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Abstract

This article presents a rotation invariant object detecsgstem. We
propose two main contributions. On the one hand we fuse tiferent ap-
proaches, the 'Parts and Structure’-model and the gemedatiough Trans-
form. Local image patches cast votes for the locations ofptimts of the
searched object. Then, an explicit model is fitted to theveded density
functions for the different parts.

Secondly, we propose a parametric voting scheme that isllas¢he
rotation equivariant matrix kernel framework. Equivadarmeans that, if a
local appearance patch is rotated, then the spatial defositiie object part
position has to be rotated accordingly. Traditionallystisiaccomplished by
a normalization procedure together with an non-parametiing scheme.
We propose to model the mapping from the local appearancé pato the
spatial density by a equivariant matrix kernel machine.réfuee we model
the spatial densities in a parametric manner. To compuseethilivariant
matrix kernel efficiently we propose a new type of steerabdre.

We compare our system to a classical non-parametric votihgrse
and the state-of-the-art features. The experimental taskshe detection
of conifer pollen in microscopical images and the detectibairplanes in
aerial photographs.



1 Introduction

This work addresses the problem of 2D object detection intaiom invariant
manner. Given some training samples of an object class, dhkig to find all
instances of the object in an unknown scene independers pbition and orien-
tation in the image plane. There are various applicationainsa They typically
appear in the context of microscopy or remote sensing. Elesrgre medical
applications, problems in structural biology or X-ray airpinspection systems.

One can distinguish between three main directions in olijet¢ction re-
search. First we want to mention the classical approach. idée is to detect
the objects by a matched filter. A correlation coefficient®sn a template ob-
ject and every possible image patch is computed. For rotateariant detec-
tion the template is compared in all possible rotationalegosSuch approaches
are widely used in structural biology to count particlese(seg. Nicholson 01
Nicholson 04). Obviously such exhaustive approaches are time consuniine
'Viola-Jones’ detector\iola 01] overcomes this by a boosted cascade of Haar-
like features which can efficiently be computed by the iraégnage. But the
original algorithm is not rotation invariant and rotatiowvariant generalizations
[Barczak O%are not straight-forward.

Secondly, we have the often called object category/clagesctien or recog-
nition systems. Their aim is to learn in a semi- or unsupexvisianner object
categories. An object category is typically a collectionvefually similar ob-
jects. For example, such systems try to learn the categagyitdrs or cars. The
intra category variations are usually very large, e.g. gsloot matter whether
there is an acoustic or electronic guitar or what color otipalar shape the gui-
tars have. To learn such variations the training sets musather large. Most
of such approaches are invariant to the position of the bedrobject, some of
them are also invariant to scale-changes, but it is hard tbdpproaches which
are invariant to rotations or reflections. Of course, a c@tepinvariance to rota-
tions if often unwanted, but a robustness is certainly @ésiThe robustness is
achieved by presenting a large amount of training data teyseem. The main
idea of such systems is relying on the 'Parts and Structucelehintroduced by
Fischler and ElschlageF[schler 73. The key idea is the separation of 'semantic’
and 'syntactic’ information. FollowingHischler 73, "The semantic information,
which is application dependent, is embodied in the spectffigning of the ref-
erence into coherent pieces”, while "the syntactic infaiiorg which is relatively
independent of the particular application, defines thesctdsdescription which
the algorithm can process”. In more recent terms (see Eayg{is 0B the se-
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mantic information is referred to as the shape or model méiron. The syntac-
tic information is often called the appearance informatwwhich is represented
by the description of local image patches with appropriatdudres. Modern in-
stances of this approach are e.g. by Fergus efalgus 03Fergus 0%or oth-
ers [Torralba 04Jurie 04Felzenszwalb 0%randall 06Schmid 96Leung 9§ to
mention a few.

