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Abstract

This article presents a rotation invariant object detection system. We
propose two main contributions. On the one hand we fuse two different ap-
proaches, the ’Parts and Structure’-model and the generalized Hough Trans-
form. Local image patches cast votes for the locations of theparts of the
searched object. Then, an explicit model is fitted to the estimated density
functions for the different parts.

Secondly, we propose a parametric voting scheme that is based on the
rotation equivariant matrix kernel framework. Equivariance means that, if a
local appearance patch is rotated, then the spatial densityfor the object part
position has to be rotated accordingly. Traditionally, this is accomplished by
a normalization procedure together with an non-parametricvoting scheme.
We propose to model the mapping from the local appearance patch onto the
spatial density by a equivariant matrix kernel machine. Therefore we model
the spatial densities in a parametric manner. To compute this equivariant
matrix kernel efficiently we propose a new type of steerable feature.

We compare our system to a classical non-parametric voting scheme
and the state-of-the-art features. The experimental tasksare the detection
of conifer pollen in microscopical images and the detectionof airplanes in
aerial photographs.
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1 Introduction

This work addresses the problem of 2D object detection in a rotation invariant
manner. Given some training samples of an object class, the goal is to find all
instances of the object in an unknown scene independent of its position and orien-
tation in the image plane. There are various application domains. They typically
appear in the context of microscopy or remote sensing. Examples are medical
applications, problems in structural biology or X-ray airport inspection systems.

One can distinguish between three main directions in objectdetection re-
search. First we want to mention the classical approach. Theidea is to detect
the objects by a matched filter. A correlation coefficient between a template ob-
ject and every possible image patch is computed. For rotation invariant detec-
tion the template is compared in all possible rotational poses. Such approaches
are widely used in structural biology to count particles (see e.g. [Nicholson 01,
Nicholson 04]). Obviously such exhaustive approaches are time consuming. The
’Viola-Jones’ detector [Viola 01] overcomes this by a boosted cascade of Haar-
like features which can efficiently be computed by the integral image. But the
original algorithm is not rotation invariant and rotation-invariant generalizations
[Barczak 05] are not straight-forward.

Secondly, we have the often called object category/class detection or recog-
nition systems. Their aim is to learn in a semi- or unsupervised manner object
categories. An object category is typically a collection ofvisually similar ob-
jects. For example, such systems try to learn the category ofguitars or cars. The
intra category variations are usually very large, e.g. it does not matter whether
there is an acoustic or electronic guitar or what color or particular shape the gui-
tars have. To learn such variations the training sets must berather large. Most
of such approaches are invariant to the position of the searched object, some of
them are also invariant to scale-changes, but it is hard to find approaches which
are invariant to rotations or reflections. Of course, a complete invariance to rota-
tions if often unwanted, but a robustness is certainly desired. The robustness is
achieved by presenting a large amount of training data to thesystem. The main
idea of such systems is relying on the ’Parts and Structure’ model introduced by
Fischler and Elschlager [Fischler 73]. The key idea is the separation of ’semantic’
and ’syntactic’ information. Following [Fischler 73], ”The semantic information,
which is application dependent, is embodied in the specific portioning of the ref-
erence into coherent pieces”, while ”the syntactic information, which is relatively
independent of the particular application, defines the class of description which
the algorithm can process”. In more recent terms (see e.g. [Fergus 03]) the se-
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mantic information is referred to as the shape or model information. The syntac-
tic information is often called the appearance information, which is represented
by the description of local image patches with appropriate features. Modern in-
stances of this approach are e.g. by Fergus et al. [Fergus 03, Fergus 05] or oth-
ers [Torralba 04,Jurie 04,Felzenszwalb 05,Crandall 06,Schmid 96,Leung 98] to
mention a few.

Finally, we have the voting based approaches, which are essentially based on
the idea of the General Hough Transform (GHT) [Ballard 81] by Ballard. Sev-
eral modern instances of the idea inherit the rotation invariance from the original
GHT, for example [Yokono 04, Zhu 03, Aguado 02]. Also the SIFT [Lowe 04]
approach by Lowe can be interpreted as some kind of Hough Transform. Most of
these approaches are template-based, this means that already one training sample
is enough to detect the object in a cluttered scene. The key idea is to learn from
the local appearance of the object a most probable hypothesis for e.g. the cen-
ter, orientation or scale of the object. To achieve rotationinvariance the features
describing the local appearance are usually steered with some local directional
quantity. A more recent approach of this type is the ImplicitShape Model (ISM)
by Leibe et al. [Leibe 04]. In contrast to the classical GHT-based approaches, the
system is able to cope with larger intra-class variations bylearning the probabil-
ity for the object center given an appearance patch in a non-parametric way. To
become efficient a codebook of local appearances is created and each entry is at-
tributed with the spatial density for the center of the object. To get the final voting
map all possible object positions get a vote weighted by the conditional probabili-
ties corresponding to the current local patches. Originally, the ISM is not rotation
invariant. An invariant generalization can be found in [Mikolajczyk 06].

This article has two main contributions. An object detection system is pro-
posed that fuses the two latter ideas, the GHT-based approach by Ballard with
the ’Parts and Structure’-model by Fischler and Elschlager. Secondly, we propose
a new GHT voting scheme that is based on the equivariant matrix kernel frame-
work. Contrarily to most of the former object detection systems that cast votes
in a non-parametric way we propose a parametric voting scheme. To evaluate
the equivariant matrix kernels efficiently we develop a new type of feature that is
suited for the integration into the equivariant matrix kernels.

As already mentioned the first main contribution is the fusion of the first two
mentioned ideas. On the one hand we keep the idea that the object consists of dif-
ferent parts that are modeled explicitly. On the other hand we gather the evidence
for the presence of the object parts by a probabilistic voting scheme in the spirit
of the GHT, while preserving the rotation invariance. Instead of interpreting the
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patches around the located keypoints as object parts, the idea is to cast votes for
the object part positions regarding the local appearance ofthe patches. In contrast
to other approaches where the evidence for the presence of the parts directly rely
on the keypoint’s position, this approach is much more robust against the actual
keypoint’s location. It also preserves the flexibility and robustness of the Implicit
Shape Model, i.e. the objects’ parts are still modelled implicitly, which makes the
approach more tolerant against articulations. But we also gain more reliability of
the decision by verifying it with an explicit model in a second step.

The second key contribution is the rotation equivariant learning of the voting
function, that is the conditional probability for a object part position given a local
appearance patch. In this case equivariance means that, if the local appearance
patch is rotated, then the spatial density for the object part position has to be ro-
tated accordingly. Traditionally, this is accomplished bya normalization or steer-
ing procedure together with an unparametric voting scheme.We propose to model
this mapping from the local appearance patch onto the spatial density by a matrix
kernel machine, while the equivariance is implicitly granted by the equivariance of
the matrix kernels. To compute this equivariant matrix kernel efficiently we pro-
pose a new type of steerable (or equivariant) feature. This feature may be seen as
the steerable version of the SIFT [Lowe 04] or GLOH [Mikolajczyk 05] features.
The training algorithm is an ordinary kernelized regression with a quadratic loss.
This has basically two reasons. It can be motivated from a maximum likelihood
principle, and the second reason is that the quadratic loss is unitary invariant which
is a necessary demand to get reasonable results in the presence of the equivariance
constraint.

The article is organized as follows. Section2 proposes the equivariant ker-
nel framework. Three different types of equivariant kernels are proposed together
with their implementations. In the following section the feature extraction stage
is explained. In Section4 we develop the object model in a probabilistic manner,
where we still want to retain the generative nature of the GHTidea, i.e. only statis-
tics about the object of interest is considered. Also the invariance demands are in-
corporated in the probabilistic framework. By interpreting the conditional density
for the object part position given a local descriptor as a functional that maps the
local descriptor onto a density function, we are able to reformulate the rotation
invariance as an equivariance constraint. Section5 proposes how the equivariant
voting functions are parameterized and how they are trainedby a kernelized re-
gression scheme. The spatial relationships between the object parts are modelled
by a full joint Gaussian model such that the training just involves ordinary esti-
mation of covariance and mean. In Section6 we explain how the part specific
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voting maps are rendered and how the Gaussian model is fitted to them. In the
experimental section we apply our system to two tasks, aircraft detection in aerial
images and pollen detection in microscopical images. We compare our approach
to standard non-parametric voting schemes and to the so called GLOH-features.

