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Abstract. In this contribution we present a silhouette based human motion es-
timation system. The system components contain silhouette extraction based on
level sets, a correspondence module, which relates image data to model data and
a pose estimation module. Experiments are done in a four camera setup and we
estimate the model components with 21 degrees of freedom in two frames per
second. Finally, we perform a comparison of the motion estimation system with a
marker based tracking system to perform a quantitative error analysis. The results
show the applicability of the system for marker-less sports movement analysis.

1 Introduction

Human motion estimation from image sequences means to determine the rigid body
motion [11] and joint angles of a 3D human model from 2D image data. Due to redun-
dancies multi-view approaches are necessary. Often simplified models are used, e.g. by
using stick, ellipsoidal, cylindrical or skeleton models [1, 9, 7]. We recently introduced
an approach for silhouette based human motion estimation [14] which uses free-form-
surface patches to estimate the pose and joint angles of the upper torso. In [15] we
further applied local and global morphing techniques to get realistic motions of the up-
per torso model. These basic modules are now extended to a complete human motion
estimation system. The system consists of an advanced image segmentation method,
dynamic occlusion handling and kinematic chains of higher complexity (21 degrees of
freedom). Finally we perform a comparison of the system with a commercial marker
based tracking system [10] used to analyze sports movements1. We perform and ana-
lyze exercises, such as push ups or sit ups. The algorithm proves as stable, robust and
fairly accurate.

The contribution is organized as follows: We will start with the basic setup of the
motion capture system. Then we will continue with the system modules. Here we will
briefly describe image segmentation based on level sets, pose estimation and the dy-
namic occlusion handling to deal with partial occlusion in certain frames. The next
section presents the experimental results and the quantitative error analysis followed by
a brief discussion.

1 Motion Analysis Corporation is one of the leading provider of optical motion capture sys-
tems in entertainment, video-games, film, broadcasting, virtual reality, medicine, sports, and
research.



2 The human motion tracking system

A 3D object model builds the a priori knowledge of the system, which is in this case
given as two free-form surface patches with two kinematic chains. Each kinematic chain
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Fig. 1. The capture system consists of iterating the following steps: Segmentation, correspon-
dence estimation, pose estimation.

consists of seven joints (three for the shoulder, two for the elbow and two for the wrist).
Furthermore we added one back segment joint to the torso surface patch. The estimation
procedure is dealing with 21 unknowns, six for the pose parameters (three for rotation
and three for translation), 7 for each arm and one backbone joint. During correspon-
dence estimation (along four frames) we collect around 5000 point correspondences
(slightly varying dependent on the visible information) and still track in two frames per
second for the four camera sequence. Using the 3D model and four images from a (trig-
gered) calibrated camera sequence, the motion tracking system consists of three main
components, namely silhouette extraction, matching and pose estimation. All compo-
nents are iterated to stabilize segmentation on the one hand and pose estimation on the
other hand.

2.1 Image segmentation

Image segmentation usually means to estimate boundaries of objects in an image. This
task can become very difficult, since noise, shading, occlusion or texture information



Fig. 2. Silhouette extraction based on level set functions. Left: Initial segmentation. Right: Seg-
mentation result.

between the object and the background may distort the segmentation or even make it
impossible. Our approach is based on image segmentation based on level sets [12, 4, 5,
2]. A level set functionΦ ∈ Ω 7→ IR splits the image domainΩ into two regionsΩ1

andΩ2 with Φ(x) > 0 if x ∈ Ω1 andΦ(x) < 0 if x ∈ Ω2. The zero-level line thus
marks the boundary between both regions. The segmentation should maximize the total
a-posteriori probability given the probability densitiesp1 andp2 of Ω1 andΩ2, i.e.,
pixels are assigned to the most probable region according to the Bayes rule. Ideally, the
boundary between both regions should be as small as possible. This can be expressed
by the following energy functional that is sought to be minimized:

E(Φ, p1, p2) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2 + ν|∇H(Φ)|

)
dx (1)

whereν > 0 is a weighting parameter andH(s) is a regularized version of the Heavi-
side function, e.g. the error function. Minimization with respect to the region boundary
represented byΦ can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν div

( ∇Φ

|∇Φ|
))

(2)

whereH ′(s) is the derivative ofH(s) with respect to its argument. The probability
densitiespi are estimated according to theexpectation-maximization principle. Having
the level set function initialized with some contour, the probability densities within
the two regions are estimated by the gray value histograms smoothed with a Gaussian
kernelKσ and its standard deviationσ.