Finally, we have the voting based approaches, which arengakg based on
the idea of the General Hough Transform (GHBp[lard 8] by Ballard. Sev-
eral modern instances of the idea inherit the rotation iav&e from the original
GHT, for example Yokono 04 Zhu 03 Aguado 02. Also the SIFT Lowe 04
approach by Lowe can be interpreted as some kind of Houglsfioan. Most of
these approaches are template-based, this means thadyadreatraining sample
is enough to detect the object in a cluttered scene. The legyiglto learn from
the local appearance of the object a most probable hypsthase.g. the cen-
ter, orientation or scale of the object. To achieve rotatmariance the features
describing the local appearance are usually steered witte docal directional
guantity. A more recent approach of this type is the Impktiape Model (ISM)
by Leibe et al. Leibe 04. In contrast to the classical GHT-based approaches, the
system is able to cope with larger intra-class variationtebyning the probabil-
ity for the object center given an appearance patch in a @oarpetric way. To
become efficient a codebook of local appearances is createdach entry is at-
tributed with the spatial density for the center of the obj&o get the final voting
map all possible object positions get a vote weighted by ¢émelitional probabili-
ties corresponding to the current local patches. Origyntde ISM is not rotation
invariant. An invariant generalization can be foundhiKolajczyk 06.

This article has two main contributions. An object detettaystem is pro-
posed that fuses the two latter ideas, the GHT-based agpitma8allard with
the 'Parts and Structure’-model by Fischler and Elschlagecondly, we propose
a new GHT voting scheme that is based on the equivariant xrarnel frame-
work. Contrarily to most of the former object detection gyss that cast votes
in a non-parametric way we propose a parametric voting sehefo evaluate
the equivariant matrix kernels efficiently we develop a ngpetof feature that is
suited for the integration into the equivariant matrix ledsn

As already mentioned the first main contribution is the fasbthe first two
mentioned ideas. On the one hand we keep the idea that thet objesists of dif-
ferent parts that are modeled explicitly. On the other haadyather the evidence
for the presence of the object parts by a probabilistic ypsicheme in the spirit
of the GHT, while preserving the rotation invariance. last®f interpreting the
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patches around the located keypoints as object parts, dlaeisdo cast votes for
the object part positions regarding the local appearant®eqgdatches. In contrast
to other approaches where the evidence for the presence pétts directly rely
on the keypoint’s position, this approach is much more rbhagainst the actual
keypoint’s location. It also preserves the flexibility amtbustness of the Implicit
Shape Model, i.e. the objects’ parts are still modelled iamby, which makes the
approach more tolerant against articulations. But we a0 igpore reliability of
the decision by verifying it with an explicit model in a secstep.

The second key contribution is the rotation equivariantrigy of the voting
function, that is the conditional probability for a obje@rpposition given a local
appearance patch. In this case equivariance means thiag, lid¢al appearance
patch is rotated, then the spatial density for the objedtpasition has to be ro-
tated accordingly. Traditionally, this is accomplishedaoyormalization or steer-
ing procedure together with an unparametric voting schéiepropose to model
this mapping from the local appearance patch onto the $patsity by a matrix
kernel machine, while the equivariance is implicitly geahby the equivariance of
the matrix kernels. To compute this equivariant matrix keéefficiently we pro-
pose a new type of steerable (or equivariant) feature. Baitife may be seen as
the steerable version of the SIFIdwe 04 or GLOH [Mikolajczyk 05 features.
The training algorithm is an ordinary kernelized regressiath a quadratic loss.
This has basically two reasons. It can be motivated from aimmamx likelihood
principle, and the second reason is that the quadraticdasstary invariant which
is a necessary demand to get reasonable results in the peesfahe equivariance
constraint.

The article is organized as follows. Secti@dproposes the equivariant ker-
nel framework. Three different types of equivariant kesragle proposed together
with their implementations. In the following section thefiere extraction stage
is explained. In Sectio# we develop the object model in a probabilistic manner,
where we still want to retain the generative nature of the Gi¢g, i.e. only statis-
tics about the object of interest is considered. Also thariance demands are in-
corporated in the probabilistic framework. By interpretthe conditional density
for the object part position given a local descriptor as afiomal that maps the
local descriptor onto a density function, we are able tormafdate the rotation
invariance as an equivariance constraint. Sedipnoposes how the equivariant
voting functions are parameterized and how they are tradoyea kernelized re-
gression scheme. The spatial relationships between tleetqigrts are modelled
by a full joint Gaussian model such that the training jusbimes ordinary esti-
mation of covariance and mean. In Secti®we explain how the part specific
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voting maps are rendered and how the Gaussian model is fiatdwm. In the

experimental section we apply our system to two tasks,airdetection in aerial
images and pollen detection in microscopical images. Wepaoenour approach
to standard non-parametric voting schemes and to the smldallOH-features.