2 Equivariant Kernels for 2D rotations

First we give a short introduction into the equivariant kernel framework. LetX
andY be two Hilbert spaces. Our primary goal is to learn equivariant functions
f : X → Y , that is

f(τX

gx) = τY

g f(x)

holds for allx ∈ X andg ∈ SO(2), whereτX

g ∈ GL(X ) denotes the group action
in the input space off andτY

g ∈ GL(Y ) the group action on the output space. We
assume that both group actions are unitary. The functionsf will later model the
mapping from the local appearance patchx onto a spatial probability density for
the center or a part of the searched object.

The reproducing kernel of a vector-valued kernel Hilbert spaces is a matrix-
valued functionK : X×X → L(Y ) (for definition see [Reisert 07] or [Micchelli 05]).
Reproducing kernels ofSO(2)-equivariant function spaces additionally fulfill the
following equivariance property

K(τX

gx1, τ
X

hx2) = τY

gK(x1,x2)τ
Y

h−1

for all g, h ∈ SO(2) andx1,x2 ∈ X . One can easily verify that linear combina-
tions withai ∈ Y

f(x) =

N−1∑

k=0

K(x,xk)ak

are equivariant functions. Essentially, there are three different ways to obtain
equivariant matrix kernels: group integration, normalization or matching. We will
shortly explain the three principles.

2.1 Group Integration Matrix Kernels

Let K0 : X ×X → R be a scalar-valued unitary basis kernel. Then we can obtain
by group integration

K(x1,x2) =

∫

SO(2)

K0(x1, τ
X

gx2)τ
Y

g dg
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an equivariant matrix kernel. We call this kernel Group Integration Matrix-Kernel,
shortly GIM-kernel. We introduced this construction principle in [Reisert 07]. In
fact, this approach is optimal: the equivariant representer theorem [Reisert 07]
states that any equivariant minimizer in the RKHS ofK0 has to be a linear com-
bination of GIM-kernels.

2.2 Normalization Kernels

Secondly, we can use the principle of normalization to obtain an equivariant be-
havior. Assume, that we have given a normalizer functionN : X → SO(2) that
turnsx into a standard posex0, that isτX

N(x)x = x0. Such a normalizer function
is characterized by the fact thatN(τ gx) = g -1 N(x). Then, we can show that

K(x1,x2) = (τY

N(x1))
-1 K0(τ

X

N(x1)x1, τ
X

N(x2)x2) τ
Y

N(x2)

is an equivariant kernel. The kernelK0 is again a unitary scalar basis kernel.
In fact, this kernel is also positive definite, we call it Normalization kernel, or
N-kernel.

An inherent problem with the normalization approach is thatreasonable nor-
malizer procedures are discontinuous and give not always unique responses. Usu-
ally the normalization algorithm works as follows: a scalarfeaturen(x), usually a
gradient direction histogram of the patchx, is maximized over all possible poses,
that is

N(x) = argmax
g∈SO(2)

n(τX

gx)

By no means it it is assured that the maximum is unique. And even if is unique,
there may be other local maxima that are very close to the global one. Thus,
small distortion may cause discontinuous jumps ofN that may be hazardous for
further steps. To partially avoid such problems the following solution is proposed
in the literature. All those local maxima are selected whosevalues are above
e.g. 85% of the global maximum. This idea can also be easily incorporated in
our kernel framework. LetN ′ be a set valued normalizer, i.e.N ′ returns a set
of transformationsN ′(x) = {g1, g2, . . .} that all normalizex to certain standard
poses. Then, an equivariant kernel is given by

K(x1,x2) =
∑

g∈N′(x1)

h∈N′(x2)

(τY

g )
-1 K0(τ

X

gx1, τ
X

hx2) τ
Y

h, (1)
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This approach incorporates very gently known techniques that were introduced
ad-hoc in the context of object detection and localization [Mikolajczyk 06,Teynor 07,
Lowe 04] into the equivariant kernel framework that is the basis of this work.

2.3 Maximum Matching Kernels

The third alternative is a registration or matching procedure. Instead of specifying
a normalized pose of the considered patterns beforehand, the patterns are com-
pared in all possible poses ’online’ during the kernel evaluation. We again need
some basis kernelK0. Then,

K(x1,x2) = K0(x1, τ
X

g∗x2) τ
Y

g∗ , whereg∗ = argmax
g∈G

K0(x1, τ
X

gx2)

is an equivariant indefinite kernel. We call such type of kernel Maximum Match-
ing kernel, shortly MM-kernel. The MM-kernel approach has similar problems
as the N-kernel. The maximum of the matching functionK0(x1, τ

X

gx2) does not
have to be unique and robust against small distortions of theinput patterns. In fact,
the same solution as for the N-kernel can also help to weaken this effect. Instead
of just taking the maximum of the matching functionK0(x1, τ

X

gx2) we take all
local maxima that are within a range to the global one and average over all those.

2.4 Implementation

Both, the GIM-kernel and the MM-kernel, rely on the computation of a general-
ized cross correlation function

c(φ) = K0(x1, τ
X

φx2),

whereφ denotes the rotation angle. It is well known that a fast computation of
the cross correlation function is possible in the Fourier domain. Thus, we will
introduce in the next section a novel local feature whose angular component is
represented in the Fourier domain which allows a fast computation ofc(φ).

By now, assume that the cross correlationc(φ) is given, and another issue is
the representation of the output spaceY . If the components of the output are also
given in the Fourier domain, the computation of the GIM-kernel is quite easy.
Because then, the representationτY

φ of the group is a diagonal matrix with entries
eilφ on the diagonal. Hence, the GIM-kernel is also diagonal withthe entries

K l
GIM(x1,x2) =

∫ 2π

0

c(φ)eilφ dφ
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Thus, the GIM-kernel is just the inverse Fourier transform of the cross correlation
functionc(φ). Practically, the transformation is accomplished by the Fast Fourier
Transform (FFT).

The MM-kernel algorithm is also as simple if we choose a Fourier representa-
tion in the output space. Just search for the set of maxima of the cross correlation
function, call themφ∗

i , and returneilφ∗
i weighted by the maximum as thelth kernel

entry, that is
K l

MM (x1,x2) =
∑

i

c(φ∗
i )e

ilφ∗
i

where the sum ranges over all local maxima ofc(φ) that are above85% of the
global one.

For the implementation of the N-kernel we do not need to compute the cross
correlation. During feature extraction we just have to steer the orientation of the
feature with respect to some stable quantity, we used the maxima of the local
gradient orientation histogram and save this orientation together with the extracted
feature. Local feature extractors like SIFT or GLOH are based on this idea. To
evaluate the kernel we just have to compute some similarity measure between the
steered features and multiply it with the corresponding group actions, that is

K l
N(x1,x2) =

∑

i,j

K0(x
(i)
1 ,x

(j)
2 ) eil(φj−φi),

where(x
(i)
1 , φi) and(x

(j)
2 , φj) denote the set of steered features together with their

steering orientations.

3 Rotation Equivariant Features in 2D

3.1 Keypoint Detection

The very first stage of the object detector is covered by a rotation invariant key-
point detector. We use a detector that is not invariant against scale changes. This
has basically two reasons. The application domains that we consider later do not
demand for a scale invariant treatment. For example, pollengrains have a typical
size. Particles of different sizes, even if they look similar have to be rejected a
priori. And secondly, there is a big disadvantage if we consider scale invariant
keypoints. They are very rare in comparison to just rotationinvariant keypoints.
This makes particular problems if the objects are very smalland have no inner
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texture or structure. In the experiments we want to detect objects whose sizes are
from about20 up to60 pixels. So, just keypoints below a scale of60 pixels are
important.

We use a curvature based key point detector [Lindeberg 98]. If we represent
the image by an image functionI : R2 → R, then the used saliency map can be
written as

S(I) = (∇I)⊤H(I)(∇I) − 1

2
Tr(H(I))||∇I||

whereH(I) is the Hessian1 of the image and∇I the gradient. Practically, the
Hessian and the gradient are computed by finite differences on a slightly blurred
version of the imageI. The proposed saliency map combines both, an edge and a
corner detector, the gradient gives primarily response foredges while the Hessian
gives response for corners.

