

where ‖ · ‖ denotes the Euclidean norm. This means that x × n − m in (3.16) results
in the (rotated) perpendicular error vector to line L.

4For being fully consistent with the energy in (3.6), one had to match not only the points on
the zero-level lines of Φ and Φ0, but additionally all points where Φ0 > 0. This could be done, for
instance, with a variation of the framework in [55]. For efficiency reasons, however, we take only point
correspondences for points on the contours into account.
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Figure 3: Comparison of a 3-D point x with a 3-D line L.

3.3.3 Pose Estimation

With the result from the last section, the pose can now be determined as the rigid
transformation that minimizes the total error over all correspondences i:

∑

i

‖(exp(θξ̂)xi)3×1 × ni − mi‖2
2 → min . (3.18)

Indeed, xi is a homogeneous 4-D vector, and after multiplication with the 4×4 transfor-
mation matrix exp(θξ̂) we neglect the homogeneous component (which is 1) to evaluate
the cross product with ni.
While minimizing this total 3-D error is not exactly equivalent to the minimization of
the sum of errors in the image plane as stated in the energy, it has been shown in [57]
that one can provide equivalence between these measures by appropriately rescaling
each error vector with a suited ηi:

∑

i

ηi‖(exp(θξ̂)xi)3×1 × ni − mi‖2
2 → min . (3.19)

The scalar ηi can be used to rescale the 3-D error vector to gain a different error metric.
Let x′

i be the image point of the projection ray (ni, mi), Pxi be the projection of xi

and ν be the distance of the 3-D point xi to the projection ray. Then the scaling factor

ηi =
‖Pxi − x′

i‖2

ν
(3.20)

leads to the desired error in the image plane. For most objects and camera configu-
rations, the rescaling has only very little influence on the estimation result. Thus, if
desired, in our implementation the local rescalings can be switched on, but we usually
skip it for efficiency reasons, in particular since the 3-D error is not wrong but only
inconsistent with the energy functional.

The minimization problem in (3.18) or (3.19) is a least squares problem. Unfortunately,
however, the equations are non-quadratic due to the exponential form of the RBM. For
this reason, the RBM is linearized, and the pose estimation procedure is iterated, i.e.,
the nonlinear problem is decomposed into a sequence of linear problems.

By using exp(θξ̂) =
∑

∞

k=0
(θξ̂)k

k!
≈ I + θξ̂, with I as identity matrix, linearization of

(exp(θξ̂)x)3×1 × n − m = 0
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results in
((I + θξ̂)x)3×1 × n − m = 0. (3.21)

This equation can be reordered into the form Aξ = b. Collecting a set of such equations
(each is of rank two) leads to an overdetermined linear system of equations, which can
be solved using, for example, the Householder algorithm. The Rodriguez formula can
be applied to reconstruct the group action M from the estimated twist ξ. Then, the
3-D points can be transformed and the process is iterated until it converges.
Every (linearized) constraint equation yields three rows in the system of equations with
respect to the unknown pose parameters. If a confidence measure of the extracted
contour Φ is available, it is further possible to scale the equations with respect to the
confidence measure, similar to equation (3.19). This has the effect that correspondences
with a higher confidence are reinforced, whereas correspondences with lower confidence
are alleviated. In [57] this property to manipulate local correspondences is called adap-

tive pose estimation. Note, however, that the scaling of equations is no longer consistent
with the energy in (3.6).
In case of minimizing the 3-D error measure, the projection rays only need to be re-
constructed once, and can be reconstructed from orthographic, projective or even cata-
dioptric cameras. The algorithm is very fast (e.g., it needs 2 ms on a standard (2 GHz)
Linux PC for 100 point correspondences). In [57] extensions to point-plane, line-plane
constraint equations and kinematic chains are presented using Clifford algebra [66].

