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Abstract. Patch based approaches have recently shown promising re-
sults for the recognition of visual object classes. This paper investigates
the role of different properties of patches. In particular, we explore how
size, location and nature of interest points influence recognition perfor-
mance. Also, different feature types are evaluated. For our experiments
we use three common databases at different levels of difficulty to make
our statements more general. The insights given in the conclusion can
serve as guidelines for developers of algorithms using image patches.

1 Introduction

The amount of digital documents increases daily, and with it the need to organize
this torrent of data in order to retrieve something again. Especially for digital
images no ideal solution has been found yet. The manual annotation of images
is very labor intensive, so the vast majority of images will remain unannotated.
Techniques for content based image retrieval (CBIR) are able to find similar
images based on pixel content only, however, usually the definition of similarity
is on a color and texture level, not on a semantic level. Most users do not want
to find things with just the same texture and color, but want to find semantic
entities, images with particular objects like cows, sheep or cars. This is why the
main focus of research is now drawn to the recognition of visual object classes
rather than the already widely researched area of traditional CBIR, as surveyed
e.g. in [1].

1.1 Basic Principles

Currently, the most promising approaches for the recognition of visual object
classes are based on the use of image patches. The advantages are easy to see:
local representations can deal with variability in object shape and partial occlu-
sions. The majority of these approaches follow an easy basic pattern: first, points
or areas of high information content become identified in images. For this, so
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called interest point detectors or covariant region detectors are used. A survey
about them can be found, e.g. in [2]. In the next step, features get extracted
from these locations. Now models can be built for each class to be recognized
or the feature vectors can be used directly. Depending on the model, different
classifiers (e.g. SVMs [3], Winnows [4], Bayes [5]) can be used.

1.2 Related Work

A fair amount of work has already been done using image patches for classifi-
cation and retrieval. One of the early approaches was by C. Schmid et al. [6].
She proposed calculating local gray value invariants at interest points for image
retrieval. Weber et al. [7] and Fergus et al. [5] introduced a so called “constella-
tion model”, i.e. image patches in a probabilistic spatial arrangement, to decide
whether a certain object is present in a scene or not. Agarwal et al. [4] classified
and localized objects in an image using binary vectors coding the occurrences
and spatial relations of patches. Leibe et al. showed in [8] a method to simulta-
neously categorize and segment objects using an implicit shape model. D. Lowe
[9] proposed highly distinctive SIFT features in order to detect objects reliably
in a scene. More recent work on this topic was conducted, e.g. by Deselaers et
al. [10], who used histograms of patch cluster memberships in order to compare
different classification methods. Opelt et al. [11] used a great variety of features
and classifiers in a boosting framework to distinguish the best choice for each
class.

The authors of the previously mentioned works had to decide at some point
where to take patches, how many and at which size. Most of these decisions
were done empirically in the course of the work, or were predetermined by the
models chosen. E.g. the joint probability model used in the constellation model
prohibits the use of much more than 7 parts. Only few works that we are aware
of deal explicitly with these questions, e.g., Deselaers et al. [10] conducted some
experiments for different patch sizes. The choice of the local descriptor type was
investigated in [12] for matching and in [13] for object categorization. However,
there the size of the patches is selected by automatic detectors, which does not
necessarily mean that the size is optimal for object categorization.

In this work, we want to investigate how the factors number and size of im-
age patches, descriptor type and nature of interest points influence retrieval
quality.

1.3 Outline of the Paper

After the introductory section we briefly describe the types of local descriptors
and the interest point detectors used. In section 3 we explain the test setting
and experiments we performed. In section 4 we describe the results of our ex-
periments and discuss them. In the last section we set out our conclusions and
give recommendations for developers of patch based approaches for object cate-
gorization.
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2 Methods and Algorithms

2.1 Interest Point and Affine Covariant Area Detection

In most of our experiments we use an interest point detector to find prominent
places for the extracted patches. Some guidelines on the choice of the detector
can be found from evaluation papers like [2,14,12], but these concentrate mainly
on repeatability and information content of such points, which is not necessar-
ily the key issue in patch based object categorization. For the majority of the
experiments we selected the wavelet based interest point detector presented by
Loupias and Sebe in [15]. This choice was motivated by good results in evalu-
ation papers [14], image retrieval [16] and object categorization [10]. Of course
other detectors, especially scale invariant ones could have been used, however
we wanted to see the direct influence of patch size. An extensive region detector
evaluation was out of scope for this paper.