The keypoints are located by a local maxima search onS(I). The set of all
detected keypoints is calledZ. Each keypoint~z ∈ Z is attributed with its local
appearance patchx. It describes the local neighborhood of the keypoint. We
denote the location of the keypoints together with its localappearance patch by
X = (~z,x). These are combined in the set

X = {X | ~z ∈ Z and(~z,x) = X}.

The setX of local appearance patches will be the basis for all furtherconsidera-
tions. We assume that the imageI is completely described byX .

3.2 Feature Extraction

One key issue of our detection system is the rotation equivariant modelling of
the voting functionf that casts votes for the object center and parts, respectively.
We will obtain the equivariance by the use of the proposed equivariant kernel
framework. We will consider Group Integration Matrix-kernels (GIM-kernel),
Normalization-kernels (N-kernels) and Maximum Matching-kernels (MM-kernels).
We have already mentioned that the evaluation of GIM-kernels and MM-kernels
both need to compute cross-correlations between the incoming patterns. Thus, we

1If the image is given byI(~u) = I(x, y) then the Hessian matrixH ∈ R2×2 is given by

H(I) =

(
∂xxI(u, v) ∂yxI(x, y)
∂xyI(u, v) ∂yyI(x, y)

)

,

where∂ denotes the partial derivative
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need a representation that allows us to compute such cross-correlations efficiently.
It is well known that the Fourier domain is well suited for this, because one can
make use of the Fast Fourier Transform (FFT).

For each patchx we compute a feature vectorΨ(x). Let ψl
n(x) denote the

components of this feature vector, where the indexl corresponds to the Fourier
representation andn is an additional feature dimension. We have two demands
for the feature function. It should be discriminative and robust like e.g. SIFT
[Lowe 04] or GLOH [Mikolajczyk 05] features and on the other hand we have to
represent the angular direction of the feature in the Fourier domain to allow a fast
computation of the cross correlation. The second demand canbe expressed as

ψl
n(τX

φx) = eilφψl
n(x).

Note, that is property is nothing else than equivariance of the feature function with
respect to rotations, or in other terms one may also call thisfeature a steerable
feature, according to the steerability property known fromimage filters (see e.g.
[Perona 95]).

Following the style of the SIFT features we propose a featurethat is also based
on the gradient of the image patch. We denote the gradient at position~u as∇x(~u).
For convenience we assume that the position of the keypoint is shifted to the ori-
gin. Basically, the feature is a joint histogram over the distance from the origin
and two angle-like quantities. In Figure1 we visualize the configuration of the
three quantities. The first angle is the cosine between the position vector~u and
the gradient direction∇x(~u). The second one is the absolute angle of the posi-
tion arg(~u). We represent the latter histogram dimension in the Fourierdomain.
Formally, we can write the feature as

ψl
n(x) =

∫

||~u||<dmax

δ( ~u⊤∇x(~u)
||~u||||∇x(~u)||

− an) δ(||~u|| − dn)||∇x(~u)|| eiarg(~u)d~u,

whereδ denotes the Dirac delta functions andan anddn are the centers of the
histogram bins for the distance and the relative angle, respectively.

The algorithm for the computation of the features is given inAlgorithm 1. We
call them Equivariant Gradient Histograms, shortly EGH-features.

As we are highly interested in small and compact features we examined how to
keep the number of bins as low as possible. We found that an equiareal binning
for the distance is advantageous. Equiareal means that eachdistance bin should
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Algorithm 1 Equivariant Gradient Histogram
Input: A patchx(~u) and a quantization schemeQ : R × R → N

Output: Feature arrayψl
n ∈ C with n = 0, . . . , m − 1 and l =

0, . . . , lmax.
1: Initialize feature arrayψl

n with zeros for alln andl.
2: for all pixels~u in the gradient patch∇x do
3: Computed = ||~u|| anda = ~u⊤∇x(~u)

||~u||||∇x(~u)||
.

4: Quantize(d, a) into the discrete binn = Q(d, a).
5: Accumulateψl

n = ψl
n + ||x(~u)||eil arg ~u for all l.

6: end for

be responsible for the same amount of area in the patch and thus for the same
number of pixels. We depicted this in Figure1. The shaded areas correspond to
different bins ford. As the area of the circle grows quadratically ind, we can
achieve an equiareal binning by a traditional equidistant binning of

√
d. So we

were able to choose between4 and6 bins ford while keeping the robustness and
discriminativity high.

3.3 Computation of the Cross-Correlation

Based on these features we are able to compute the cross correlation c(φ) =
K0(x1, τ

X

φx2) in a fast manner. Therefore, we have to assume thatK0 is a dot-
product kernel, meaning that it has the form

K0(x1,x2) = Γ(〈Ψ(x1),Ψ(τX

φx2)〉
︸ ︷︷ ︸

clinear(φ)

),

whereΓ is a nonlinear function. From standard kernel literature [Scholkopf 02]
we know that applying any analytic functionΓ : R → R with positive Taylor
expansion coefficients to a kernel yields again a kernel. To obtain clinear(φ) we
have to compute an inner product separately for each frequency and apply on the
result an inverse Fourier transform.

clinear(φ) =

lmax∑

l=0

(
m∑

n=1

ψl
n(x1)ψ

l
n(x2)

)

eilφ.

In practice, we use a Fast Fourier Transform (FFT) for the computation of the
outer sum. In the experiments we have chosen the following four (non)-linearities

Γ1(t) = t, Γ2(t) = t2, Γ3(t) = eλt, Γ4(t) = 1 + λt + λ2t2/2, (2)

13



~0

~u

da
arg ~u

∇x(~u)

x

y

Figure 1:The geometric interpretation of the feature computation. For each
pixel ~u the configuration is described by three quantities: The angle arg(~u), the
length||~u|| and the relative angle between the gradient∇x(~u) and~u. The shaded
areas indicate the histogram-bins for the length||~u||. In this case,4 bins are dis-
tributed over a radius of14 pixels, which is a typical choice in our experiments.
The bin sizes are chosen such that approximately the same number of pixels are
assigned to each bin.

whereγ ∈ R. The first one corresponds to a linear kernel, the second one to a
quadratic kernel, the third one is an exponential kernel that is closely related to a
Gaussian RBF kernel and the fourth is an approximation of theexponential kernel.

4 The Object Model

One key assumption is that the input image is completely characterized by the
feature setX . In practice, this assumption is reasonable if the number ofkeypoints
is large enough. It further simplifies the following statistical considerations. We
assume that our object consists ofM different parts. Each part has a position~cj .
The whole configuration of all object parts is the vector consisting of the object
positions~c = [~c0, . . . ,~cM−1]. The goal of the detection process is to find a image
portionI ⊂ X and a configuration~c such that the posterior probabilityp(~c | I, θ)
is maximized. That is the probability that the object configuration~c is observed
when seen the featuresetI for a given set of model parametersθ. In the following
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we often omit theθ-dependency as it is mostly formal ballast. Always assume it
as implicitly given, if necessary we explicitly refer to it.

Using Bayes’ rule we can decompose the posterior as follows

p(~c | I) = p(I|~c)
p(~c)

p(I)
,

which makes it possible to model the appearance termp(I|~c) and the shape prior
p(~c) independently. Following the terms of Fischler and Elschlager [Fischler 73],
we decompose the problem into a ’syntactic’ and ’semantic’ part. The main inde-
pendence assumption is that the likelihood of seeing the imageI given the object
parts decomposes into independent distribution over the single objectparts.

p(I|~c) =
M−1∏

j=0

p(I|~cj)

Until now we have followed the common statistical frameworkknown from active
shape models or object recognition, see for example [Felzenszwalb 05]. Usually
the distributionsp(I|~cj) are now directly modelled. But we want to point out an
alternative way. To apply the idea of gathering the evidencefor the presence of
object parts by a voting scheme, Bayes’ theorem is applied again on the densities
for the parts. Following this we obtain

p(~c | I) = p(~c)

M−1∏

j=0

p(~cj | I)

p(~cj)
.

