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ABSTRACT

The widely-used evaluation algorithms1 for PIV record-
ings have some short comings, in that they introduce su-
perfluous statistical and systematical errors. For example,
they introduce the so-called “peak-locking” effect. These
errors can be significantly reduced by using better algo-
rithms.

The following considerably improved analysis and
algorithms will be described and demonstrated on real
PIV recordings:� Analysis of errors of CCD’s and the electric trans-

mission of the video signal.� An FFT-based cross correlation algorithm using
completely free-shaped and free-sized interrogation
windows which exhibits the same accuracy as an op-
timally programmed direct correlation.� A Gaussian fit algorithm using different weights for
the values in the correlation plane due to the error
distribution of correlation coefficients.

1 INTRODUCTION

The major part of the PIV scientific community (includ-
ing nearly all commercial PIV software vendors) is us-
ing the same evaluation algorithms for PIV recordings
namely the cross correlation of two “power of 2” sized
rectangular interrogation windows via FFT and the three-
point peak fit estimator for sub pixel resolution, see, e.g.,
Willert and Gharib (1991); Westerweel (1993). These al-
gorithms have the advantage that they are easy and fast to

1These widely-used algorithms are the recording of the images with
CCD cameras, the cross correlation of two “power of 2” sized rect-
angular interrogation windows via FFT and the three-point peak fit
estimator for sub pixel resolution.

implement, but they introduce superfluous statistical and
systematical errors.

Due to the increased requirements at our work on
dual plane PIV (Raffel et al., 1995, 1996), where the
height of the correlation peak is used to get information
about the third component of the velocity, we had to con-
sider all effects, that influence the shape, the height and
the statistical and systematical errors of the correlation
peak.

2 RECORDING OF THE IMAGES

There are three important effects influencing the shape of
a particle image (Fig. 1). The influence of the particle
size is negligible in nearly all our applications in air flows
(e.g., the diameter of our oil droplets is around

�����
. The

geometrical image assuming an ideal camera objective is
even smaller. Compared to the resolution of a CCD sen-
sor (1 pixel is about

�������
	��������
) we can neglect the

particle diameter). So the geometrical particle image may
be represented by a Dirac delta function.

As no camera objective is ideal, the real particle im-
ages on the image plane are distorted due to the limited
spatial bandwidth of the camera objective (yielding the
so-called Airy pattern) and due to abberations (assumed
to have Gaussian character). These two effects are com-
bined in the point spread function of the camera objective.
Usually only the effect of the aperture, the Airy pattern
(Fourier transform of the circular aperture hole) is taken
as the point spread function. In our experiments the ef-
fects of the lens abberations were in the same order as the
effects of the limited bandwidth. Especially near the bor-
ders of the image plane elliptical particle images are en-
countered frequently. However, if the point spread func-
tion does not change on the interrogation area, the light
intensity distribution on the image plane can be mathe-
matically described as the convolution of the geometrical
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Fig. 1: Effects influencing the intensity distribution of a particle image.

particle images with the point spread function of the cam-
era objective.

The next step is the integration of the light intensity
over the sensitive area of each CCD pixel. In the case of a
normal CCD sensor, the sensitivity is the same all over the
active area of the pixel. Recent CCD sensors have micro
lenses to collect more light. Then the sensitivity distribu-
tion for each pixel is a more complicated function. The
integration over the sensitive area can mathematically be
described as the convolution of the light intensity distri-
bution on the image plane with the sensitivity function of
the pixel and the sampling of this function at the centre of
each pixel (see fig. 1).

After exposure the charges on the CCD are read out,
amplified, and sequentially transmitted to the frame grab-
ber as a time dependent voltage. The frame grabber is
located in the camera or in the PC. The amplification and
transmission may also introduce errors to the signal. Very
common errors originate from an impedance mismatch
between the amplifier, the transmission line and the frame
grabber. A typical transmission error found with a digital
camera (the frame grabber is located within the camera)
is illustrated in Figure 2.