In addition to the location, the ideal shape of the patch is also a question.
Simple approaches use round or square patches centered at interest locations,
more sophisticated solutions use affine region detectors. To test how they perform
compared to each other, we selected two affine region detectors as examples: the
Harris-Affine detector [17] and the maximally stable extremal regions (MSER)
detector [18].

2.2 Feature Extraction

Once interest points or covariant areas have been found, features can be ex-
tracted. In the following, we briefly describe the features used in this evaluation.
Some of them are subject to a PCA (principal component analysis) in order to
get a more compact representation, details about this can be found in section 4.1

Gray values: The simplest way to get a description of the area around the in-
terest point is to directly use the gray values in a window with side length 2d+1
(d being the patch radius) centered around the interest point.

Multi-Scale Autoconvolution: The Multiscale Autoconvolution (MSA) is an
R2 → R2 mapping which is invariant with respect to affine transformations of
the input function. This makes it possible to use MSA transform values as fea-
tures for affine invariant classification. The basic idea behind MSA is to apply
probabilistic approaches to the affine coordinate system. For an image function
f(x, y) the MSA transform is

If(α, β) = E[f(α(x1 − x0) + β(x2 − x0) + x0)], (1)

where α, β ∈ R, E is the expected value and x0, x1, x2 are random points with
probability density given by f(x, y)/||f(x, y)||L1 . A comprehensive introduction
to MSA can be found in [19].

Haar integral based invariants: Schulz-Mirbach [20] introduced image fea-
tures based on Haar integrals invariant to transformation groups. These are
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constructed as follows: Let M = M(i, j), 0 ≤ i < N, 0 ≤ j < M be an image,
with M(i, j) representing the gray-value at the pixel coordinate (i, j). Let G
be the transformation group of translations and rotations with elements g ∈ G
acting on the images, such that the transformed image is gM. An invariant
feature must satisfy F (gM) = F (M), ∀g ∈ G. Such invariant features can be
constructed by integrating f(gM) over the transformation group G

I(M) =
1
|G|

∫
G

f(gM)dg

which for a discrete image is approximated using summations. By using k differ-
ent kernel functions f we get a k-dimensional feature vector for each location.

Scale Invariant Feature Transform (SIFT): Scale invariant feature trans-
form (SIFT) introduced by Lowe in [21] is based on histograms of Gaussian
weighted gradient orientations around scale invariant interest points. To be more
comparable, we did not use the SIFT built-in interest point detector, but the
same locations and scales as for the other features.

3 Databases and Test Setting

For our evaluation we used 3 image databases at different levels of difficulty.
We only used gray value information. The most simple database is the ETH80
database introduced in [22]. Here 10 different objects from 8 different object
classes are photographed in front of a uniform background. For each object, 41
views are taken at different angles. For this database, the classifier had to decide
which of the 8 object classes is present. Tests were performed in a leave-one-
object-out approach.

The second image sets are from the Caltech dataset 1. We chose to take
the most commonly used collections “airplanes side” (1074 images), “faces”
(450 images) and “motorbikes side” (826 images). For this database an object
present/absent task has to be solved. As a counter class, a set of mixed “back-
ground” (900 images) images is used. The individual objects differ in appearance
and location, but are about the same size and orientation. The background is
cluttered. We divided each collection randomly into two halves, from which one
was used for training and the other one for testing.