2 Equivariant Kernels for 2D rotations

First we give a short introduction into the equivariant lerinamework. LetX
and Y be two Hilbert spaces. Our primary goal is to learn equivdrianctions
f: X — Y, thatis

f(T’;x) = T;f(X)
holds for allx € X andg € SO(2), wherer;, € G'L(X) denotes the group action
in the input space df andr; € G'L(Y') the group action on the output space. We
assume that both group actions are unitary. The functiomgl later model the
mapping from the local appearance pakchnto a spatial probability density for
the center or a part of the searched object.

The reproducing kernel of a vector-valued kernel Hilbedcgs is a matrix-
valued functiorK : X xX — L(Y) (for definition seeReisert 0Tor [Micchelli 05]).
Reproducing kernels &fO(2)-equivariant function spaces additionally fulfill the
following equivariance property

K(T);Xh ThX2) = T;K<X17X2)T§;L_l

forall g, h € SO(2) andx;,x, € X. One can easily verify that linear combina-

tions witha, € Y
N-1

f(x) = Z K(x,x")ay,
k=0
are equivariant functions. Essentially, there are thréferdnt ways to obtain
equivariant matrix kernels: group integration, normdl@aor matching. We will
shortly explain the three principles.

2.1 Group Integration Matrix Kernels

Let Ky : X x X — R be a scalar-valued unitary basis kernel. Then we can obtain
by group integration

K(xy,x5) = Ko(x1, T;XQ)T; dg
50(2)
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an equivariant matrix kernel. We call this kernel Group gmégion Matrix-Kernel,
shortly GIM-kernel. We introduced this construction pipie in [Reisert OT. In
fact, this approach is optimal: the equivariant represetiteorem Reisert 0T
states that any equivariant minimizer in the RKHS/Gf has to be a linear com-
bination of GIM-kernels.

2.2 Normalization Kernels

Secondly, we can use the principle of normalization to eobgai equivariant be-
havior. Assume, that we have given a normalizer funcfion X — SO(2) that
turnsx into a standard pose,, that isT’y,,x = xo. Such a normalizer function
is characterized by the fact that(r,x) = ¢~* N(x). Then, we can show that

K(x1,x2) = (T}]f\/(xl))_l Ko(TNx) X1 TN(x)X2) T N(x)

is an equivariant kernel. The kernél, is again a unitary scalar basis kernel.
In fact, this kernel is also positive definite, we call it Naimation kernel, or
N-kernel.

An inherent problem with the normalization approach is tieasonable nor-
malizer procedures are discontinuous and give not alwaggiamesponses. Usu-
ally the normalization algorithm works as follows: a scdéaturen(x), usually a
gradient direction histogram of the patehis maximized over all possible poses,
that is

N(x) = argmaxn(7,x)

geSO(2)

By no means it it is assured that the maximum is unique. Anad &ve unique,
there may be other local maxima that are very close to theafjlobe. Thus,
small distortion may cause discontinuous jumps\othat may be hazardous for
further steps. To partially avoid such problems the follogvsolution is proposed
in the literature. All those local maxima are selected wheslees are above
e.g. 85% of the global maximum. This idea can also be easily incoreadrin
our kernel framework. LefV’ be a set valued normalizer, i.éV’ returns a set
of transformationsV’(x) = {¢1, go, . . .} that all normalizex to certain standard
poses. Then, an equivariant kernel is given by

K(x1,%2) = Z (Tp) ! Ko(Tyx1, TiX2) T}, (1)

gEN'(x1)
heN'(x9)



This approach incorporates very gently known techniquas were introduced
ad-hoc in the context of object detection and localizatMikplajczyk 06 Teynor 07
Lowe 04 into the equivariant kernel framework that is the basishig tvork.