The image is transmitted as a sequence of horizontal
lines, so the aforementioned effects are found only in the
 direction. By comparing the joint probability of the val-
ues assumed by pixels succeeding in 
 - and � -direction
respectively, one can detect such errors quite easily, since
these statistics should be isotropic in a normal PIV record-
ing. A more detailed discussion of these effects and an
algorithm to correct such distorted images is described in
Ronneberger (1998).
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Fig. 2: Errors due to the electrical transmission of the video sig-
nal result in horizontal distortions of the image.

3 FFT-BASED FREE SHAPE CROSS
CORRELATION

The estimate of the cross correlation is the central point of
each PIV evaluation. The most common way to obtain an
estimate is to take two equally-sized rectangular parts of
the two PIV recordings (Fig. 3 and Fig. 4), and to make
use of the FFT.

a’ ��� a � a (1)
b’ ��� b � b (2)

R � FFT ����� FFT ��� a’ ��� FFT � b’ ���
RMS � a’ ��� RMS � b’ � (3)

The use of the standart FFT algorithm limits the possi-
ble linear dimensions of the partial images to powers of 2
(e.g., 16, 32, 64, 128, ...)

To understand the result of such an estimate of the
correlation, the equivalent direct correlation is illustrated



Image A Image B

Fig. 3: Example for a pair of PIV recordings: The particle pat-
tern has moved upwards and to the right

Part a Part b

Fig. 4: The simplest estimate of the cross correlation, is based
on two equally sized parts of the images. The parts are
cut out at the same position in each image.
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Part b Correlation coef.
R ≈ 0.8 ± 0.2
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Fig. 5: The simple FFT-based correlation relies on the assump-
tion that the partial images are parts of periodical im-
ages. So a shift of the partial image (a) results in the
illustrated circular effects (i.e. the pixels leaving the im-
age during the shift are wrapped around).

in Fig. 5 for one displacement ( � 
�� ��� ).
There are two effects that unnecessarily distort the

correlation: Since the second partial image was taken at
the same position as the first one, we did not capture all
particle images of the shifted particle pattern. This is usu-
ally denoted as “in plane loss of pairs”. The second effect
is a random contribution due to the decorrelation caused
by the circular effects (in the illustrated example � varies
between 0.6 and 1.0)

One common way to work around this problem is
to cut the second partial image in a second pass at the
proper position and calculate the cross correlation again.
In this case, one obtains the undistorted correlation for at
least one displacement. However, the neighbouringvalues
in the correlation plane (which are used for the peak fit)
are still distorted in the same way as above. This 2-pass
method has some more shortcuts: It still relies on “power
of 2” sized windows, and one has to define a rule to decide
in the first pass, whether or not a found peak position is
correct or represents an outlier.

The optimal accuracy is reached only if one cuts the
proper part of the second image for each displacement.
In this case the mean (b) and the RMS value (RMS � b’ � )
depend on the displacement. It seems, that such an algo-
rithm can only be implemented by calculating the corre-
lation in a direct way:

�! �"#� $ % & ' �)( % ' � a �*���)+ %-,  & ' , " � b .  & " / �
RMS � a � a �0� RMS � b .  & " / � b .  & " / � (4)

where b .  & " / denotes the partial image b cut at position 1 �32 .
However, with some simple mathematical transfor-

mations eq. 4 can be evaluated using the FFT. The corre-
lation coefficient of two datasets 4 and 5 (with subtracting
the mean value) can be rewritten as67 %-8 � �95

% � 5#�:���)4 % � 4��*� 67 %-8 � 5
% 4 % � �; 67 %-8 � 5

% 67 %-8 � 4
%=<

(5)

Therefore, we can postpone the subtraction of the mean
value to a later stage of the calculation. Using eq. 5 we
can rewrite the numerator of the direct correlation (Eq. 4)
as >  ?"#� 7 % & ' ( % ' + %-,  & ' , "@� �;BA 7 % & ' ( % ' 7 % & ' + %-,  & ' , " (6)

where
; � A is the number of pixels in the partial image

a (the denominator will be treated in the same way). To
use the FFT, we have to pad zeros around partial image a
to enlarge it to a “power of 2” size (Fig. 6). To get rid
of the rectangular shape of the small window, we describe
this cutting and padding procedure by multiplying with a



Fig. 6: To use free sized or even free shaped interrogation win-
dows in an FFT-based correlation, the partial image
must be padded with zeros to a “power of two” size

mask m. The numerator of the direct correlation (Eq. 4)
then becomes>  �"C� 67 %-8 �

D7' 8 � �
% ' ( % ' + %-,  & ' , "

� �$ � % ' 67 %-8 �
D7' 8 � �

% ' ( % ' 67 %E8 �
D7' 8 � �

% ' + %E,  & ' , "
(7)

With a normalized mask
$ � % ' � �

we can now rewrite
this equation utilisizing the FFT as

r � FFT �F�#G FFT �H� ma ��� FFT � b �JI� 7
ma � FFT �F�@G FFT � � m ��� FFT � b � I (8)

Where ma denotes the element by element multiplication
of two images: � ma � % ' � � % ' �?( % ' (9)

With the definition of a cross correlation operator K as

x K y ��� FFT ���:G FFT � � x �*� FFT � y � I (10)

the completely free shaped cross correlation can be writ-
ten as

R � ma K b � $
ma � m K bL G $ ma MN�O� $ ma � M I � G m K b M �O� m K b � M I

(11)
The effect of such a correlation is illustrated in Fig. 7

In the standart cross correlation one has to compute
three Fourier transforms. The FFT-based free shape corre-
lation needs six Fourier transforms (The Fourier transform
of the mask can be calculated once before the whole eval-
uation). So the computing time will only be doubled com-
pared to the “traditional” evaluation. That is much faster

Correlation coef.
R = 1.0

∆x

∆y

Part a (zero padded and
shifted)

Part b

Fig. 7: The FFT-based free shape correlation combines the ad-
vantages of the direct correlation (free-sized and free-
shaped windows, high accuracy) and the simple FFT-
based correlation (high speed). The Figure shows the
equivalent direct correlation for one displacement. Note:
The mean and the variance of partial image (b) (used in
the normalization of the correlation) must not be inte-
grated over the whole partial image. Instead it has to
be recalculated for each displacement. In the example
shown above, the mean and variance are integrated only
over the pixels inside the small rectangle. After a math-
ematical transformation of the governing equation it is
still possible to make use of the FFT to reduce the com-
puting time substantially.

than doing a direct correlation as described in Fincham
and Spedding (1997). Please note, that this algorithm re-
turns exactly the same result as the direct correlation de-
scribed there. The only difference is, that it is much faster
and more flexible with respect to the shape of the window.

4 THE STATISTICAL ERROR OF
CORRELATION COEFFICIENTS

The error of a correlation coefficient depends on its value.
It does not follow a normal distribution, which is obvi-
ous, because it can assume values only between -1 and 1.
Accordingly the values in the correlation plane have to be
weighted when the peak fit is performed.

For a correlation coefficient > of two datasets, where
the distributions form a binormal or two-dimensional
Gaussian distribution around their mean values, one can
use Fisher’s z-transformation, which associates each mea-
sured > with a corresponding P ,

PQ� �R!SUTBV �0W >� � >:X (12)

Then, each P is approximately normally distributed with
the same standard deviation. Although the grey values in
a PIV recording are not really normally distributed, the
Fisher transform still performs satisfactorily.



5 PEAK FITTING FOR SUB PIXEL
RESOLUTION

To resolve the particle image displacement with sub pixel
accuracy, usually a function is fitted to the correlation
peak and its surroundings. According to section 2, the
shape of the particle image is given by the point spread
function of the camera objective convoluted with the sen-
sitivity distribution of one CCD pixel. Assuming a Gaus-
sian point spread function and a rectangular sensitivity
distribution, the shape of the correlation peak will be a
Gaussian bell convoluted with a 2D triangular function.
Until now we have not found an analytical expression for
this function. So we use a Gaussian bell, keeping in mind,
that especially for very small particle images (diameter
around 1 pixel) this assumption might produce some sys-
tematical and statistical errors.
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Fig. 8: The most common way to estimate the sub pixel posi-
tion of the correlation peak is to use two one dimensional
“fits” through the highest value and its two neighbours
(three-point estimator). Although it is fast and easy to
implement, it is only suitable for a very small range of
particle image diameters and produces systematical er-
rors for smaller peak diameters.