A clearly more difficult categorization task is present in the Graz02 database2.
This database has four object categories: “cars” (420), “persons” (311 images),
“bikes” (365 images) and a so-called “none” category (380 images) which was
used as a counter class. In all the categories, objects suffer from severe occlusions
and have a highly variable appearance and pose, reflecting real world scenes more
accurately. Experiments performed with this database used the same setting
introduced with the Caltech database. Some example images from the three
databases can be seen in Figure 1.
1 http://www.robots.ox.ac.uk/˜vgg/data3.html
2 http://www.emt.tugraz.at/˜pinz/data/GRAZ 02
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Fig. 1. Sample images: ETH80 (left), Caltech (middle), Graz02 (right)

3.1 Classification Procedure

In this paper our goal was to examine properties of patches and features ex-
tracted from them, so we wanted to keep the classification procedure simple. To
do this, we apply a nearest neighbor classifier with a suitable distance measure.
We first fit a multivariate Gaussian distribution to all feature vectors of each im-
age, obtaining a mean vector μ and the full covariance matrix Σ. To determine
the distance, we use the symmetric form of the Kullback-Leibler Divergence, for
which a closed form expression can be derived:

KL[p1(x)||p2(x)] =
∫

p1(x) log
p1(x)
p2(x)

dx +
∫

p2(x) log
p2(x)
p1(x)

dx (2)

4 Experimental Results and Discussion

In the following, we show the outcome of our experiments. Due to space con-
straints, in the result tables for the ETH80 database, the apple and horse class
are not shown, since these objects are similar in appearance to tomato and pear
or horse and dog respectively. All categories are contained in the “all” column.

4.1 Feature Types

One of the first questions is which type of features to select. Different feature
types have different properties for different tasks. We tested various features
already described in section 2 for their suitability for object class recognition.
For this experiment, the radius of the patches was 20, we used the Loupias
interest point detector and 100 points were selected per image. Interest points
closer to the border than the radius were omitted. The gray value features were
reduced to 20, the SIFT and MSA features to 10 dimensions via PCA, since an
estimation of a multivariate Gaussian distribution with full dimension would be
too imprecise. The dimensions were chosen by the amount of variance covered
by the corresponding eigenvectors. The different dimensionality of the features
is due to the difference in initial feature size. For the Haar integral features, we
used 20 kernel functions. The results are summarized in table 1.

For the features tested, the SIFT features performed best for the ETH80
database and the Caltech database. The results are especially good if we think
about the simplicity of our classifier. The gray value based features performed
in the upper range for all three databases, making them suitable for systems in
need of simple feature extraction methods. The MSA and Haar invariants did
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Table 1. Classification rate of different feature types (in %)

ETH80 car cow cup dog pea tom all

Gray 86.6 49.5 75.9 70.2 93.2 90.7 73.9

MSA 71.0 70.0 65.6 52.7 86.1 90.7 68.4

Haar 81.7 66.3 64.3 62.4 89.0 67.6 67.0

SIFT 85.9 56.1 78.5 55.9 98.3 88.1 74.6

Caltech database Graz02 database
airp. faces mot. bike cars pers.

Gray 91.1 93.0 90.7 72.7 68.8 79.5

MSA 85.8 91.1 91.9 72.7 67.3 73.1

Haar 90.0 91.0 90.6 71.3 63.0 70.8

SIFT 97.3 95.9 91.4 71.9 58.8 67.1

not perform as well for this task. We can also notice that the results for the
ETH80 database are worse than the global approaches introduced in [22]. For
nearly segmented, unoccluded objects, global methods work better.

4.2 Patch Size

Another important question is the patch size. If we select it too small, we are in
danger of getting unspecific parts, if we select it too big, we might end up with
patches that no longer have generalization capabilities. In this experiment, we
use gray values as baseline features (PCA, 20D unless otherwise stated). When
judging the results, we have to keep in mind that smaller patches do not lose as
much information with PCA as larger patches, since the initial data size is much
smaller. In the Caltech database, the motorbikes have the same size relative to
the image, but the image sizes vary, so we scaled them to the same height of
250. The objects in Graz02 database are of very different size, so we omit this
database for this experiment, since no single patch size makes sense here.