2.3 Maximum Matching Kernels

The third alternative is a registration or matching procedinstead of specifying
a normalized pose of the considered patterns beforehaagatterns are com-
pared in all possible poses 'online’ during the kernel eaatn. We again need
some basis kernét,. Then,
K(x1,%;) = Ko(x1, T X2) T,

Y., whereg* = argmaxiy(x;, T:x;)

9€g 7
is an equivariant indefinite kernel. We call such type of kéMaximum Match-
ing kernel, shortly MM-kernel. The MM-kernel approach hasikar problems
as the N-kernel. The maximum of the matching functiog(x;, 7} x,) does not
have to be unique and robust against small distortions ahthé patterns. In fact,
the same solution as for the N-kernel can also help to wedksreffect. Instead
of just taking the maximum of the matching functiéf (x., 7 x,) we take all
local maxima that are within a range to the global one andegyeeover all those.

2.4 Implementation

Both, the GIM-kernel and the MM-kernel, rely on the compiatatof a general-
ized cross correlation function

c(¢) = Ko(x1, TpX2),

where¢ denotes the rotation angle. It is well known that a fast catajpon of

the cross correlation function is possible in the Fouriemdm. Thus, we will
introduce in the next section a novel local feature whosau@ngomponent is
represented in the Fourier domain which allows a fast coatjmurt of ¢(¢).

By now, assume that the cross correlatign) is given, and another issue is
the representation of the output spacelf the components of the output are also
given in the Fourier domain, the computation of the GIM-lens quite easy.
Because then, the representatidpof the group is a diagonal matrix with entries
el on the diagonal. Hence, the GIM-kernel is also diagonal trighentries

2 .
Ky (x1,%2) :/0 c(p)ell® dep
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Thus, the GIM-kernel is just the inverse Fourier transfoffrthe cross correlation
functionc(¢). Practically, the transformation is accomplished by thst Faurier
Transform (FFT).

The MM-kernel algorithm is also as simple if we choose a Feruepresenta-
tion in the output space. Just search for the set of maximaeatrtoss correlation
function, call themy?, and returrei’® weighted by the maximum as tli kernel
entry, that is

K (x1,%2) = Y _ c(g])e
where the sum ranges over all local maximac@f) that are abov&5% of the
global one.

For the implementation of the N-kernel we do not need to cadmthe cross
correlation. During feature extraction we just have toistee orientation of the
feature with respect to some stable quantity, we used thenmaagf the local
gradient orientation histogram and save this orientatgether with the extracted
feature. Local feature extractors like SIFT or GLOH are dase this idea. To
evaluate the kernel we just have to compute some similargsure between the
steered features and multiply it with the correspondingigractions, that is

KN (x1,%3) = Z Ko(x{”, x5) efltes=eo),
i,J

Where(x?), ®;) and(x(zj), ;) denote the set of steered features together with their
steering orientations.

3 Rotation Equivariant Features in 2D

3.1 Keypoint Detection

The very first stage of the object detector is covered by diostanvariant key-
point detector. We use a detector that is not invariant agaicale changes. This
has basically two reasons. The application domains thatonsider later do not
demand for a scale invariant treatment. For example, pgilaims have a typical
size. Particles of different sizes, even if they look simhave to be rejected a
priori. And secondly, there is a big disadvantage if we coeisscale invariant
keypoints. They are very rare in comparison to just rotatnvariant keypoints.
This makes particular problems if the objects are very savadl have no inner
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texture or structure. In the experiments we want to detegtiotdwhose sizes are
from about20 up to60 pixels. So, just keypoints below a scaletof pixels are
important.