The most common method to fit the Gaussian curve
to the correlation data, is to do two one dimensional fits
to the highest value and its two neighbours (Fig. 8). A
detailed analysis of these three-point estimators may be
found in Westerweel (1993). Although the technique is
fast and easy to implement, it is only suitable for a very
small range of particle image diameters and produces sys-
tematical errors for smaller peak diameters. Particularly
for elliptically shaped peaks (usually found in the corners
of a PIV recording due to lens abberations) the two one
dimensional fits will not return the correct centre of this
peak.

Therefore, we perform a two dimensional Gaussian
fit using the Levenberg-Marquardt method from Press
et al. (1992). Due to the aforementioned not-normal
distribution of the errors of correlation coefficients, the
best results would be reached, when fitting a Fisher-
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Fig. 9: Iterative Levenberg-Marquardt fit to determine the ex-
act position of the correlation peak: A two dimensional
Gaussian curve is fitted to the highest correlation coeffi-
cient and its surrounding in the correlation plane. This
can handle elliptical peaks properly and the values can
be weighted according to the Fisher transform.

transformed Gaussian bell to the Fisher-transformed cor-
relation plane. As the Fisher-transformed Gaussian bell is
a very unpractical and complicated function, we use the
Fisher transform only to determine the weight for each
value and perform a weighted fit (Fig. 9).

For very sharp peaks, all of the tested fitting algo-
rithms tend to return too wide and too low Gaussian bells.
With the assumption that all particle images inside the
interrogation area have the same shape, due to the point
spread function of the camera objective, all random corre-
lation peaks will have the same shape as the main correla-
tion peak, if there are not too big gradients of the particle
displacement (Fig. 10).
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Fig. 10: All random peaks have the same shape as the correla-
tion peak (assuming that all particle images inside the
interrogation area had the same shape and that there
are no big gradients of the particle displacement). This
additional information can be used to achieve a better
peak fit.



This additional information about the shape of the
correlation peak can be extracted quite easily from the
correlation function after eliminating the phase of the
Fourier transform (see below). After the shape of the peak
has been determined in this way, one can compute a peak
fit with fixed shape parameters to determine the position
and the height of the correlation peak.

This technique highly improves the quality of the
peak fit (especially the determination of the peak height)
and is the main key in the evaluation of dual plane record-
ings in air flows.

To determine the mean shape of all random correla-
tion peaks, the phases in the Fourier transformed correla-
tion function are eliminated by retaining only the magni-
tude of each spatial frequency component.

Q � FFT ��� GZYFFT � R ��Y[I (13)

As a result of this operation, all random peaks are shifted
to position (0,0) and one can perform a peak fit with a
known position and height to determine the shape. Please
note that this shift only works, if the peak shape is sym-
metrical and the real parts of the Fourier-transformed peak
are positive. This is usually automatically fulfilled for cor-
relation peaks of PIV recordings, because the shape of a
particle image does not change from the first to the second
recording. This results in a shifted auto correlation for the
random peaks.

6 EXPERIMENTAL VERIFICATION OF
THE IMPROVEMENTS

To quantify the improvements under real conditions, im-
ages with two 1024x1024 pixel CCD-cameras which
looked though a beam splitter at the same measurement
volume were taken at the same time. The non-moving
air in the measurement volume was seeded with 1

�
m

oil droplets and illuminated with an Nd:YAG-laser light
sheet. Due to the small differences between the position,
angle and magnification of the two cameras, an apparent
displacement field results, that contains nearly all possi-
ble sub pixel displacements (Fig. 11). To determine the
true displacement field, a matrix, describing a rotation, a
magnification and a shift was fitted to the measured dis-
placement field.

Prominent “peak-locking” effects are found, when
the displacement field of these two images is evaluated
by means of the usual three-point Gaussian fit. The RMS
difference between this result and the true displacement
field is 0.112 pixel. One can separate this error into a
systematic error of 0.066 pixel and a statistical error of
0.087 pixel (figure 11).