3.3.4 A Confidence Measure for Contour Points

Although we are currently not able to state an energy that is minimized by the scaled
pose estimation equations, we introduce here a possibility to derive a measure of con-
fidence for the contour. It takes into account that the separability of the object and
the background region can be considerably reduced in some areas. This happens in
particular at locations where the shape prior contradicts the local region statistics, e.g.,
due to occlusions.
The sought confidence at a certain point x on the contour can be expressed by the
a-posteriori probability of the region the point has been assigned to. This reads

c̃(x) =
p1(x)

∫

Ω1

Kρ(x) dξ

p(x)
H(Φ(x)) +

p2(x)
∫

Ω2

Kρ(x) dξ

p(x)
(1 − H(Φ(x))) (3.22)

where Kρ is the Gaussian kernel from Section 2.3. If a pixel assigned to region Ω1 also
fits well to region Ω2, i.e., p1 ≈ p2, the precise location of the contour will be ambiguous
and the confidence will be around 0.5. Obversely, if a pixel assigned to Ω1 does not fit
to region Ω2, i.e., p1 � p2, the contour location will be definite and the confidence will
be close to 1. If a pixel is assigned to the wrong region according to the statistics – this
can happen due to contradictions with the object prior or the length constraint – the
confidence will be even smaller than 0.5.
Due to slightly blurred edges, pixels directly on the contour often have a quite low
confidence, although the separability of the regions in the surrounding area is high.
Therefore, it is reasonable to take also pixels from the neighborhood into account. This
can be achieved by a simple convolution with a Gaussian kernel Kσ

c(x) = (Kσ ∗ c̃)(x) (3.23)
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where we set σ = 1.5. When scaling the equations in Section 3.3.3 by c(x) one can
obtain slightly improved results as demonstrated by one experiment in Section 4.

3.4 Summary of the Optimization Procedure

The complete optimization procedure can be summarized as follows:

Figure 4: Summary of the optimization scheme.

1. Initialize the pose parameters by some values that are sufficiently close to the true
pose.

2. Project the surface model with the current pose parameters to the image plane
and construct Φ0 as described in Section 3.1.3.

3. Initialize Φ with Φ0.

4. Compute the probability densities pi for the current segmentation Φ.

5. Update Φ according to (3.15).

6. Compute the set of point correspondences as described in Section 3.3.1.

7. Reconstruct projection rays from the 2-D points as described in Section 3.3.2.

8. Find the pose parameters that minimize the total distance between the 3-D points
and the projection rays as described in Section 3.3.3.

9. Update Φ0 as in 2.

10. Iterate 4-9.

11. Repeat 3-10 for each frame in the image sequence.

An illustration can be found in Figure 4.
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Figure 5: From left to right: (a) Initialization. (b) Segmentation result with object
knowledge. (c) Pose result. (d) Segmentation result without object knowledge.

4 Experiments

Figure 6: Top row: Input images for frames 51, 189 and 450 of an image sequence
containing 560 frames. Bottom row: Pose results. The algorithm is able to deal with
a cluttered and changing background.

We investigated the performance of our joint contour extraction and pose estimation
method in a couple of experiments. Figure 5 first demonstrates the general advantage of
integrating object knowledge into the segmentation process. Without object knowledge,
parts of the tea box are missing as they better fit to the background. The object prior
can constrain the contour to the vicinity of the projected object model derived from
those parts of the contour that can be extracted reliably. This concept is also the
key issue of approaches that use 2-D shape knowledge. With 3-D shape knowledge,
however, it is no longer necessary to model several views. Moreover, the object model
can perfectly fit the data, while in 2-D approaches there remain discrepancies if the
current view does not coincide perfectly with one of the modeled views.
In Figure 6 we show the robustness of the method in the case of a changing background.
One can see that the estimated pose of the tea box is not distracted by any of the objects
moved in the background, though the CDs even reflect the tea box surface. Later on
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Figure 7: Top row: Initialization at the first frame. Contour at frames 49, 50, and 116
of the sequence. Bottom row: Pose results at frames 0, 49, 50, and 116. The tea box
is moved, causing partially severe reflections on the box. Furthermore, Gaussian noise
with standard deviation 30 has been added.