We use a curvature based key point detedtandeberg 98 If we represent
the image by an image functidn: R? — R, then the used saliency map can be
written as

S(I) = (VD) H(I)(VI) — %TV(H D)vI

where H (1) is the Hessiahof the image andv1 the gradient. Practically, the
Hessian and the gradient are computed by finite differenoesdightly blurred
version of the imagé&. The proposed saliency map combines both, an edge and a
corner detector, the gradient gives primarily responsedigres while the Hessian
gives response for corners.

The keypoints are located by a local maxima searctbdn. The set of all
detected keypoints is calle®l. Each keypoint’ € Z is attributed with its local
appearance patck. It describes the local neighborhood of the keypoint. We
denote the location of the keypoints together with its lcgapearance patch by
X = (Z,x). These are combined in the set

X ={X|zZe Zand(z,x) = X}.

The setX’ of local appearance patches will be the basis for all furtieisidera-
tions. We assume that the imabhis completely described by

3.2 Feature Extraction

One key issue of our detection system is the rotation eganamodelling of
the voting functiorf that casts votes for the object center and parts, resphctive
We will obtain the equivariance by the use of the proposedvagant kernel
framework. We will consider Group Integration Matrix-keta (GIM-kernel),
Normalization-kernels (N-kernels) and Maximum Matchkernels (MM-kernels).
We have already mentioned that the evaluation of GIM-keraedd MM-kernels
both need to compute cross-correlations between the imgppatterns. Thus, we

Lif the image is given b¥(#) = I(z,y) then the Hessian matrid € R?*? is given by

— azzl(uvv) 8yII($7y>
H(I) = ( Ouyl(u,v)  9yyI(z,y) ) 7

whered denotes the partial derivative
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need a representation that allows us to compute such coossations efficiently.
It is well known that the Fourier domain is well suited fordhbecause one can
make use of the Fast Fourier Transform (FFT).

For each patck we compute a feature vectdr(x). Let ! (x) denote the
components of this feature vector, where the intlerrresponds to the Fourier
representation and is an additional feature dimension. We have two demands
for the feature function. It should be discriminative antbust like e.g. SIFT
[Lowe 04 or GLOH [Mikolajczyk 05 features and on the other hand we have to
represent the angular direction of the feature in the Fodoenain to allow a fast
computation of the cross correlation. The second demanbeaxpressed as

P, (Tix) = €9, ().

Note, that is property is nothing else than equivariancaefeature function with
respect to rotations, or in other terms one may also callfd@ture a steerable
feature, according to the steerability property known friomage filters (see e.qg.
[Perona 9.

Following the style of the SIFT features we propose a feahatis also based
on the gradient of the image patch. We denote the gradiens#igng asVx ().
For convenience we assume that the position of the keyposttifted to the ori-
gin. Basically, the feature is a joint histogram over thdatise from the origin
and two angle-like quantities. In Figufiewe visualize the configuration of the
three quantities. The first angle is the cosine between tkgiqo vectorz and
the gradient directio’Vx(«). The second one is the absolute angle of the posi-
tion arg(«). We represent the latter histogram dimension in the Fodoenain.
Formally, we can write the feature as

' Vx(u e — iarg(@) 3-
Y, (x) = /ﬂm — an) 8(|@]| — d,)|Vx(@)| 5D d,

] <dmax

whered denotes the Dirac delta functions aag andd,, are the centers of the
histogram bins for the distance and the relative angle gasly.

The algorithm for the computation of the features is giveAlgorithm 1. We
call them Equivariant Gradient Histograms, shortly EGtiees.

As we are highly interested in small and compact featuresxaenaed how to
keep the number of bins as low as possible. We found that aiaregiibinning
for the distance is advantageous. Equiareal means thatdesteince bin should
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Algorithm 1 Equivariant Gradient Histogram
Input: A patchx(w) and a quantization schemg: R x R — N

Output: Feature arrayyp), < C with n = 0,...,m — 1 and [ =
0, Imax

1: Initialize feature arrayp’, with zeros for all» and!.

2: for all pixels in the gradient patcWx do

3. Computed = ||i| anda = ||%|g§g||'

4:  Quantize(d, a) into the discrete bim = Q(d, a).

