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Abstract. Since biology and medicine apply increasingly fast volumet-
ric imaging techniques and aim at extracting quantitative data from
these images, the need for efficient image analysis techniques like detec-
tion and classification of 3D structures is obvious. A common approach
is to extract local features, e.g. group integration has been used to gain
invariance against rotation and translation. We extend these group in-
tegration features by including vectorial information and spherical har-
monics descriptors. From our vectorial invariants we derive a very robust
detector for spherical structures in low-quality images and show that it
can be computed very fast. We apply these new invariants to 3D con-
focal laser-scanning microscope images of the Arabidopsis root tip and
extract position and type of the cell nuclei. Then it is possible to build
a biologically relevant, architectural model of the root tip.

1 Introduction

Groupwise Haar integration [1] of scalar 2D and 3D images has been successfully
used to classify pollen grains [2] and to segment and classify cells in tissue samples
[3]. These Haar integration features are solely based on scalar values like gray
value and gradient magnitude, but ignore the direction of the gradient, which
is an extremely robust feature, even under varying transformations and lighting
conditions. This robustness is shown by e.g. [4], who use the direction of the
gradient as their main features and gain impressive results on 2D images. We
extend the groupwise Haar integration framework by including vectorial gradient
information and by using spherical harmonics descriptors. We furthermore show
how the generalized Hough transform for spheres can be considered as a special
case of our vectorial Haar integration features.

The aim of this paper is to extract the location of the cell nuclei in the
Arabidopsis root tip from 3D microscope images and furthermore decide if a cell
nucleus is in interphase or in a phase of mitosis. Interphase and mitosis are phases
of the cell cycle, in interphase the cell nucleus is in a non-dividing state. During
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mitosis the actual division into two daughter cells takes place. We concentrate
on interphase (comprising more than 95% of the cells) and metaphase, which is
the most characteristic phase of the different phases of mitosis. Our final aim is
to build a theoretical model of the root growth, therefore it is essential to gain
information about the distribution of cell divisions inside the root tip.

We are not aware of groups using image analysis on 3D microscope images of
the Arabidopsis root tip. Still, [5] identify and track cell nuclei in 2D images of
C. elegans embryos. But in contrast to our 3D images, the cell nuclei in [5] are
well separated and can be extracted using local signal maxima. [6] use simple
features and a classification tree to classify tumor cells from normal cells in 2D
images.

2 Description of the Data

Since we intend to gain as much information as possible about the location of
the cell nuclei and their phase of mitosis in Arabidopsis thaliana, we stain the
root tips with a fluorescent dye that binds to DNA (deoxyribonucleic acid),
which is mainly located inside the cell nuclei. We use DAPI (4’,6-diamidino-2-
phenylindole), a common fluorescent staining. The roots are taken from plants
at the age of three to five days, embedded in glycerol and captured as a 3D stack
with a Zeiss LSM 510 META microscope with a water objective (C-Apochromat
63x/1.2 W corr) and an excitation wavelength of 364nm. The image quality
depends on the age of the roots and the preparation steps (staining and washing),
but the achieved image quality is reproducible. Fig. 1 shows an example slice of
one of the 3D stacks used in the experiments. Most of the cell nuclei are cells in
interphase and have a roughly spherical appearance with an unstained nucleolus
inside each nucleus. In metaphase, the stained part of the cell usually has the
shape of a flat disk. We use images with a voxelsize of 0.6μm (for the detection
of the cell nuclei in metaphase) and of 0.25μm for all other computations.

We first compute a series of invariant features for each voxel in the image (as
presented in sec. 3), and then classify these features by use of a support-vector
machine into the three classes center of a cell nucleus in interphase, center of a
cell nucleus in metaphase and no center of a cell. Finally we visualize our results
in a preliminary model of the Arabidopsis root tip.