Due to the invariance constraints the absolute positions ofthe parts have to be
ignored, so we neglect the marginalsp(~cj) in further considerations. Considering
the densitiesp(~cj | I) the idea of voting for the presence of object parts becomes
obvious. InterpretingI as a set of samples drawn from a underlying densityp(X)
representing the image under consideration, we make the following estimation.
The probability for a object part’s position can be written as

∫
p(~cj |X)p(X)dX

by the law of the total probability. We can approximate this by

p(~cj | I) =
∑

X∈I

p(~cj |X) (3)

In conclusion, we have to learn the distributionsp(~cj |X) that perform the votes
for the object parts, andp(~c) that priors the shape in terms of the configuration
of the object parts. Both have to fulfill several invariance constraints that are
discussed in the following.
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4.1 Invariance of the Voting Function

First we investigate the distributions which vote for the centers of the object parts.
They have to be invariant against rotations and translations:

Translation: p(~c | (~z,x)) = p(~c + ~t | (~z + ~t,x))

Rotation: p(~c | (~z,x)) = p(Rϕ~c | (~z, τX

ϕx))

Invariance against translations can easily be obtained by just learning the prob-
abilities relative to the position of the observed keypoint, i.e. we normalize the
distribution and just learnp(~c − ~z | (~0,x)). For the rotation it is different. We
do not have any anchor point to make the angular coordinates ’absolute’ in some
way. In the SIFT framework by Lowe [Lowe 04] local maxima of the gradient
orientation histogram are used to normalize the features with respect to the an-
gular coordinates. We want to achieve the invariance alternatively by the use of
equivariant kernel methods.

To apply the equivariant kernel framework we reformulate the invariance con-
straint. Interpretingp(~c | (~0,x)) as a functional that is mapping a patchx onto a
probability distributions over~c, the rotation invariance is translated to an equiv-
ariance constraint for this functional. Let us formulate this more precisely. We
define a functionf : X → Y that takes a local descriptorx and maps it onto a
vectorial outputf(x) ∈ Y . The components of the output are interpreted as prob-
abilities for the occurrence of the object part at a specific location. That is, each
component of this vector is indexed by a position~c. To access these components
of the vector we just have to compute an inner product with an unit vector given
its only contribution at one specific entry that is indexed by~c. More formally, we
have

e
⊤
~c f(x) = p(~c | (~0,x)).

By e~c we have denoted the unit vector that selects the appropriateentry. To under-
stand that the rotation invariance of the densityp is equivalent to the equivariance
of the functionf we consider a rotationg by angleϕ around the origin,

p(~c | (~0, τX

ϕx)) = e
⊤
~c f(τX

ϕx)
eq.
= e

⊤
~c τ

Y

ϕ f(x)

uni.
= (τY

-ϕe~c)
⊤
f(x)

def.
= (eR-1

ϕ ~c)
⊤
f(x) = p(R -1

ϕ ~c | (~0,x))

which is equivalent to the rotation invariance ofp. First we have used the equiv-
ariance off and then the unitarity of the rotation and then the definitionthate~c is
a vector that evaluates at position~c.
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4.2 Invariance of the Shape Density

Also the shape priorp(~c) has to fulfill translation and rotation invariance, namely

p(~c) = p(Rϕ~c + ~t1),

whereRϕ~c + ~t1 denotes a rotation and translation of the whole configuration. To
modelp(~c) we want to use a full joint gaussian model. But first, considerthe
invariance constraints. To include them we make the expansion

p(~c) = p(~c, ~v, φ) = p(~c |~v, φ) p(~v, φ). (4)

where~v denotes the ’center’ of the configuration andφ the orientation. Both
are deterministically dependend on~c. Because no orientation and position of
the objects should be favored one has to neglectp(~v, φ). Due to the invariance
constraint the remaining part has to behave like

p(~c |~v, φ) = p(e−iφ~c − ~v1 |~0, 0)

and hence we only have to learnp(~c |~0, 0) where~c is constraint to be in a fixed
position and orientation.

5 Training of the Model

We assume that a set of training images is given, where in eachimage the training
objects are marked by bounding boxes and the object parts arelabeled by their
absolute positions. It is assumed that all images have the same orientation. The
learning process is two fold, on the one hand we have to estimate the densities
p(~cj |X) for each object part~cj and on the other hand the shape priorp(~c) that
covers the interrelations between the object parts.

Consider one training object marked by a bounding box. We select all key-
points~zk and their associated featuresx

k that lie inside the bounding box. Sec-
ondly, we gather theM labeled part positions~cj of the object and compose thereof
M object specific training sets, each consisting of all tuples(~cj ,X

k) = (~cj, (z
k,xk))

for all Xk that lie inside the bounding box. To trainp(~cj |X) = p(~cj | (~z,x)) we
union all object specific training sets and obtain for each object partj one training
setTj = {(~c k

j ,Xk) | k = 0, . . . , N − 1}. The numberN denotes the total number
of training patches.
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We already mentioned that we want to model the densitiesp(~cj |X) by a func-
tion fj : X → Y that gets as input a local appearance patch and returns a prob-
ability density over the object part position~cj. We model this density parametri-
cally by the use of a circular harmonic expansion such that their representations
are compatible with the proposed equivariant matrix kernels. The functionf is
trained by an ordinary kernelized ridge regression scheme with a quadratic loss.

Secondly, we have to train the shape priorp(~c). Each training object together
with its part positions~c = [~c0, ...,~cN−1] serve as one training instance. The shape
prior p(~c) will be modelled by a simple joint gaussian model, i.e. the training
procedure is just the usual estimation of mean and covariance of the object part
positions.

5.1 Parametric Representation of the Voting Functions

As already depicted in Section4.1 we can interpret the conditional probability
function as some vector valued functionf(x), where the vector entries correspond
to probabilities for~c. We omit here the dependency on the part numberj, because
the considerations are for all object parts the same. Recallthat the output domain
of the functionf are a spatial probability density, the probability values are ac-
cessed by an inner product with an unit vector, i.e.e

⊤
~c f(x) = p(~c | (~0,x)). The

question is, what is an appropriate parametric model for this density. To make the
output off compatible with the proposed matrix kernels we make a decomposi-
tion into an radial and an angular part as mentioned before. We propose to use the
following representation:

e
⊤
~d
f(x) =

lmax∑

l=−lmax

E−1∑

i=0

f l,i(x) eilarg(~d) ǫi(||~d||), (5)

where arg(~d) is the angle of the vector~d. The functionsǫi are triangular shaped
envelope functions only depending on the distanced = ||~d||, i.e.

ǫi(d) =







ri−d
∆

for ri − ∆ < d < ri

1 − ri−d
∆

for ri < d < ri + ∆
0 otherwise

,

where theri are fixed centers of the radial partsǫi. The functionǫ0 in the center is
treated specifically to avoid a hole around the origin.

The expansion coefficientsf l,i(x) can be interpreted as a representation off in
polar coordinates, where the part depending on the angle is expanded in Fourier
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domain, corresponding to index thel, and the radial part, corresponding to the
index i. In Figure2 we show two examples. The functions are sinusodials of
angular frequency2 and3 that are swapping around the origin of the plane. For
example, the upper function in Figure2 has its only entries atf 2,4 = f−2,4 = 1.
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Figure 2:Example for the modelling of the voting function. The graph on the
left corresponds to a function withf l,i = 0 except forl = ±2 at one particular
distance, specified by the indexi. The function in the middle has only entries at
l = ±3. The function on the right is an example for the unit vectore~c. The Fourier
expansion is truncated after 10 terms. One can clearly the artefacts that produced
by this truncation.

We have to ask what are the expansion coefficientsel,i
~c of the unit vectore~c

in this representation. They will play later an essential role in the training stage.
Interpreted as a probability density it is just the density of the certain event at
position~c, that is, a density that has clear peak at position~c. We cannot expect
from the representation proposed in equation (5) that it can model arbitrary fine
peaks at some position~c. Due to the fixed discretization introduced by the trian-
gular shaped radial functions it can even happen that peaks at different positions
will show different artefacts. To get a smooth representation and a symmetric
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interpolation kernel we choose

e
⊤
~c e~d =

lmax∑

l=−lmax

E−1∑

i=0

ǫi(||~c||)e−ilarg(~c)

︸ ︷︷ ︸

e
l,i
~c

eilarg(~d) ǫi(||~d||)

In Figure2 we show how a unit vector~e~c looks like. We used a Fourier expansion
up tolmax = 10. We can clearly see the artefacts that are created by this truncation.