Figure 8: From left to right: (a) Frame 13. (b) Pose estimation result without the
proposed confidence measure. (c) Result when exploiting the confidence. (d) Confidence
along the contour. Dark values represent a high confidence.

in the sequence, also the tea box itself is moved, which shows that the method is not
tuned for static objects.
In the experiment shown in Figure 7, we tested the influence of artifacts like reflections,
shadows, and noise. The motion of the object causes partially severe reflections on
the metallic surface of the tea box. Moreover, the tea box throws a shadow as it is
tilted. Additionally, Gaussian noise with standard deviation 30 has been added to
the sequence. These difficulties partially lead to small errors, yet the overall results
remain stable. Also the slight occlusion due to the fingers does not harm the pose
estimation. The presence of noise in this sequence clearly rules out methods that
are based on background subtraction. Also simple thresholding methods for contour
extraction would fail due to the cluttered background and the reflections.
Figure 8 compares the results obtained with and without the suggested confidence mea-
sure, respectively. The confidence measure prevents the result from being deteriorated
by the shadow and the occluding fingers. With a homogeneous weighting, the correct
contour points have not enough weight to ensure the correct pose estimate.
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Figure 9: Frame 97 from a stereo sequence with 400 frames. In both views the object
is partially occluded. Top left: Due to the shape prior, the contour is kept close
to object. Top right: Here, the contour has been initialized at this frame with the
correct contour, but the shape constraint has been neglected (λ = 0). Consequently,
the contour breaks away. Bottom left: Pose result. Bottom right: Visualization
of the object pose from two different views. Each square of the floor represents two
centimeters in the world coordinate system. The pose is recovered with a deviation of
only a few millimeter.

In the experiment depicted in Figure 9, the monocular camera has been extended to a
stereo system. In this case, another significant advantage of using 3-D shape knowledge
becomes apparent. In contrast to 2-D approaches, our method can fuse the information
from two images. If the information in one image is not reliable, e.g due to occlusions,
the information from the other image can still determine the pose. Even if there are
occlusions in both images, the combined information from both images can be still
sufficient for a reliable pose estimation. The object model with the correct pose, on the
other hand, constrains the contour and keeps it from breaking away.
In the sequel of this stereo sequence, the tea box is moved. Two further frames are
depicted in Figure 10. Again there appear reflections on the surface of the box, and
there are further partial occlusions due to the hand.

In order to demonstrate that the approach is not restricted to a certain type of object,
Figure 11 shows an experiment with a teapot model. This object is non-convex and
even contains a hole. Dealing with such a kind of object, it is particularly beneficial
to represent the contour by means of a level set function. In the level set framework,
the more complex topology does not change anything. Thus, the region encircled by
the handle of the teapot can correctly be assigned to the background region. The
roundish teapot immediately rules out line based methods for this task. Also methods
based on feature matching may have difficulties due to the homogeneous surface of the
object. Further note the rather bad initialization. A decoupled concatenation of the
segmentation technique and the pose estimation method cannot succeed in finding the
right contour and pose. Only the mutual improvement of both the contour and the
pose allows for a good result in the steady state.

17



Figure 10: Top: Contour and pose results at frame 190 and 212 for the stereo sequence
from Figure 9. Bottom: Pose results at frame 190 and 212 from two different per-
spective views. Each floor square represents two centimeter in the world coordinate
system.

Figure 11: From left to right: (a) Stereo image with a teapot. The initialization
is quite far away from the object. (b) Resulting contour when performing only one
iteration. The contour is restricted to the initial, bad pose and cannot fully capture the
object. (c) Consequently, the pose remains close to the initialization. (d) Pose result
after 20 iterations.

Figure 12 illustrates the role of the weighting parameter λ for the shape prior. In this
example we use one frame of the stereo sequence with the tea pot disturbed by colored
rectangles of random size and position. The initialization is shown on the left. The
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Figure 12: Most left: Stereo image of the teapot. The image pair is disturbed with
rectangles of random size, position, and color. The initialization is close to the correct
pose. From left to Right: Segmentation results for varying weights of the shape
constraint λ = 0.001, 0.06, and 0.1.

remaining images show the contour for λ = 0.001, 0.06 and 0.1, respectively. Small
λ give the contour much freedom to evolve, enabling the pose to follow. If the object
region can be clearly separated from the background, choosing λ small is therefore
beneficial. On the other hand, if the contour is distracted by background clutter, the
shape information keeps the contour from running too far away from the object. In our
other experiments we have therefore chosen λ in the area of 0.06.