3 Invariant Features by Groupwise Haar-Integration

Groupwise Haar integration [1] gains invariance of an image X under certain
group operations by integration of a kernel function f over all these group
operations:

If (X) =
∫

G

f(gX) dg (1)

G is the transformation group, under which the features If (X) should be invari-
ant, g is one element of G. Function f computes a scalar value by a nonlinear,
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20μm

Fig. 1. A typical slice of a 3D microscope image of the Arabidopsis root tip. Several
characteristic aspects of the data are obvious: most cell nuclei are in interphase and
are characterized by a roughly spherical contour but differing heavily in intensity. Each
inner cell nucleus contains a nucleolus which forms a dark sphere, a double contour
arises. In the middle and in the lower part of the figure, we see two cells in metaphase
(vertical bars).

but otherwise arbitrary combination of all gray values in X . As the integral is
independent of the particular position and orientation of image X , the integral
is invariant under G. These features can be computed either for a whole image
or a subimage X (blockwise) or voxelwise for each voxel x0 ∈ X . In this case,
we shift the origin to voxel x0 and integrate over all rotations. This results in
features for each voxel such that in a later classification step, all voxels are clas-
sified separately. In the upcoming sections, the features are computed voxelwise
unless otherwise indicated.

3.1 2-Point Grayscale Invariants

A very simple, but frequently ([3],[2]) used type of kernel function are functions
f with

f(X) = f1(X(0)) · f2(X(r)) (2)

where f1, f2 are arbitrary functions on the image X , and X(0) = X(0, 0, 0),
X(r) = X(0, 0, r), r ∈ IR. The characteristic criterion of f is that its evaluation
depends only on two points in the image. [2] shows that a fast evaluation of
If (X) is possible using fast convolution. As functions f1 and f2 we have chosen
the identity, the square root, and the exponentiation to the powers of two and
three, using both, image X and gradient magnitude image |∇X | as an input.
Radius r has been in the range of 1μm to 5μm. As a preprocessing step, different
gaussian filters with a standard deviation between 0.05 and 4 have been applied.
This can be interpreted as using a smoothed 2-point kernel function that does
not depend on two points but on two gaussian regions and leads to features
robust against noise.

3.2 Voxelwise Vector Based Grayscale Invariants

Only scalar gray value information at different positions in the image has been
used with the previously described invariants. But the grayscale invariant frame-
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work can be theoretically extended to include directional information [7]. We
decided to use the gradient as the most important directional information and
we associate every point x with its gray value gradient (∇X)(x). The general
formula of a kernel function that depends on the gradient image ∇X and is
invariant under the rotation R around point x0 is

If (X,x0) =
∫
G

f(gRgx0∇X) dgR (3)

Here gx0 denotes the translation of point x0 to the origin and gR operations of
the rotation group G. To guarantee that If (X,x0) is computationally affordable,
we restrain f to only depend on few values. We choose the simplest type of kernel
functions, a 1-point kernel, for f :

f(∇X) = f1(∇X(r)) with f1(u) = u
|u| ·w (4)

w denotes a fixed unit vector, · is the scalar product. Function f1 computes the
scalar product of its argument with a fixed given vector (both vectors being unit
vectors). The invariant If (X,x0) becomes

If (X, r,x0) =
∫
G

f(gRgx0∇X) dgR (5)

=
∫
G

f1((gRgx0∇X)(r)) dgR (6)

=
∫
G

(gRgx0∇X)(r)

|(gRgx0∇X)(r)| · r
|r| dgR (7)

We now consider the special case of Euclidean coordinates and thus integrate
over all rotation matrices R. The inverse matrix R−1 undoes the rotation of
the gradients under rotation of the image X . This is a major difference to the
compution of grayscale invariants on images with only scalar values. Here O3 is
the group of all rotation matrices.

I(X, r,x0) =
∫

O3

R−1 (∇X)(R r − x0)
|(∇X)(R r − x0)| ·

r
|r| dR (8)

This invariant is a strong measurement for how spherical given structures around
point x0 are as it accumulates gradients that show in radial direction towards x0.
We use this as a basic detector for the roughly spherical cell nuclei in interphase.
As only nonlinear kernel functions are able to distinguish between complex equiv-
alence classes, we include another highly nonlinear component to our invariant,
that improves results significantly. We choose a peak-like gaussian function Gσ

as a nonlinear weight of the scalar product, applied before integration.
Our invariant only uses unit vectors and thus dismisses all information about

how strong the gradients are. As a result, the feature is independent of the
strength of the edges and of the gray value. This is mostly desired, as the contours
differ markedly in strength. Thus we explicitly do not weight the summands
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with the gradient magnitude, yet we decided to include the absolute gray value
X(R r − x0) as a factor. So, we avoid detecting dim and high-frequency noise
and at the same time emphasize cell nuclei with a comparably bright, but very
soft contour. Finally, we compute the invariant on both the original image and
the inverted image to utilize both, the contour of the cell nucleus and the inner
contour of the nucleolus.