5.2 Kernelized Regression

The key issue is to learn the conditionalspθ(~c |X) = p(~c |X, θ) from a set of
samplesT = {(~ck,Xk) | k = 0, . . . , N − 1}. The subscriptθ denotes the set of
internal parameters of the estimated distribution. We already mentioned that it is
sufficient to learnpθ(~c | (~0,x)) due to the translational invariance. We assume in
the following that all training samples are given in the form(~ck, (~0,xk)).

The goal is to find the maximum likelihood estimate of the distributionpθ(~c | (~0,x))
given the training samples. We have embedded the distribution in a vector space
by settingpθ(~c | (~0,x)) = e

⊤
~c fθ(x). So, we have to formulate the maximum like-

lihood criterion for the functionfθ(x) directly. It is well known that a hypothe-
sis minimizing the KL-divergence with respect to the empirical distribution also
maximizes the likelihood of the given sample. In [Abe 01] it is shown that learn-
ing with respect to the KL-divergence is related to learningwith respect to the
quadratic distance in the sense that one have to minimize

L(θ) =

N−1∑

k=0

||fθ(xk) − e~ck ||2 (6)

with respect to the parametersθ. But, the equivalence only holds iff is contrained
to be a density, i.e. all entries are positive and sum up to1. If we want to solve
this problem by an ordinary kernelized regression we are notable to forcefθ(x)
to behave strictly like a density. But, for a kernel of local support, for example the
exponential kernel, the solution behaves very much like themaximum likelihood
solution. As usual in kernelized regression, the coefficients f l,i

θ (X) are modelled
by a linear combination of kernel evaluation

f l,i
θ (x) =

N−1∑

k=0

K l(x,xk)αl,i
k
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The setθ of complex weighting factorsθ = {αl,i
k ∈ C | k = 0, . . . , N − 1, l =

0, . . . , lmax , i = 0, . . . , E − 1} have to be learned. We can let the Fourier index
range only from0 to lmax because the function that we want to learn is real valued,
then components with the negative index are the complex conjugate of the positive
ones. The minimization problem (6) translates directly to the problem of solving
for eachl andi the linear equations:

N−1∑

k=0

K l(xj ,xk)αl,i
k = el,i

~cj .

If we truncate the Fourier expansion afterlmax coefficients and useE components
for the radial part of the function, we have to solve in total(lmax + 1) · E linear
equations of dimensionN .

5.3 Training of the Shape Prior

To model the shape densityp(~c|~v, φ) we want to use aM-dimensional complex
gaussian model. This means that we interpret the positions~c ∈ R2 as numbers in
the complex planeC. We will indicate this by omitting the vector arrows, i.e. we
write c instead of~c andc instead of~c. This approach has two advantages. At first,
it forces the one-dimensional marginals (real two-dimensional) of any Gaussian
to be isotropic (see appendix ). This is a reasonable assumption in the presence of
the invariance constraints. The second reason is that the complex representation
is very well suited for the optimization procedure applied later.

We already sketched how to include the invariance constraints by a normal-
ization approach. Thus, given the covariance matrixC ∈ CM×M and the mean
m ∈ C

M the distribution has the form

p(c|v, φ,m,C) ∝ e−(c−(eiφm+v1))⊤C−1(c−(eiφm+v1)),

The Gaussian assumption can also be interpreted as a ’spring’-model as proposed
by Fischler and Elschlager [Fischler 73] to model the shape variations. The mean
m can be interpreted as the mean or standard shape of the objectpart constellation.
The covariance matrix models the stiffness of the connection between the parts.

To learn the model we always assume position and orientationnormalized ob-
jects, i.e. we learnp(c|0, 0). It is assumed that the user has labeled a sufficient set
of training objects by manually selecting theM object parts. The learning process
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itself is a usual estimation of the mean and covariance parameters. We further as-
sume an isotropic Gaussian error model of the observed training samples, that is
we regularize the covariance estimate byCest + σ2

regI, which is, of course, also
useful in the absence of enough training samples. Forσreg we choose values in the
range from one to several pixel units.

6 Detection

As already explained the goal is to find an appropriate subsetI of feature points
and a configurationc such that the posterior probability

p(~c | I) ∝ p(~c)
M−1∏

j=0

p(~cj | I)

is maximized. We divide the problem into two parts. First we make an initial
hypothesis. We select one specific part of the object a priori. This part should be
the most prominent and easily detectable of all parts. For this part, let us say~c0

without restriction of generality, we compute the voting map p(~c0 | X ) and search
for all local maxima above a certain threshold. These maximaare designated as
our initial hypotheses. For each maximum we gather all neighboring keypoints
within a specific distance into the image portionI. For this portion we search for
an optimal configuration~c by an iterative optimization procedure.

6.1 Rendering of the Voting Maps and Finding Initial Hypothe-
ses

To find the initial hypothesis we select the part~c0 of the object a priori. We have
to compute the voting mapp(~c0|X ) relying on all detected keypoints, according
to equation (3).

As explained, the corresponding functionsf0(x) do not exactly behave like a
distribution. Consider a featurex which is in terms of the feature distance||x−x

k||
very far away from the training samplesx

k. If we use an exponential GIM-kernel
(a kernel with local support) the functionf0(x) tends towards zero. And thus,
also the mean1⊤

f0(x) tends towards zero. This is definitely not an appropriate
behavior for a density, because for any density it always must hold1

⊤
f0(x) = 1.

But, in the actual implementation we neglect this effect. This is justifiable because
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for the sample very far from the training samples we do not have any knowledge,
so it is reasonable that they do not contribute to the overallprobability.

We directly use the contribution of the functionf0(x) from all observed local
appearancesxk in the image under consideration to approximate the density:

p(~c0|X ) ≈
∑

(~zk,xk)∈X

f0(x
k)⊤e(~c0−~zk),

In practice the voting map is rendered at a lower resolution than the original image.
This is mainly due to complexity reasons. We use sizes from half up to fourth of
the original resolution, depending on the size of searched object. In Figure3 we
show an example of a rendered voting map.
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Figure 3: Example for a voting map. On the top you see the original image
together with the detected keypoints marked by small crosses, on the bottom the
rendered voting map. The voting map is rendered at half of theresolution of the
original image. One can see that the voting map is also negative at some points,
because of the non-density-like behavior of the voting functions.

Finally, we select the local maxima of the voting map as initial hypotheses. At
this point one could be already finished. One could designatethese local maxima
above a certain threshold as successful detections and return them. But we want to
go a step further and apply the already sketched verificationstage. Therefore, we
select for each initial hypotheses a subsetsI of keypoints whose distance is lower
than a specific threshold to the initial detection. Based on this subset we render
the voting maps for the other parts of the object and process them as explained in
the next section.
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6.2 Hypothesis Verification / An Active Point Model

Having found the setI the voting maps for all other object parts are rendered
based on this subset. To obtain higher accuracy the resolution of this voting maps
are usually chosen higher than for the initial hypothesis. Then, we normalize the
rendered voting maps such that they are probability densities. We set all negative
entries to zero and normalize the sum over all entries to1.

The goal of the verification process is to find a configurationc, an orientation
φ and a positionv such that the log-likelihood is maximized

L(c, φ, v) = log

(

p(~c|~v, φ)

M−1∏

j=0

p(~cj | I)

)

We use an iterative approach for optimization. In the first step we assume that
the current modelc is fixed. Under the assumption that the mean shapem has a
vanishing center of gravity1⊤

m = 0, it is easy to compute the optimalv andφ
analytically by Procrustes analysis (see e.g. [Mardia 98]),

v = 1
M

1
⊤
C

−1
c

φ = arg(c⊤C
−1

m)

This is only possible due to our restriction to aM-dimensional complex Gaussian
model, instead of the2M-dimensional real model. Afterwards, we make a gradi-
ent descent forc → c + α∇L, whereα is a step width. These two procedures are
repeated until a stop criterion is met. Such an optimizationalgorithm is typical for
active-contour approaches that incorporate a prior information about the shape of
the contour. In our case the shape prior is the meanm of the gaussian distribu-
tion and the covariance matrixC models the typical variation. In Algorithm2 the
optimization procedure is presented in pseudo code.

The question remains how to obtain good initializations of the parameters. As
we already have an initial guess for the object part~c0, it is obvious to use this
for initialization. But stillφ is arbitrary. To get a good initial estimate forφ we
learn an additional distribution, namelyp(φ|x). In this case the output vector is
just a distribution over the angleφ in Fourier representation. It is assumed that the
training samples are all given in normalized orientation, so we just have to learn
a function which for all training samples returns a vector with its only entry at
positionφ = 0.