Figure 13 depicts a sequence where object and camera are static to allow a quantitative
error measurement. The left diagrams show the translational and angular errors along
the three axes, respectively. Despite the change of the lighting conditions and partial
occlusions, the error has a standard deviation of less than 2 mm and 6.0 degrees. The
main rotational errors occur for rotations around the x-axis of the calibrated system.
This is due to the fact that such a rotation causes smaller changes of the silhouette than
rotations around the other axes. Therefore, this degree of freedom is more sensitive to
inaccuracies or errors in the extracted contour. The x-axis is located horizontally along
the teapot, crossing the center of the teapot, and pointing from the handle to the spout.
The diagrams on the right hand side of the same figure show the translational and
angular errors for the same sequence disturbed by random rectangles, as shown in Fig-
ure 14. The occlusions partially lead to bad segmentations, which can be compensated
due to the object model. Here, the error is up to 25mm and 12 degrees.

In order to demonstrate the ability of the approach to deal with topological changes in
the contour, Figure 15 shows pose and segmentation results of a second stereo sequence.
At the beginning, the teapot is rotated on the ground floor (along the y-axis), such that
the handle and the opening of the handle vanishes behind the container and reappears
later. Thanks to the shape prior, the level set segmentation can recapture the hole
when it reappears.
In the sequel, the handle is grabbed and the tea pot is moved around. The bottom
row in Figure 15 visualizes the 3-D pose in a virtual environment. During rotation on
the ground floor, the tea pot is nearly perfectly on the floor as it should be (see also
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Figure 13: Top row: Some frames from a static stereo sequence with illumination
changes and partial occlusions (left and right view in the top and bottom row, respec-
tively). Diagrams left: Rotational and translational errors in radians and millimeters
for the undisturbed sequence. Diagrams right: The sequence has been disturbed with
random rectangles as shown in Figure 14. The estimation errors increase to up to 2.5cm
in space.
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Figure 14: The sequence from Figure 13 has been disturbed with rectangles of random
size, position, and color, which leads to occlusions of the object. Top row: Pose
results for different frames. Bottom row: Segmentation results. The occlusions can
be compensated due to the object model. The result on the right shows the worst pose
according to the diagram in Figure 13.

Figure 15: A second stereo sequence with the tea pot, where the handle of the tea
pot vanishes behind the container and reappears. Finally the tea pot is moved around
(345 frames). Top row: Pose results for different frames. Middle row: Segmentation
results. Due to the shape model, the occluding hand only slightly disturbs the contour
extraction. Last row: Pose results from different perspective views. The rotation on
the ground floor is accurately estimated.
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Figure 16: The stereo sequence from Figure 15 is now randomly disturbed with rect-
angles. Top row: Pose results. Middle row: Segmentation results. Last row: Pose
results from different perspective views. The pose result of the non-disturbed images is
blended with the scene. The deviation is in the area of one centimeter.

Figure 17: Comparison of the x-, y- and z-axis of the estimated pose for the stereo
sequence in Figure 15 and Figure 16. In the first part of the sequence, the tea pot is
just rotated on the floor. The nearly constant values of the y-axis (with a deviation of
2-5mm) indicate a stable result. Then the tea pot is grabbed and moved around. The
curves for the disturbed images shows larger errors (up to 2cm), but it is still possible
to track the tea pot.
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Figure 17).
Again, we disturbed the sequence by occluding rectangles. The results are depicted in
Figure 16. For analyzing the impact of the disturbances, in the last row, pose results
from the disturbed sequence are blended with the results from the non-disturbed data.
The deviation is in the area of one centimeter, which demonstrates the stability of the
method in case of occlusions. The diagram in Figure 17 further quantifies this outcome.
It shows the tracking curves for the disturbed and undisturbed sequences in Figure 15
and Figure 16, respectively. In the first part of the sequence, the tea pot is just rotated
on the floor. The nearly constant values of the y-axis (with a deviation of 2-5mm)
indicate a stable result. The values of the disturbed sequence have a higher deviation
(up to 2cm), but it is still possible to reliably track the tea pot.
The overall computation time depends on the number of iterations necessary for the
method to converge. For the last (and hardest) sequence that includes the disturbances
by random rectangles, the computation time per stereo pair was approximately 2 min-
utes (1 minute and 50 seconds to 2 minutes and 2 seconds) on a 2.4 GHz opteron Linux
machine. Note that in contrast to pose tracking approaches that achieve real-time per-
formance, our model is based on a sophisticated interlocking of segmentation and pose
estimation as well as statistical region models that allow for good results in situations
where those real-time approaches may fail.