Table 2. Classification rate of different patch size (in %)

ETH80 car cow cup dog pear tom all

2 (10D) 93.9 40.7 78.3 46.1 85.9 63.2 64.2

5 91.5 40.7 75.4 63.9 80.2 44.4 63.7

10 86.1 49.5 78.3 77.8 88.8 72.9 71.5

20 86.6 49.5 75.9 70.2 93.2 90.7 73.9

30 85.9 51.7 74.4 63.9 97.3 94.6 74.1

Caltech airp. faces mot.

2 (10D) 96.9 94.4 97.6

5 95.9 92.6 97.2

10 94.9 86.4 95.6

20 93.3 86.5 94.6

25 93.7 87.6 93.7

For the segmented objects in the ETH80 database, on average bigger patches
perform better. Looking at the classification results for different objects reveals
more details: for rather uniform objects with a smooth outline like pears or
tomatoes, bigger patches clearly perform better. This is likely because a bigger
part of the silhouette carries more information, the smaller the parts we have
the more similar they are. For more detailed objects, small parts usually work
better. For the Caltech database, smaller patches seem to work best in all cases,
since we do not have smooth objects there. Figure 2 gives us an impression how
a patch looks at the same interest point in different sizes.
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Fig. 2. Example patch for a motorbike wheel with radius 5, 10 and 20

4.3 Number of Interest Points

The next question we address is the number of interest points. In this experiment,
we take the N most salient points given by the Loupias detector. At these points
the gray values are taken in a window with radius 20, the feature dimension is
reduced to 20 via PCA.

Table 3. Classification rate for different numbers of interest points (in %)

ETH80 car cow cup dog pear tom all

20(10D)63.7 40.7 69.3 51.0 87.1 92.2 63.1

50 83.4 40.0 72.0 68.5 88.8 92.9 71.4

100 86.6 49.5 75.9 70.2 93.2 90.7 73.9

200 88.3 52.4 73.2 65.6 94.6 89.8 74.4

500 88.8 52.4 74.9 60.7 95.9 91.7 75.0

Caltech database Graz02 database
airp. faces mot. bike cars pers.

20(10D)87.7 88.3 85.8 61.1 61.3 71.1

50 92.7 93.0 89.3 74.0 67.0 74.0

100 91.0 93.0 90.9 72.7 68.8 79.5

200 90.6 91.1 92.0 73.7 66.3 76.9

500 89.8 90.1 91.9 74.3 67.8 74.9

When dealing with objects in front of a uniform background as in the ETH80
database, taking more interest points converges to an optimum for high num-
bers, since most of the patches convey object information. For databases with a
(highly) cluttered background this is no longer the case. An intermediate range
of about 100 interest points has shown to be sufficient, given our classification
method and these databases. Taking too many Loupias interest points usually
means taking more background clutter. Results are listed in table 3, in figure
3 we illustrate the area that is covered by 20, 50 and 200 interest points for a
sample image.

Fig. 3. Area covered by N most salient points, N= 20, 50 and 200

4.4 Interest Points vs. Random Points

What is the role of the interest point detector in the selection of the patches?
Does it give a clear advantage over taking random points? The following exper-
iment should clarify this. We calculate the feature vectors (again for simplicity
PCA reduced gray values, window radius 20, 20 dimensions) at a varying number
of random points.



Properties of Patch Based Approaches for the Recognition 291

Table 4. Classification rate for different numbers of random points (in %)

ETH80 car cow cup dog pear tom all

50(10D)24.6 29.5 52.9 26.3 52.0 85.4 45.2

100 24.1 27.1 58.3 34.4 25.1 74.9 43.8

200 51.0 34.6 72.4 42.7 62.4 79.5 57.4

500 70.7 49.5 75.6 45.9 80.0 91.0 67.3

1000 78.3 48.8 77.3 53.2 88.8 92.0 71.2

Caltech database Graz02 database
airp. faces mot. bike cars pers.