As initial estimates we use the four highest local maxima of the estimate for
p(φ|I). Finally, if we have obtained the optimal configuration~copt we compute
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Algorithm 2 Optimization Procedure

1: Initialize c
(0)

2: repeat
3: Let v = 1

M
1
⊤
C

−1
c

(i) andφ = arg(m⊤
C

−1
c

(i))

4: Let k =

[

∇p(c
(i)
0 |I)

p(c
(i)
0 |I)

, . . . ,
∇p(c

(i)
Q−1|I)

p(c
(i)
Q−1|I)

]

5: Updatec(i+1) = c
(i) + α(k −C

−1(eiφ
m + v1 − c

(i)))
6: Incrementi = i + 1.
7: until ||c(i+1) − c

(i)|| < threshold

the probabilityp(~copt | I) and select the highest of the results of the different ini-
tializations. We call thisp(~copt | I) estimate the detection confidence forI. As a
final step, it is decided via thresholding of the detection confidence whether the
object is present or not.

7 Experiments

For the actual implementation of the proposed approach we used Matlab and
C++ . The time-consuming tasks, including the computation of the features, the
kernel matrix and the voting maps are implemented inC++ using themex-interface
of Matlab. The development and experiments took place on aP4 2.8Ghz, so all
timings reported below are achieved on this machine.

Experiments on two different databases are presented. The the detection of
planes on aerial photographs and the detection of pollen grains in microscopical
images. There are several parameters that can be optimized to the considered data.
The parameters for the feature computation are: the cutoff frequencylmax for the
Fourier transform, the number of binsR in angular directiona, the number of bins
D in radius directiond and the maximal radiusdmax in pixel units. For the voting
scheme, there is the numberE of triangular shaped envelope functions that are
used to synthesize the voting function and the radial rangewmax over which they
are distributed. The parameters for the different databases are shown in Table1.
They were chosen manually by trial and error on small training sets.

Another important parameter is the number of keypoints. Forthe training
phase we adjusted the threshold such that the number of keypoints stay below ap-
proximately 500 in order to keep the detection times in a reasonable range. During
the detection process the threshold is usually reduced so that also keypoints are
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found in regions with very low contrast.

7.1 Comparison to Reference Methods

We proposed a new type of local feature descriptor together with a new paramet-
ric voting scheme. To examine the performance of our features we have chosen to
consider additionally the so called GLOH features that are currently known to be
one of the best local descriptors. On the other hand, to compare the proposed vot-
ing scheme, we will consider also a non-parametric voting that is usually applied
for GHT-based object detectors.

7.1.1 GLOH Features

The GLOH (Gradient Location and Orientation Histogram) features [Mikolajczyk 05]
are a further development of the SIFT features [Lowe 04]. They were built to in-
crease its robustness and distinctiveness. Compared to SIFT, the histogram is
computed for 17 location and 16 orientation bins in a log-polar location grid.
PCA is used to reduce the dimension to 128. The GLOH features will be used to
compare our features introduced above with the state-of-the-art.

To obtain rotation invariance the GLOH features are steeredat the main gra-
dient direction that is estimated from the local neighborhood. If the main gradient
direction is not unique the feature is computed for several directions.

7.1.2 Non-Parametric Voting

Traditionally, the GHT-based [Ballard 81] object detection systems like the ISM
[Leibe 04] or others [Mikolajczyk 06,Teynor 07] rely on a non-parametric voting
scheme. That is, the conditional densityp(~c | X) = p(~c | (~z,x)) is estimated in a
non-parametric manner (see e.g. [Duda 73] for non-parametric density estimation
in the context of pattern recognition). To make the computation feasible most

Database
Feature Voting

lmax R D dmax E wmax

Pollen 8 8 6 15 7 40
Planes 6 6 4 12 7 40

Table 1: Parameters for the different databases
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approaches compute beforehand a so called codebook of localappearance. The
entries of this codebook can be imagined as those patternsx that contain the main
support of the density. Those patterns are usually chosen tobe cluster centers
that are obtained e.g. by agglomerative or k-means clustering. How to obtain
optimal codebooks is still an open problem. Depending on thetype of clustering,
it involves the tuning of a lot of parameters and several design choices have to be
made. We want to circumvent this to avoid any pitfalls by using a traditional kernel
density estimator with a Gaussian kernel. Though this is quite time consuming but
it is probably the most simple and most canonical way.

Assume that the set of training samplesT = {(~zk,Xk) | k = 0, . . . , N − 1}
are given in a translation normalized form, that is(~zk,Xk) = (~zk, (~0,xk)). Then
the density estimate looks as follows

p(~c | (~0,x)) =
1

Z(x)

N−1∑

k=0

exp

(

−||~c − ~zk||2
σ2

spat
− ||x − x

k||2
σ2

feat

)

, (7)

whereσ2
spat andσ2

feat are fixed width parameters. The termZ(x) is a normaliza-
tion factor that ensures thatp(~c | X) is a conditional probability density. It is
proportional to

Z(x) ∝
N−1∑

k=0

exp

(

−||x − x
k||2

σ2
feat

)

The actual implementation is quite simple. Assume we have given the set of local
appearance patchesX . To render the voting map we have to do the following. For
eachX = (~z,x) ∈ X we castN votes at the positions~z+~zk for k = 0, . . . , N−1.

Each vote is weighted by1
Z(x)

exp(− ||x−xk||2

σ2
feat

). The spatial form of the vote is a
Gaussian. To avoid to render for each vote a Gaussian into thevoting map, we
just accumulate a single pixel by the appropriate weight andconvole the voting
map later with a Gaussian when all votes have been casted.

The above presented non-parametric voting scheme is only translation equiv-
ariant. The rotation equivariance is usually incorporatedby a normalization ap-
proach (see e.g. [Mikolajczyk 06] or [Teynor 07]). We do not want to show this
here in detail. The approach is only modified slightly. The voting directionszk

are measured relative to the gradient main directions around the training points
and votes are then casted relative to the gradient main direction of the observed
keypoints. If the gradient main direction is not unique the samples are duplicated
for all local direction maxima that are above85% of the global one.
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7.1.3 Evaluation

For evaluation and comparison we consider Precision/Recall graphs and the equal
error rate (EER). The equal error rate is the error rate obtained when the number
of objects that are not detected is the same as the number of wrong detections.
We consider an object to be detected if a detection is less than half the object
size away from the object’s center. If there are multiple detections in this range
with different detection confidences we choose the detection with the maximal
confidence.

7.2 Aircraft Detection

To demonstrate the effectiveness of our approach, we let thesystem to detect
planes on aerial photographs of airports. We obtained 20 aerial images from
Google Earth2 of the airports of Frankfurt, Munich, London and New York. The
altitude of the images is approx. 700ft. Each image is scaledto the of size of
1200 × 1000. A plane has then an average size of about 50 pixels. All images to-
gether contain 208 airplanes. The images show heavy clutterand there are many
possible candidates for false positive detections. Additionally, the lighting condi-
tions change such that the system has to cope with many kinds of different shad-
ows. And finally, there are planes of different sizes, the system is confronted with
scale changes up to a factor of two. To cope with such scale changes we applied
the system at four different scales, where the scale is sampled logarithmically by a
subsampling factor of1.2, that is, the smallest image is by a factor of1.24 smaller
than the original. To get the initial hypotheses the four voting maps from the dif-
ferent scales are stacked together in a 3D voting stack and the local maxima in
this 3D stack serve as detection hypotheses.

Figure4 shows the images that were used for training. They are chosensuch
that the typical variations for the different kinds of shadows can be learned. We
selected three object parts: the region where the wings touch the fuselage, that
is the ’center’ of the object and the two tips of the wings. Thecenter is used to
gather the initial hypotheses.

In Figure6 a detection example is shown to give an impression of the com-
plexity of the images and of the performance of the system. The computation
time heavily depends on the complexity of the scene. For the given example, that
is one of medium complexity, our algorithm needs about 10 seconds. Most of
the time is spend for the verification stage. In Figure5 some typical examples of

2Google Earth, A 3D Interface to the Planet,http://earth.google.com
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Figure 4: Training Images. The six images that were used for training. We let
the plane consist of three parts: the center and the two tips of the wings. They are
marked by black stars.