5 Conclusion

In this work, variational and statistical methodologies have been combined with geomet-
ric techniques previously developed in the language of Clifford algebras. We introduced
a method that integrates 3-D shape knowledge into a variational model for level set
based image segmentation. While the utilization of 2-D shape knowledge has been inves-
tigated intensively in recent time, the presented approach takes the three-dimensional
nature of the world into account. The method relies on a powerful image-driven segmen-
tation model on one side, and an elaborated technique for contour based 2D-3D pose
estimation on the other side. The combination of both techniques in a joint energy
minimization problem improves the quality of contour extraction and, consequently,
also the robustness of pose estimation, which relies on the contour. This allows for the
tracking of three-dimensional objects in cluttered scenes with inconvenient illumination
effects and partial occlusions.
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A Euler-Lagrange Equations for Local Statistics

A popular way to minimize energies like the one in (2.1) is the EM-algorithm. EM keeps the
probability densities pi fixed for computing an update of the contour Φ and then, vice-versa,
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updates the densities while retaining the contour. Although it is known that the EM-algorithm
converges, the dependency between the contour and the densities is neglected. Alternatively,
one can write (2.1) as a functional that only depends on Φ and compute the corresponding
Euler-Lagrange equation. In the following, we derive this Euler-Lagrange equation for local
Gaussian region statistics as introduced in Section 2.3.
First we introduce the characteristic functions χ1 := H(Φ) and χ2 := (1 − H(Φ)). Then the
energy in (2.1) can be written as:

−
2∑

i=1

∫

Ω
χi(Φ) log pi dx + ν

∫

Ω
|∇H(Φ)| dx.

In the following we neglect the last term, since it is independent from the region statistics.
We further see that the terms for both regions are symmetric. We can thus concentrate on
computing the Euler-Lagrange equation for one of the regions. The additional term for the
second region can be derived the same way. So we compute the Euler-Lagrange equation of

−
∫

Ω
χ(Φ) log p dx =

1

2

∫

Ω
χ(Φ)

(
(I − µ)2

σ2
+ log(2π) + log σ2)

)

dx

As the pre-factor 1/2 has no influence on the minimizer, it can be neglected. Also the term
log(2π) can be neglected, as the same term reappears for the other region with opposite sign
and thus cancels out. Expanding the local mean µ and variance σ2 yields

∫

Ω
χ(Φ)






(I −
R

KIχ(Φ) dζ
R

Kχ(Φ) dζ
)2

R

KI2χ(Φ) dζ
R

Kχ(Φ) dζ
−
( R

KIχ(Φ) dζ
R

Kχ(Φ) dζ

)2 + log

(∫
KI2χ(Φ) dζ
∫

Kχ(Φ) dζ
−
(∫

KIχ(Φ) dζ
∫

Kχ(Φ) dζ

)2
)



 dx

where K denotes a local Gaussian window centered at x. For the Euler-Lagrange equations
we compute

∂

∂ε

∫

Ω
L(Φ + εh) dx

∣
∣
∣
∣
ε=0

.

With the abbreviations

A :=

∫

Ω
Kχ(Φ) dζ s :=

∫

Ω
Kχ′(Φ) dζ

µC :=

∫
KIχ′(Φ) dζ

s
θC :=

∫
KI2χ′(Φ) dζ

s

we obtain

χ′(Φ)

(
(I − µ)2

σ2
+ log σ2

)

︸ ︷︷ ︸

usual term

−χ(Φ)
s

A

[
2(I − µ)

σ2
(µC − µ) +

(
(I − µ)2

σ4
− 1

σ2

)

(θC − 2µµC − σ2 + µ)

]

︸ ︷︷ ︸

additional term

= 0.

Besides the usual term known from the EM-algorithm, there is a further term that is zero if
the window K covers the whole image domain Ω (global density estimate). Then the integral

of I − µ is zero and the integral of (I−µ)2

σ4 − 1
σ2 , too. In general the term is not zero, yet

one can see that it is small, as it depends on the ratio between the contour length and the
region area. For a window K with reasonable size, this ratio is considerably smaller than 1.
Moreover, the importance of the term depends on the difference between the statistics along
the contour and within the region. This difference is usually very small, as well, especially
when the contour is still far from the state of convergence. For this reason, the additional
term can be neglected without loosing the advantages of the variational framework.
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