The errors of the displacement field obtained with
the improved techniques are shown in figure 13. The dis-
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Fig. 11: The two images for this PIV evaluation were taken with
two slightly misaligned cameras focused on the same
part of non-moving air seeded with 1 \ m oil droplets.
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Fig. 12: Difference between the true displacement field and the
measured displacement field using a normal 32x32
pixel interrogation window for the cross correlation
and the three-point Gaussian fit to obtain the sub pixel
position of the peak.

systematic error: 0.066 pixel
statistical error: 0.087 pixel
resulting error: 0.112 pixel
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Fig. 13: Difference between the true displacement field and the
measured displacement field using the advanced cross
correlation with a 32x32 pixel interrogation window for
the first and a 64x64 pixel interrogation window for the
second image. The Gaussian peak fit was done using
9x9 pixels around the peak and the additional informa-
tion from the random peaks.

systematic error: 0.0177 pixel
statistical error: 0.070 pixel
resulting error: 0.073 pixel

placements systematic error is reduced by nearly 75% to
0.0177 pixel and the statistical error is reduced by 20%
to 0.070 pixel. The systematic and statistical error of the
peak height is also reduced by 30% when using these tech-
niques.

7 OTHER APPLICATIONS FOR THE FREE
SHAPE CORRELATION

There are a lot of useful applications for the FFT-based
free shape correlation. The first (and perhaps most im-
portant) advantage is that one can adapt the size of the
interrogation window to the fluid dynamics of the experi-
ment.

In regions with big gradients in one direction, e.g.,
a boundary layer which has big gradients normal to the
wall, it can be useful to decrease the window size perpen-
dicular to the wall while increasing it parallel to the wall.

Another application is the evaluation of stereo PIV
recordings (using the Scheimpflug criteria) without de-
warping the images before the evaluation. De-warping

of images can introduce errors to the shape of the particle
images and it is very time consuming. It is now possible
just to warp the interrogation grid and to warp the interro-
gation window shape.

In PIV recordings containing objects (e.g., a wing
profile) one may now make a local adaption of the interro-
gation window shape, so that one can measure the bound-
ary layer very close to curved wall of an object (Fig. 14 -
16)

Fig. 14: PIV recording with curved walls and reflections

Part a Part b Correlation 

Fig. 15: With a rectangular interrogation window it is not pos-
sible to resolve the flow very close to the wing profile.
The correlation plane contains no visible peak. (The
operator ] denotes here the FFT-based free shape cor-
relation)

Part bPart a Correlation

Fig. 16: With a free shaped interrogation window the flow close
to the profile can be resolved. There is now a clear peak
in the correlation plane near to the center



8 NOMENCLATURE

Two dimensional data arrays like images are represented
by bold Roman letters (e.g., a). All operations on these
arrays are defined element by element, e.g., c � a � b has
to be interpreted as ^ % ' �_( % ' �H+ % ' . The other definitions
are:

a Mean value of array a
RMS � a � Variance of array a
FFT � a � Fast Fourier transform of a
FFT ����� a � Reverse FFT
a K b simple FFT-based cross correla-

tion of a and b
R Array containing the normalized

2D correlation function

REFERENCES

Fincham, A. M. & Spedding, G. R. 1997, Low cost, high
resolution DPIV for measurement of turbulent fluid
flow. Experiments in Fluids, vol 23, pp. 449–462.

Press, W. H. et al. 1992, Numerical recipes in C: the art
of scientific computing – 2nd ed. Cambridge University
Press.

Raffel, M., Derville, A., Willert, C., Ronneberger, O. &
Kompenhans, J. 1996, Dual-plane correlation for three-
dimensional particle image velocimetry on planar do-
mains. In 8th International Symposium on Applications
of Laser Techniques to Fluid Mechanics, Lisbon.

Raffel, M., Ronneberger, O., Gharib, M. & Kompen-
hans, J. 1995, Feasibility study of three-dimensional
PIV by correlating images of particles within parallel
light sheets. Experiments in Fluids, vol 19, pp. 69 – 77.

Ronneberger, O. to appear 1998, Messung aller drei
Geschwindigkeitskomponenten mit Hilfe der “particle
image velocimetry” mittels einer Kamera und zweier
paraleller Lichtschnitte. Forschungsbericht, Deutsches
Zentrum für Luft- und Raumfahrt.

Westerweel, J. 1993, Digital particle image velocimetry:
theory and application. Delft University Press.

Willert, C.E. & Gharib, M. 1991, Digital particle image
velocimetry. Experiments in Fluids, vol 10, pp 181–
193.