Figure 5:Planes that were not detected.

missing detections are shown. Their small size and the heavyshadows seem to be
responsible for the misses.

In Figure7(a)we show a PR-graph that shows the performance of our detec-
tion system with and without verification by the active pointmodel. The voting
function is based on a GIM-kernel with an exponential basis kernel. It is obvious
that the verification method improves the results dramatically. With verification
we obtain a EER of30.3%. Without verification we are only able to get a EER of
41.8%. The overall number of detected aircrafts (80%) is not derogated.

For further comparison we want to leave out the verification stage and directly
work with initial hypotheses that are obtained by the votingmap for the center
of the aircraft. This allows us to figure out more clearly the underlying circum-
stances. And secondly, in literature there is no comparablevalidation approach
that works in a rotation invariant manner (to the author’s knowledge). Although
the ISM [Leibe 04] uses segmentation masks to obtain even better confidence
scores, it does not work in a rotation invariant manner and a generalization is not
straight forward.

In the next experiment we compare the GIM-kernels for different kind of non-
linearities as given in equation (2). Figure7(b)shows the results. It is astonishing
that already a linear kernel works quite well. Note, that a kernelized regression
with a linear kernel is equivalent to a traditional linear regression scheme, i.e.
the mapping from the local features onto the voting functionis a linear one. The
quadratic kernel improves the performance but cannot compete with the exponen-
tial kernel. Actually, the approximation of the exponential kernel is as good as the
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Figure 6:Recognition examples for the plane database. The yellow rectangles
and dots indicate the detected configuration. The white dotsgive the position of
the initial hypotheses. The white arrows show two false positive, five not detected
false negatives and one example for a wrong determination ofthe orientation of
the plane.
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Figure 7: Evaluation of our method

exponential itself. That is quite astonishing. The underlying feature space of this
approximative kernel is just the direct sum of feature spaceof the linear and the
quadratic kernel. Thus, it seems that the feature spaces alone are worse than the
combination of both with a proper weighting. The value forλ was chosen by a
manual tuning on a small training set.

In another experiment we compared the different kind of equivariant kernels.
We always used an exponential scalar basis kernel. In Figure8(a) we show
the Precision/Recall graph for the GIM-kernel, the Normalization-kernel and the
Maximum-Matching-kernel. The GIM-kernel performs best, closely followed by
the N-kernel and the MM-kernel. It is astonishing that the MM-kernel is a little bit
worse than the N-kernel. One might expect that a matching is more reliable than
a normalization of the patches. But overall, the differences are not very distinct.

Finally, we make a comparison of the proposed parametric voting with the
non-parametric voting scheme and secondly, a comparison ofthe GLOH features
with our EGH features. We used a N-kernel for the parametric voting scheme,
because it is the only kernel that works efficiently with the GLOH features. The
results are concluded in Figure8(b). We can observe a clear difference between
the non-parametric approach in comparison to the parametric approach. The para-
metric approach works definitely better than the non-parametric approach. In Fig-
ure9 we show two exemplary voting maps for the non-parametric andparametric
approach. The non-parametric approach has obvious problems in regions with lots
of spurious keypoints. The reasons for that are difficult to determine, we figured
out three main issues.

Firstly, the parametric representation of the voting function allows to handle
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Figure 8: Comparison to reference methods

radial and angular deformation independently, because it is expanded in polar co-
ordinates. This means that the smoothing parameters can be tuned independently
in radial and angular direction. We found that this relationship is an important fac-
tor for the performance of the parametric approach. For the non-parametric case
it is only possible to incorporate the smoothing efficientlyin an isotropic manner
(controlled byσspat in equation (7)).

For the non-parametric approach the parameterσfeat controlls the trade-off be-
tween specificity for the searched class of objects and robustness against intra-
class variations. With growingσfeat we become robust against variations of the
object but also induce lots of false positive detections. Wefound that this trade-
off has a major impact on the performance of the non-parametric approach. It
seems that the parametric approach can handle this trade-off much better. There
are two parameters that play a similar role for the parametric approach. In the
case of a exponential basis kernel, theλ parameter, and secondly during the train-
ing stage one can apply a kernelized ridge regression (also known as regularized
regression), where the regularization parameter plays a similar role. We found
that the choice for both are very easy and robust. For our tasks we never found
a regularized regression to be superior to a non-regularized. For theλ parameter
we found that once it was adapted to the type of feature it was very robust and
application independent.

We already mentioned that our parametric voting algorithm can also produce
negative contributions, that is, it cannot be interpreted as a real probability den-
sity anymore. In fact, this ’fault’ of our approach helps to avoid false positive
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Figure 9: Voting Map Comparison. On the left you see the original image to-
gether with the detected keypoint, on the upper right the voting map produced
by the parametric approach, on the lower right the voting mapproduced by non-
parametric approach.

detections in regions that contain lots of spurious keypoints. Due to the negative
voting contributions it can happen that votings destructively interfere. Only if the
contributions show a kind of coherence the votes show constructive interference
and thus strong responses.

Finally, consider in Figure8(a)the performance differences for the GLOH and
EGH features. It seems that our features perform slightly better but not signifi-
cantly. And even the comparison is not really fair because the parameters of our
features were specifically tuned for the considered dataset, while the parameters
of the GLOH features were fixed from the beginning (except theoverall radius, it
was chosen the same for both features).

7.3 Pollen Detection

Analysis techniques for data acquired by microscopy typically demand for a ro-
tation and translation invariant treatment. The microscopical images of particles
like cells or pollen have usually no predetermined orientation; the positions of the
particles are unknown and even the number of particles is notknown a-priori. We
want to demonstrate the effectiveness of our system with a pollen detection task.
Applications of such a system are manifold. Palynology, thestudy and analysis
of pollen, is an interesting topic with very diverse applications like in forensics.
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Pollen-forcasts for allergological relevant pollen species is also an important is-
sue. Most of the pollen species are very easily detectable bya simple Hough
Transform because they have a round, circle-like structure. But a high amount of
fossil pollen and also pollen of today’s conifers have not such an easy detectable
structure.

The data used in this experiment was recorded with an opticalmicroscope in
conjunction with the OMNIBUSS project [Scharring 06]. Originally the samples
are of size1392× 1040× 70. For recognition the sharpest of the 70 image layers
is selected and this layer is downscaled to a size of256× 191, which is more than
enough for the detection task. The pollen’s size is between afifth up to a tenth
of the image size. To get an impression, have a look at the fourimages at Figure
11. The used training examples are shown in Figure10. We selected three parts to
represent the pollen. The center and the two characteristicblack dots. The center
is used to obtain the initial votes. 549 images were selectedfor testing. Nearly
half of the images contain dust and dirt and no pollen at all. The others from one
up to approximately 10 pollen. In total the images contain751 pollen. We labeled
them manually by determining just the position of the pollen. The orientation of
the pollen is not verified in the experiments.

In Figure12(a)we compare four different types of approaches. Our paramet-
ric kernel-based methods based on the GIM-kernel, N-kerneland MM-kernel and
the non-parametric approach. For all four methods we only report the results for
our EGH features. The results for the GLOH features show qualitatively the same
behavior. When comparing the kernel-based approaches one can observe that the
GIM-kernel again performs best, while this time the MM-kernel is better than the
N-kernel. It seems that the normalization is not so reliablefor this task. In con-
trast to the experiences from the aircraft detection, this time, the non-parametric
approach works much better and is competitive with the parametric approach. It
works as good as the MM-kernel.