The integration over all rotation matrices is impractical for large images,
because it has to be evaluated for all points x0 ∈ X and all possible radii |r|. [7]
avoids this problem by computing the integral only for a small, mostly random
subset of all points, but this is only reasonable if the data is already segmented.
Thus we developed a very fast method to approximate eq. (8) combined with a
gaussian peak and compute I(X, r,x0) for all points x0 ∈ X and for a set of m
different radii |ri| in O(|X | · m).

Fast Computation of Vector Based Grayscale Invariants. In eq. (8)
combined with a gaussian peak only very few of the summands contribute sig-
nificantly to the integral. We use this sparseness to reduce computation time
tremendously by changing the evaluation order. We do not compute the integral
over all rotation matrices for all (r,x0) sequentially, but we consider for each
point xi ∈ X all integrals I(X, r,x0) to which xi contributes significantly. The
respective contribution of each point xi can be accumulated easily for each inte-
gral I(X, r,x0) at once by introducing a voting scheme based on an iteration over
all gradients. Therefore, for every voxel xi with associated gradient (∇X)(xi)
and for every possible radius r, we vote for the coordinates (x, y, z) of the point
v that lies in direction of the gradient at distance r from xi, as this point is
the main contributor to the integral. This results in a four-dimensional param-
eter space V (x, y, z, r) that reflects how strong a perfect sphere with radius r
is expressed around position v = (x, y, z). Afterwards V (x, y, z, r) is smoothed
with a four-dimensional gaussian filter to become robust against disturbances
of the spherical structure. That way we take the gaussian distribution applied
to eq. (8) into account. It is not strictly equivalent but includes a smoothing in
direction of the radius, which is not given in eq. (8) but desired. As a result, lo-
cal maxima reflect centers of spheres. They are found by sequentially extracting
global maxima and setting the neighborhood defined by radius r in V (x, y, z, r)
to zero. Using a divide & conquer approach it is possible to extract k maxima
in O(N + rmax · log N/d) instead of the naive O(kN), what makes the effort for
extraction of maxima negligible compared to the invariant computation. During
accumulation of the votes in V (x, y, z, r) it is possible to skip very low gradients
and thus reduce computation time even more without worsening the results.

Regarding this computation method it becomes obvious that the 1-point vec-
tor based grayscale invariants form basically a generalized Hough transform
(GHT) [8] for spheres. The generalized Hough transform usually considers the
angle between the gradient at a point xi and the vector from xi to a point
of reference (center) and maintains a memory-intensive lookup table. This is
what eq. (8) implicitly does, but it is outperformed with respect to both, time
and memory, by the use of the gaussian Gσ and the fast computation method.
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Thus we have shown, that the generalized Hough transform for spheres can be
considered as a special case of vectorial grayscale invariants, namely of those
with the simple 1-point kernel of eq. (4). The ability to discriminate between
complex equivalence classes increases with the complexity of the kernel func-
tion, especially 2- and 3-point kernel functions are more powerful than 1-point
kernel functions. Thus the vectorial grayscale invariants form a very powerful
framework embedding the robustness of the GHT.

(a) (b) (c)

Fig. 2. Fig. (a) visualizes eq. (8). Starting from a base point x0 (i.e. a potential center
of a cell nucleus) the scalar product between vector r and gradient g is computed.
Fig. (b) shows how the scalar product would behave against the angle θ between r
and g (red), whereas the weighting with a gaussian function (green) assures that only
small θ near 0 contribute to the integral. In fig. (c) the fast computation method (sec.
3.2) is illustrated. At every point xi a smoothed vote is given for the point v that lies
in opposite direction of the gradient g at distance |r|. Comparing fig. (a) and (c) it
becomes obvious how the fast computation method inverts the evaluation steps.

3.3 Spherical Harmonics Descriptors

An additional set of invariants is computed by using spherical harmonics de-
scriptors [9]. We expand the gray values on spheres around certain points x0 in
spherical harmonics and determine the bandwise distribution of the signal en-
ergy. These spherical harmonics descriptors can easily be embedded in the Haar
integration framework.