50(10D)88.5 87.9 82.0 65.7 58.0 69.7

100 87.8 89.6 86.2 67.6 57.5 73.7

200 91.0 91.9 87.8 68.9 57.5 68.8

500 92.4 90.5 85.1 70.2 66.8 74.3

1000 92.4 91.4 84.9 73.5 65.3 73.1

For our experiments, computing features at interest points is superior to ran-
dom points, as can be seen in table 4. This is especially visible at the ETH80
and the Graz02 databases. Even for 1000 random points, the classification ac-
curacy obtained with fewer interest points cannot be achieved. The exception
to the rule is the airplanes category in the Caltech database. For this dataset,
a uniform background (=sky), where no interest points are found, is a discrim-
inative property. This confirms that context information can be beneficial for
categorization. For the faces class, starting from 200 points, it does not make a
difference whether to take interest or random points.

4.5 Shape of Interest Points - Fix vs. Affine Invariant

In our last experiment, we wanted to see whether it is beneficial to use features
calculated from covariant regions instead of using windows of fixed geometry
(squares or circles). A problem with fixed patches is that their content might
change considerably when the viewing angle or the scale of an object changes,
however, the automatically detected orientations and scales do not need to be
ideal for categorization. We tested the affine harris detector and the MSER
detector, together with two feature extraction methods, SIFT and MSA. As MSA
is affine invariant, it can be directly applied to the patches. For SIFT features,
the elliptical regions have to be normalized to circles. For the calculation, we
used the binaries provided by C. Schmid and K. Mikolajczyk 3. The number of
interest points detected by these detectors varied a lot depending on the image.
We used parameters so that around 100-400 patches were found. This number
is slightly higher than in the case with fixed geometry, since many of the affine
covariant areas were too small to cover the object adequately.

The final classification results for the Caltech and the Graz02 databases are
shown in table 5, together with corresponding results for a fixed geometry. We
had to omit the ETH80 database, because the region detectors were not able
to find reasonable regions from all of the images. Some objects, like pears or
tomatoes, seem to be too smooth for covariant detectors to converge. Especially
for the SIFT features, the combination with the MSER detector seems to have
a clear advantage over fixed patches. However, the classification performance
did not improve in all cases. Especially using the harris affine detector degraded
3 http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Table 5. Classification rates for different affine covariant patch detectors in % (ha =
harris affine, mr = MSER)

Caltech Graz02
airp. faces mot. bike cars pers.

MSA 85.8 91.1 91.9 72.7 67.3 73.1

MSA ha 79.0 84.6 89.9 69.4 54.3 67.3

MSA mr 75.9 75.1 87.1 69.2 62.8 59.8

Caltech Graz02
airp. faces mot. bike cars pers.

SIFT 97.3 95.9 91.4 71.9 58.8 67.1

SIFT ha 83.5 75.7 78.8 73.7 57.5 63.9

SIFT mr 95.0 97.0 96.9 74.5 60.8 62.7

the results. We assume that the stable invariant areas found are not necessarily
optimal in a categorization sense.

5 Conclusions

In this paper we addressed some fundamental questions about the use of patches
in the categorization of visual object classes. We could show that feature type,
size, number, shape and location of patches does influence the retrieval perfor-
mance, in some cases significantly. The selection of the feature type depends
on the image class to be recognized. This confirms that an automatic selection
procedure for features as introduced by Opelt et al. in [11] is beneficial in order
to get optimal results.

For detailed objects, smaller patches usually work better, for smooth and uni-
form objects, bigger patches are necessary to cover object information. Interest
point detectors are preferable over random selection to determine the location
for patches, as good retrieval results can be achieved with relatively few patches,
at least for our simple classifier. This is especially true for images with prominent
objects or segmented images, and holds less for images with much background
clutter. Only in extreme cases, random selection is superior, especially when
homogeneous areas, where no interest points are found, are discriminative. An
intermediate number of interest points (usually a few hundred) should be ex-
tracted from moderately cluttered images, taking too many or too few points
spoils recognition performance here. For segmented images, taking more patches
converges to some optimum, since no corruptive background patches spoil recog-
nition accuracy.

Affine covariant methods provide an elegant way to choose the shape of a
patch, increasing the performance on some occasions. An interesting research
issue is to further investigate to what extent the automatically chosen areas are
advantageous for object categorization.
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