Why does the non-parametric approach perform so badly for the aircraft de-
tection and on the other hand show comparable results for thepollen task? It is
difficult to answer this question. One major difference between the two databases

Figure 10: Pollen training imagesThe white dots indicate the location of the
object parts.
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(a) Agglomerated (b) Out of focus

(c) False Positive (d) False Positive

Figure 11:Recognition examples for the pollen database.The yellow rectan-
gles and dots indicate the detected configuration. The greendots give the position
of the 20 initial hypotheses. Images11(a)and11(b)show two difficult examples
that are perfectly solved. Images11(c)and11(d)show two typical false positive
detection. If two pollen are very near, their parts may be confused.
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Figure 12: Evaluation on the Pollen database
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is that the airport images show much more possible candidates for false positive
detections. For example, compare Figure9 with one of the images in Figure11.
The airport images contain much more spurious keypoints that do not belong to
the objects of interest. The aircrafts often do not show the strongest local varia-
tions in comparison to the clutter. Contrarily, the coniferpollen are often the most
prominent objects in the images, they show the strongest local variations and the
most salient keypoints are located on the pollen itself. Thus, we can suspect that
the parametric approach can cope much better with a high number of spurious
keypoints and, hence, is more robust to false positives. Buthow to verify this
conjecture? If we assume that the most salient keypoint are detected on the pollen
itself it should be possible by choosing a high saliency threshold that most of the
detected keypoints are on the pollen. Then, the results for the non-parametric ap-
proach should get comparable to the parametric approach, because there are only
a very low number of spurious keypoints. On the other hand if the saliency thresh-
old is very low and the number of spurious keypoints is large,the advantage of the
parametric approach should become obvious. So, we made experiments for var-
ious saliency thresholds. We recorded the EER-rate for the parametric approach
with a GIM-kernel and the non-parametric approach, the results are reported in
Figure12(b). In fact, our conjecture is confirmed. For a high number of keypoints
the parametric approach shows one percent less error than the non-parametric one.
On the other hand, for a low number of keypoints, the differences get negligible.

8 Conclusion

In this article we presented a rotation invariant object detection concept. The sys-
tem is well motivated in a probabilistic framework. The invariance demands are
gently introduced into the framework by the idea of using matrix-valued kernels.
The experiments have shown that the system works for very different problems
and can achieve competitive results.

Although the running times for the presented tasks are acceptable, they restrict
the system to small training set sizes. The training set sizehas a direct influence
on the number of support vectors and hence on the run-time. Thus, the system is
yet not able to model too large variations within one object class while working
in reasonable time. Here is space for further improvements.

The number of keypoints has even the same impact on the run-time as the
support vectors. We have shown that the number of keypoints has a high influence
on the performance of the system. Probably the best would be to designate each
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pixel in the image to be a keypoint, which is unfortunately much too expensive. A
possible way out would be to construct object specific key point detectors.

9 A Complex Gaussian Density

Let c ∈ V be aM-dimensional vector in a complex valued vector space. Further
let m ∈ V a mean andC ∈ L(V ) a positive definite covariance matrix, then

p(c) =
1

(2π)M | det(C)| exp

(

−1

2
(c − m)⊤C

−1(c − m)

)

defines a probability density onV . Any one-dimensional marginalp(c⊤w = w)
in directionw ∈ V is of the form

p(w) =
1

2πk
exp

(

− 1

2k
|w − m|2

)

,

wherek ∈ R is positive and real andm ∈ C. This easy to see, because any
marginal is again a complex Gaussian density and a one-dimensional complex
Gaussian has by definition a positive definitek ∈ R variance. Hence, any one-
dimensional complex Gaussian has a spherical invariant (isotropic) variance in the
complex plane.

References

[Abe 01] ABE, N., TAKEUCHI , J., AND WARMUTH , M. “Polynomial
Learnability of Stoachastic Rules with Respect to the KL-
Divergence and Quadratic Distance”.IEICE Trans. Inf. and
Syst., Vol. 3, pp. 299–316, 2001.

[Aguado 02] AGUADO, A., MONTIEL, E., AND NIXON , M. “Invariant
Characterization of the Hough Transform for Pose Estimation
of Arbitrary Shapes”.Pattern Recognition, Vol. 35, pp. 1083–
1097, 2002.

[Ballard 81] BALLARD , D. “Generalizing the Hough transform to De-
tect Arbitrary Shapes”.Pattern Recognition, Vol. 13, No. 2,
pp. 111–122, 1981.

38



[Barczak 05] BARCZAK , A. “Towards an Efficient Implementation of a Ro-
tation Invariant Detector Using Haar-like Features”. In:Pro-
ceedings of the IVCNZ’05, Dunedin, New Zealand, pp. 31–36,
2005.

[Crandall 06] CRANDALL , D. AND HUTTENLOCHER, D. “Weakly Super-
vised Learning of Part-Based Spatial Models for Visual Ob-
ject Recognition”. In: Leonardis, A., Bischof, H., and Pinz,
A., Eds.,Proceedings of ECCV, LNCS, Springer, 2006.

[Duda 73] DUDA , R. AND HART, P. Pattern Classification and Scene
Analysis. John Wiley & Sons, 1973.

[Felzenszwalb 05] FELZENSZWALB, P. AND HUTTENLOCHER, D. “Pictorial
Structues for Object Recognition”.Intl. Journal of Computer
Vision, Vol. 61, No. 1, pp. 55–79, 2005.

[Fergus 03] FERGUS, R., PERONA, P., AND ZISSERMAN, A. “Object
class recognition by unsupervised scale-invariant learning”.
In: Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 264–271, IEEE Computer
Society, 2003.

[Fergus 05] FERGUS, R., PERONA, P., AND ZISSERMAN, A. “A Sparse
Object Category Model for Efficient Learning and Exhaustive
Recognition”. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR), IEEE Com-
puter Society, 2005.

[Fischler 73] FISCHLER, M. AND ELSCHLAGER, R. “The Representation
and Matching of Pictorial Structures”.IEEE Transactions on
Computers, Vol. C-22, No.1, pp. 67–91, 1973.

[Jurie 04] JURIE, F. AND SCHMID , C. “Scale-invariant shape features
for recognition of object categories”. In:Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 90–96, IEEE Computer Society, 2004.

[Leibe 04] LEIBE, B., LEONARDIS, A., AND SCHIELE, B. “Com-
bined Object Categorization and Segmentation with an Im-

39



plicit Shape Model”. In: Pajdla, T. and Matas, J., Eds.,Pro-
ceedings of the ECCV’04 Workshop on Statistical Learning in
Computer Vision, Prague, LNCS, Springer, 2004.

[Leung 98] LEUNG, T., BURL, M., AND PERONA, P. “Probabilistic
affine invariants for recognition”. 1998.

[Lindeberg 98] LINDEBERG, T. “Feature detection with automatic scale se-
lection”. International Journal of Computer Vision, Vol. 30,
No. 2, pp. 77–116, 1998.

[Lowe 04] LOWE, D. “Distinct Image Features from Scale-Invariant
Keypoints”. International Journal of Computer Vision,
Vol. 60, pp. 91–110, 2004.

[Mardia 98] MARDIA , K. AND I.L.DRYDEN. Statistical Shape Analysis.
Wiley, Chichester, 1998.

[Micchelli 05] M ICCHELLI , C. AND PONTIL , M. “On Learning Vector-
Valued Functions”. Neural Computation, Vol. 17, pp. 177–
204, 2005.

[Mikolajczyk 05] MIKOLAJCZYK , K. AND SCHMID , C. “A Performance Eval-
uation of Local Descriptors”.IEEE Trans. Pattern Anal. Ma-
chine Intell., Vol. 27, No. 10, pp. 1615–1630, 2005.

[Mikolajczyk 06] MIKOLAJCZYK , K., LEIBE, B., AND SCHIELE, B. “Mul-
tiple Object Class Detection with a Generative Model”. In:
Proceedings of the CVPR, pp. 26 – 36, IEEE Computer Soci-
ety, 2006.

[Nicholson 01] NICHOLSON, W. AND GLAESER, R. “Review: Automatic
Particle Detection in Electron Microscopy”.Journal of Struc-
tural Biology, Vol. 133, pp. 90–101, 2001.

[Nicholson 04] NICHOLSON, W. “Object Detection by Correlation Coeff-
cients Using Azimuthally Averaged Reference Projections”.
IEEE Trans. Biomed. Eng., Vol. 51, No. 11, 2004.

[Perona 95] PERONA, P. “Deformable Kernels for Early Vision”.IEEE
Trans. Pattern Anal. Machine Intell., Vol. 17, No. 5, pp. 488 –
499, 1995.

40



[Reisert 07] REISERT, M. AND BURKHARDT, H. “Learning Equivariant
Functions with Matrix Valued Kernels”.J. Mach. Learn. Res.,
Vol. 8, pp. 385–408, 2007.

[Scharring 06] SCHARRING, S., BRANDENBURG, A., BREITFUSS, G.,
BURKHARDT, H., DUNKHORST, W., V. EHR, M., FRATZ,
M., GIEL , D., HEIMANN , U., KOCH, W., LÄDDING , H.,
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