Every function f in spherical coordinates (θ, φ, ρ) that does not depend on ρ
can be expanded in a series of spherical harmonics Yl

m(θ, φ):

f(θ, φ) =
∞∑

l=0

l∑
m=−l

Cl
m · Yl

m(θ, φ) (9)

The coefficients Cl
m are computed by a projection of function f onto the basis:

Cl
m =

∫
f(s)Yl

m�(s) ds (10)

To gain rotation invariant features we expand at every point x0 a sphere with
radius r in spherical harmonics and analyse the bandwise fraction of the total
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signal energy for each band l. The operation gr denotes a scaling of the sphere
to radius r:

I(l, r,x0) =

(
l∑

m=−l

∫
X(x)·(gx0grYl

m�)(x) dx

)2

∫
X2(x)·(gx0grY0

0�)(x) dx
(11)

This can be considerably simplified as the spherical harmonics form an orthog-
onal basis:

I(l, r,x0) =

l∑
m=−l

(
∫

X(x)·(gx0grYl
m�)(x) dx)2

D+
∫

X2(x)·(gx0grY0
0�)(x) dx

(12)

The denominator reflects the total signal energy of the sphere to which we add a
denoising term D to become robust against small energy peaks (i.e. noise). The
invariant of band l = 2 is particularly well suited to characterize the flat disk
shape of cells in metaphase. We evaluated only band 2 on spheres with radii up
to 3.5μm and a series of gaussian preprocessing filters with standard deviations
of 0.03, 0.15 and 0.27. For D it has proven sensible to use a value almost in the
region of the total energy.

General Spherical Invariants. Another set of invariants that helped to de-
scribe the cell nuclei are what we named general spherical invariants. They can
also be expressed as a Haar integration kernel and they are a generalization
of 2-point grayscale invariants, pseudo 3-point invariants, see [3], and spherical
harmonics descriptors. They can be computed according to

If1,2,3 (X,x0, r, l) = f1(X(x0)) · f2

(
l∑

m=−l

(∫
f3(X) · (gx0grYl

m) (x) dx
)2

)

Here, f1, f2, f3 are transformations on image X , e.g. pointwise exponentiation
to different exponents. This possibility to include a variety of nonlinear trans-
formations is one advantage of these invariants. We evaluated band 0, 1, 2, 3
and 4 with radii up to 5.5μm and functions f1(X) = X and f2,3(X) =

√
X after

applying a gaussian smoothing filter (with σ ∈ {0.06, 0.18, 0.3}).

3.4 Radius and Gray Value Cooccurrence Matrices

Our classification results can be further improved by including an explicit mea-
surement how gray values are distributed in a local region around point x0.
Therefore we build a two-dimensional matrix for every voxel x0 with entries of
the absolute number of voxels with gray value gi at distance ri to point x0.
For the gray values we use five bins and eight for the radii up to 9μm. The
radius and gray value cooccurrence matrix is computed with input images X
and |∇X |. Furthermore we use the minimal, maximal and average distance of
all bright points, i.e. points with at least 80% of the maximal gray value in a
local region arount point x0 in the gaussian smoothed image Gσ(X), and their
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standard deviation as features. Another small subset of our features compute the
square root of the sum of all points in distance r from point x0 in images X and
|∇X |. Radius r is chosen between 0.6μm and 12.0μm, and as a preprocessing
step, gaussian filters of standard deviation σ = 0.03 and 0.18 are used.

3.5 Evaluation of the Features

Our aim is to classify each voxel as being a central point of either a cell in
interphase or a cell in metaphase or none of it. To reach this with a minimal
effort of computing time we divide the process into two steps:

1. Detection of the cell nuclei in interphase
(a) Evaluation of the vector based grayscale invariants (sec. 3.2). They are

a very good estimate for the position of cell nuclei in interphase as they
detect spherical structures.

(b) To verify these hypotheses for cell nuclei in interphase, we compute fur-
ther blockwise invariants in a local spherical subimage around the max-
ima detected in step 1 (according to sections 3.1, 3.4).

(c) The invariants are used as features by a support-vector machine (SVM)
to classify the subimages into two classes cell nucleus and not a cell
nucleus.

2. Detection of the cell nuclei in metaphase
(a) The invariants from sec. 3.1 and 3.3, the original image and gradient

magnitude images smoothed with gaussian filters are used as voxelwise
features. A support-vector machine classifies each voxel into one of the
classes centers of cells in a mitosis phase and other voxels

We use a two-class support-vector machine with a gaussian kernel with param-
eters γ = 0.001 and cost = 10. These parameters were selected by a grid search
done on a large range of γ and the cost factor.