5. Accumulatey! = 1! + |x(i)| e > for all 1.

6: end for

be responsible for the same amount of area in the patch asdidhuhe same
number of pixels. We depicted this in Figute The shaded areas correspond to
different bins ford. As the area of the circle grows quadraticallydnwe can
achieve an equiareal binning by a traditional equidistamtibg of v/d. So we
were able to choose betweémnd6 bins ford while keeping the robustness and
discriminativity high.

3.3 Computation of the Cross-Correlation

Based on these features we are able to compute the crost&atorre(¢) =
Ko(x1, T)(;XQ) in a fast manner. Therefore, we have to assume AQat a dot-
product kernel, meaning that it has the form

KO(Xh X2) = F(<lII(X1)7 \II(T)(;XQ»)v

J/

CIinear(d’)

wherel is a nonlinear function. From standard kernel literati8eHolkopf 02
we know that applying any analytic functidh : R — R with positive Taylor
expansion coefficients to a kernel yields again a kernel. Bf@io cjnear(¢) We
have to compute an inner product separately for each fregusamd apply on the
result an inverse Fourier transform.

Clinear<¢) = i <Z w;(xl)’lp;(}(ﬂ) elld

=0 n=1
In practice, we use a Fast Fourier Transform (FFT) for the maation of the
outer sum. In the experiments we have chosen the followiag(fwon)-linearities

Dy(t) =t, Ty(t) =%, Ty(t) = e, Ty(t) = 1+ M + \?/2, (2)
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Figure 1: The geometric interpretation of the feature computation. For each
pixel « the configuration is described by three quantities: Theemg)(u), the
length|u| and the relative angle between the gradiert(«) and«. The shaded
areas indicate the histogram-bins for the lenfgth In this case4 bins are dis-
tributed over a radius of4 pixels, which is a typical choice in our experiments.
The bin sizes are chosen such that approximately the sambemnwhpixels are
assigned to each bin.

wherey € R. The first one corresponds to a linear kernel, the secondmae t
guadratic kernel, the third one is an exponential kerndlithelosely related to a
Gaussian RBF kernel and the fourth is an approximation oéxipenential kernel.

4 The Object Model

One key assumption is that the input image is completelyactarized by the
feature set’. In practice, this assumption is reasonable if the numbkeyboints

is large enough. It further simplifies the following statat considerations. We
assume that our object consistsidfdifferent parts. Each part has a positi§n
The whole configuration of all object parts is the vector ¢stitgg of the object
positionsc = [, ..., ¢y—1]. The goal of the detection process is to find a image
portionZ C X and a configuratiod such that the posterior probabilityc | Z, 6)

is maximized. That is the probability that the object confadion ¢ is observed
when seen the featuresétor a given set of model parametéksin the following
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we often omit the/-dependency as it is mostly formal ballast. Always assume it
as implicitly given, if necessary we explicitly refer to it.
Using Bayes’ rule we can decompose the posterior as follows

. . P(C)
c|l)=pZ|c)—,
pEIT) = p(Zle) o
which makes it possible to model the appearance {€fft) and the shape prior
p(€) independently. Following the terms of Fischler and ElsgatdFischler 73,
we decompose the problem into a 'syntactic’ and 'semanad.prhe main inde-
pendence assumption is that the likelihood of seeing thg@#iaiven the object

parts decomposes into independent distribution over tidesbbjectparts.
M—-1
p(Zl§) = 1] »(Z)
j=0

Until now we have followed the common statistical framewkmnlown from active
shape models or object recognition, see for exantpddzenszwalb 05 Usually
the distributiong(Z|c;) are now directly modelled. But we want to point out an
alternative way. To apply the idea of gathering the eviddocehe presence of
object parts by a voting scheme, Bayes’ theorem is appliathamn the densities
for the parts. Following this we obtain

p(c | )
p(c)

Due to the invariance constraints the absolute positiorthefparts have to be
ignored, so we neglect the marginalg’;) in further considerations. Considering
the densitied(c; | Z) the idea of voting for the presence of object parts becomes
obvious. Interpreting as a set of samples drawn from a underlying densgiX)
representing the image under consideration, we make thaviog estimation.
The probability for a object part’s position can be written fap(c;|X)p(X)dX

by the law of the total probability. We can approximate thjs b

p(G1T) =) p(&]X) 3)