This rather simple and fast approach is sufficient for our laboratory set-up, though it
is also conceivable to apply more elaborated region models including texture features.
Figure 2 shows an example image and the contour evolution over time. As can be seen,
the body silhouette is well extracted, but there are some deviations in the head region,
due to the dark hair. Such inaccuracies can be compensated from the pose estimation
procedure. For our algorithm we can make a tracking assumption. Therefore, we ini-
tialize the silhouette with the pose of the last frame which greatly reduces the number
of iterations needed. The implementation is fast; the algorithm needs 50 ms per frame
and 200 ms image processing time for a four-camera setup.



2.2 Pose estimation

For pose estimation we assume a set of point correspondences(Xi, xi), with 4D (homo-
geneous) model pointsXi and 3D (homogeneous) image pointsxi. Each image point
is reconstructed to a Plücker lineLi = (ni, mi), with a (unit) directionni and moment
mi [11].

Every 3D rigid motion can be represented in an exponential form

M = exp(θξ̂) = exp

(
ω̂ v

03×1 0

)

whereθξ̂ is the matrix representation of a twistξ = (ω1, ω2, ω3, v1, v2, v3) ∈ se(3) =
{(v, ω)|v ∈ IR3, ω ∈ so(3)}, with so(3) = {A ∈ IR3×3|A = −AT }.

In fact, M is an element of the one-parametric Lie groupSE(3), known as the
group of direct affine isometries. A main result of Lie theory is, that to each Lie group
there exists a Lie algebra which can be found in its tangential space, by derivation and
evaluation at its origin; see [11] for more details. The corresponding Lie algebra to
SE(3) is denoted asse(3). A twist contains six parameters and can be scaled toθξ
with a unit vectorω. The parameterθ ∈ IR corresponds to the motion velocity (i.e., the
rotation velocity and pitch). For varyingθ, the motion can be identified as screw motion
around an axis in space. To reconstruct a group actionM ∈ SE(3) from a given twist,
the exponential functionexp(θξ̂) = M ∈ SE(3) must be computed. This can be done
efficiently by using the Rodriguez formula [11],

exp(ξ̂θ) =

(
exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ

01×3 1

)
, for ω 6= 0

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)).

Note that only sine and cosine functions of real numbers need to be computed.
For pose estimation we combine the reconstructed Plücker lines with the screw

representation for rigid motions and apply a gradient descent method: Incidence of the
transformed 3D pointXi with the 3D rayLi can be expressed as

(exp(θξ̂)Xi)3×1 × ni −mi = 0.

Indeed,Xi is a homogeneous 4D vector, and after multiplication with the4× 4 matrix
exp(θξ̂) we neglect the homogeneous component (which is1) to evaluate the cross

product withni. We now linearize the equation by usingexp(θξ̂) =
∑∞

k=0
(θξ̂)k

k! ≈
I + θξ̂, with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni −mi = 0

and can be reordered into an equation of the formAξ = b. Collecting a set of such
equations (each is of rank two) leads to an overdetermined system of equations, which
can be solved using, for example, the Householder algorithm. The Rodriguez formula
can be applied to reconstruct the group actionM from the estimated twistξ. Then



the 3D points can be transformed and the process is iterated until the gradient descent
approach converges.

Joints are expressed as special screws with no pitch of the formθj ξ̂j with known
ξ̂j (the location of the rotation axes as part of the model representation) and unknown
joint angleθj . The constraint equation of ajth joint has the form

(exp(θj ξ̂j) . . . exp(θ1ξ̂1) exp(θξ̂)Xi)3×1 × ni −mi = 0

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown pose parameters andj unknown joint angles.
Collecting a sufficient number of equations leads to an overdetermined system of equa-
tions.

Note, that since we work with reconstructed 3D lines, we can gain equations from
different cameras (calibrated with respect to the same world coordinate system) and put
them together in one system of equations and solve them simultaneously. This is the
key idea to deal with partial occlusions: A joint which is not visible in one camera must
be visible in another one to get a solvable system of equations. A set of four cameras
around the subject covers a large range and allows to analyze quite complex motion
patterns.