4 Experiments and Discussion

The invariants are selected and optimized for the localization and classification
of cell nuclei in 3D confocal laser-scanned microscope images of the Arabidopsis
root tip. For evaluation we chose five 3D image stacks from five different plants,
computed the invariant features, trained the support-vector machine with two
of the stacks and used the three remaining stacks as strictly separated test sets.

Our quantitative results in table 1 and fig. 3 show that a sensible model can
be built with the information extracted by our invariants. It has been possible to
classify over 80% of the cell nuclei correctly. It is not relevant if we miss some of
the cell nuclei in interphase, but it is important to retrieve enough information
about the location of these cell nuclei that it is possible to define the architecture
of the Arabidopsis root tip, this means to identify the different cell files (fig.
3). We have easily reached this aim. For the biological research concering root
growth it is important that as few cell nuclei in metaphase as possible are missed.
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This allows us to draw conclusions about the statistical distribution of dividing
cells given a sufficient amount of data sets. The fact, that only one cell nucleus in
metaphase has been missed in only one test set is a very strong result. It allows
us to rely on the total recall of the cell nuclei in metaphase. If full precision is
needed, a human interactor only has to double check for false positives in the very
small-sized set of localized cell nuclei. These quantitative results can easily be
visualized in a 3D model of the root tip (fig. 3 (a), (b)). Each sphere corresponds
to one detected cell nucleus. The coloration of the spheres is according to their
distance from the hull of the root tip. This allows to distinguish between the
different cell files and to identify the cellular architecture of the root tip. Figure
3 (c) shows a slice of the original 3D microscope image. We have marked the cell
nuclei detected by our invariants.

Table 1. Quantitative results. We show the confusion tables of the voxelwise classi-
fication of the voxels in three test sets of whole Arabidopsis root tips from different
plants. Another two data sets from different plants have been used as training sets.
The results show that it has been possible to extract most of the cells in interphase
(I.). They are needed to gain information about the architecture of the Arabidopsis
root tip. Furthermore it has been possible to detect all cell nuclei in metaphase (M.),
except one in one test set. They are the crucial information for a biological analysis of
the root growth. In the case of missed centers in interphase, we distinguish between
cell centers missed by our vector invariants (sec. 3.2) and cells missclassified by the
SVM, the sums in the confusion tables represent that. The class of voxels that are not
the center of a cell in interphase or metaphase is abbreviated to no c. for no center.

classified as
N1 no c. I. M.

no c. 8 · 107 37 1
I. 184+26 934 0
M. 1 0 12

classified as
N2 no c. I. M.

no c. 8 · 107 32 1
I. 232+39 1009 0
M. 0 0 5

classified as
N3 no c. I. M.

no c. 8 · 107 34 4
I. 255+37 962 0
M. 0 0 10

(a) (b) (c)

Fig. 3. Visualization of the results. Each sphere represents a cell nucleus we detected.
The cellular architecture is clearly visible in fig. (a) and (b) as the cells form long
strands towards the tip. In the example slice in fig. (c) the detected cells in interphase
are marked with a circle, the cells in metaphase with a box.
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5 Conclusion and Further Work

This paper introduces a composition of partly new invariant features that are
based on grayscale invariants. The established scalar grayscale invariants have
been significantly extended to include vectorial information. In particular we
have shown how a robust detector for spherical structures can be derived from
vectorial invariants and how it can be computed very fast.

We apply our set of invariants to laser-scanned 3D images of Arabidopsis root
tips where the cell nuclei have been stained. We correctly classify about 80%
of the cell nuclei in interphase and have succeeded in building an architectural
model of the root tip. No tedious manual counting and/or segmentation of the
cells in 3D stacks is required any more to analyze the cellular arrangement.

Furthermore we have very reliably localized the cells in metaphase (near 100%
recall), which is crucial for further research in the field of Arabidopsis root
growth. To measure growth at a cellular level, we need a strong, quantitative
indicator, where cell division takes place.

An automated large-scale evaluation of 3D Arabidopsis microscope images
based on the work done is planned for the near future. Further work will include
microscope images of plants marked with green fluorescent proteins (GFP), these
gene expressions are able to color exactly one or two of the cell files. This simpli-
fies the classification of the cell nuclei into these cell files enormously and thus
a more stable analysis of the file-based distribution of the cell nuclei is possible.
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