Xel

WE1T) =0 ]

In conclusion, we have to learn the distributigris; | X) that perform the votes
for the object parts, ang(c) that priors the shape in terms of the configuration
of the object parts. Both have to fulfill several invarian@straints that are
discussed in the following.
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4.1 Invariance of the Voting Function

First we investigate the distributions which vote for thategs of the object parts.
They have to be invariant against rotations and translation

Translation: p(¢|(Z,x)) = p(@+1t|(Z+1tx))
Rotation: p(¢|(Z,x)) = p(R,C|(Z,1,%)

Invariance against translations can easily be obtainediftyl¢arning the prob-
abilities relative to the position of the observed keyppoir@. we normalize the
distribution and just learp(¢ — 7| (0,x)). For the rotation it is different. We
do not have any anchor point to make the angular coordinatesolute’ in some
way. In the SIFT framework by Lowd_pwe 04 local maxima of the gradient
orientation histogram are used to normalize the featuréls nespect to the an-
gular coordinates. We want to achieve the invariance atamly by the use of
equivariant kernel methods.

To apply the equivariant kernel framework we reformulateitivariance con-
straint. Interpreting(¢| (0,x)) as a functional that is mapping a patctonto a
probability distributions ovee, the rotation invariance is translated to an equiv-
ariance constraint for this functional. Let us formulates tnore precisely. We
define a functiorf : X — Y that takes a local descriptarand maps it onto a
vectorial outpuf(x) € Y. The components of the output are interpreted as prob-
abilities for the occurrence of the object part at a speatieation. That is, each
component of this vector is indexed by a positiornTo access these components
of the vector we just have to compute an inner product withrahwector given
its only contribution at one specific entry that is indexed:biore formally, we
have

e:f(x) = p(¢](0,%)).
By ez we have denoted the unit vector that selects the approgdtg To under-
stand that the rotation invariance of the dengity equivalent to the equivariance
of the functionf we consider a rotatiogp by anglep around the origin,
p(@(0,73x)) = eif(rix) = eir/f(x)

uni. ef. 1oy R

= (e TH(x) E (enze) f(x) = p(R;€] (0,%))
which is equivalent to the rotation invariancejofFirst we have used the equiv-

ariance off and then the unitarity of the rotation and then the definiti@ate; is
a vector that evaluates at positign
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4.2 Invariance of the Shape Density

Also the shape prigw(c) has to fulfill translation and rotation invariance, namely
p(€) = p(R,€ +11),

whereR,c + t1 denotes a rotation and translation of the whole configunafio
model p(c) we want to use a full joint gaussian model. But first, consither
invariance constraints. To include them we make the expansi

p(€) = p(C,7,¢) = p(¢| ¥, ¢) p(T, §). (4)

where v denotes the 'center’ of the configuration andhe orientation. Both
are deterministically dependend @h Because no orientation and position of
the objects should be favored one has to neglégto). Due to the invariance
constraint the remaining part has to behave like

p(€|7,¢) = ple e — 510, 0)

and hence we only have to leap(€ | 0,0) wherec is constraint to be in a fixed
position and orientation.

5 Training of the Model

We assume that a set of training images is given, where iniegde the training
objects are marked by bounding boxes and the object partslaeted by their
absolute positions. It is assumed that all images have the saientation. The
learning process is two fold, on the one hand we have to eitha densities
p(c; | X) for each object parg; and on the other hand the shape prio€) that
covers the interrelations between the object parts.