2.3 Correspondence estimation

After image segmentation correspondences between the object model and the extracted
silhouettes are established. Therefore, we follow a modified version of an ICP algorithm
[14] and use a voting method to decide, whether a point belongs to the torso or one of
the arms. These correspondences are applied on the pose estimation module resulting
in a slightly transformed object. This is used to establish new correspondences until the
overall pose converges.

3 Experiments

A lack of many studies is that only a visual feedback about the pose result is given,
by overlaying the pose result with the image data, e.g. [14]. To enable a quantitative
error analysis, we use a commercial marker based tracking system for a comparison.
Here, we use the Motion Analysis software [10], with an 8-Falcon-camera system. For
data capture we use the Eva 3.2.1 software and the Motion Analysis Solver Interface
2.0 for inverse kinematics computing [10]. In this system a human has to wear a body
suit and retroflective markers are attached to it. Around each camera is a strobe light led
ring and a red-filter is in front of each lens. This gives very strong image signals of the
markers in each camera. These are treated as point markers which are reconstructed in
the eight-camera system. The system is calibrated by using a wand-calibration method.
Due to the filter in front of the images we had to use a second camera set-up which
providesreal image data. This camera system is calibrated by using a calibration cube.
After calibration, both camera systems are calibrated with respect to each other. Then
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Fig. 3. The coordinate systems in the lab setup.
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Fig. 4. Tracked arms: The angle diagrams show the elbow values of the Motion analysis system
(dotted) and the silhouette system (solid).
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Fig. 5. Tracked Push-ups: The angle diagrams show the elbow values of the Motion analysis
system (dotted) and the silhouette system (solid).

we generate a stick-model from the point markers including joint centers and orienta-
tions. This results in a complete calibrated set-up we use for a system comparison. It is
visualized in figure 3.

The images in the upper left of figure 1 show the body-suit with the attached mark-
ers. These lead to minor errors during silhouette extraction, which are omitted here.
Figure 4 shows the first test sequence, where the subject is just moving the arms for-
wards and backwards. The diagram on the right side shows the estimated angles of the
right elbow. The marker results are given as dotted lines and the silhouette results in
solid lines. The overall error between both angles diagrams is 2.3 degrees, including
the tracking failure between frames 200 till 250.

Figure 5 shows the second test sequence, where the subject is performing a series
of push-ups. Here the elbow angles are much more characteristic and also well com-
parable. The overall error is 1.7 degrees. Both sequences contain partial occlusions in
certain frames. But this can be handled from the algorithm.

4 Discussion

The contribution presents a human motion estimation system. The system extracts sil-
houettes by using level-set functions and uses a model with 21 degrees of freedom in
a four-camera set-up. Finally we perform a comparison of the marker-free approach
with a commercial marker based tracking system. In [13] eight bio-mechanical mea-
surement systems are compared (including the Motion Analysis system). There is also
performed a rotation experiment which shows, that the RMS2 errors are typically within
three degrees. Our error measures fit in this range quite well.

Marker-less human motion tracking is highly challenging for sports, exercise and
clinical analysis and the system evaluation shows, that our approach is leading in the

2 root mean square



right direction for a marker-less stable and accurate human motion estimation system.
Future works will continue with silhouette extraction in more complex environments,
so that we can also analyze sports movements in non-lab environments.
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Bülthoff, M.A. Giese, B. Scḧolkopf (Eds), LNCS 3175, pp 294-301, 2004, Springer-Verlag
Berlin Heidelberg.

15. Rosenhahn B. and Klette R. Geometric algebra for pose estimation and surface morphing in
human motion estimationTenth International Workshop on Combinatorial Image Analysis
(IWCIA), R. Klette and J. Zunic (Eds.), LNCS 3322, pp. 583-596, 2004, Springer-Verlag
Berlin Heidelberg. Auckland, New Zealand,

16. Zang Z. Iterative point matching for registration of free-form curves and surfaces.Interna-
tional Journal of Computer Vision, Vol. 13, No. 2, pp. 119-152, 1999.