Consider one training object marked by a bounding box. Wecsealll key-
points ¥ and their associated features that lie inside the bounding box. Sec-
ondly, we gather thé/ labeled part positions; of the object and compose thereof
M object specific training sets, each consisting of all tuptesX*) = (&;, (2, x*))
for all X* that lie inside the bounding box. To traifc; | X) = p(¢; | (Z,x)) we
union all object specific training sets and obtain for eagkdtpart; one training
set7;, = {(¢#,X*) | k=0,..., N —1}. The numbetV denotes the total number

J
of training patches.
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We already mentioned that we want to model the densiti€s X) by a func-
tionf; : X — Y that gets as input a local appearance patch and returns a prob
ability density over the object part positigh We model this density parametri-
cally by the use of a circular harmonic expansion such theit tlepresentations
are compatible with the proposed equivariant matrix kexndlhe functionf is
trained by an ordinary kernelized ridge regression scheititearquadratic loss.

Secondly, we have to train the shape pyi¢f). Each training object together
with its part position€ = [c, ..., ¢y_1]| Serve as one training instance. The shape
prior p(c) will be modelled by a simple joint gaussian model, i.e. ttening
procedure is just the usual estimation of mean and covariahthe object part
positions.

5.1 Parametric Representation of the Voting Functions

As already depicted in Sectiohl we can interpret the conditional probability
function as some vector valued functifiix), where the vector entries correspond
to probabilities fore. We omit here the dependency on the part numbbecause
the considerations are for all object parts the same. Rélthe output domain
of the functionf are a spatial probability density, the probability values ac-
cessed by an inner product with an unit vector, egf(x) = p(¢| (0,x)). The
guestion is, what is an appropriate parametric model ferdensity. To make the
output off compatible with the proposed matrix kernels we make a deosmp
tion into an radial and an angular part as mentioned befoegpipose to use the
following representation:

lmax E-—1

elf(x) = > > fli(x) 9D ¢(|d]), (5)

l=—Imax 1=0

where argd) is the angle of the vectaf. The functions; are triangular shaped
envelope functions only depending on the distahee|d|, i.e.

rizd for r—A<d<m
EZ(d): ]_—”A_d for Tz‘<d<T’Z‘+A s
0 otherwise

where ther; are fixed centers of the radial pa¢ts The functiong, in the center is
treated specifically to avoid a hole around the origin.

The expansion coefficienfd(x) can be interpreted as a representatiofiaf
polar coordinates, where the part depending on the anghkpaneled in Fourier
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domain, corresponding to index tlieand the radial part, corresponding to the
indexi. In Figure2 we show two examples. The functions are sinusodials of
angular frequency® and3 that are swapping around the origin of the plane. For
example, the upper function in FiguPehas its only entries gt>* = =24 = 1,

Figure 2:Example for the modelling of the voting function. The graph on the
left corresponds to a function witf* = 0 except forl = 42 at one particular
distance, specified by the indéxThe function in the middle has only entries at
[ = £3. The function on the right is an example for the unit veetorThe Fourier
expansion is truncated after 10 terms. One can clearly teéaats that produced
by this truncation.

We have to ask what are the expansion coefficieftof the unit vectore,
in this representation. They will play later an essenti& o the training stage.
Interpreted as a probability density it is just the densityhe certain event at
positionc, that is, a density that has clear peak at positioNVe cannot expect
from the representation proposed in equatigntat it can model arbitrary fine
peaks at some positian Due to the fixed discretization introduced by the trian-
gular shaped radial functions it can even happen that pgakfferent positions
will show different artefacts. To get a smooth represenataind a symmetric
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interpolation kernel we choose

lmax FE—-1
efei= Y Y alld)e 19D A (| d])
I=—Imax i=0 T,?

C

In Figure2 we show how a unit vectai: looks like. We used a Fourier expansion
up tolmax = 10. We can clearly see the artefacts that are created by thisation.

5.2 Kernelized Regression

The key issue is to learn the conditionalgc| X) = p(¢| X, #) from a set of
samplesT = {(¢*,X*) | k = 0,..., N — 1}. The subscriptl denotes the set of
internal parameters of the estimated distribution. Weaalyementioned that it is
sufficient to learmp, (€| (0, x)) due to the translational invariance. We assume in
the following that all training samples are given in the fai@h, (0, x*)).

The goal is to find the maximum likelihood estimate of theritisttionpy (| (0, x))
given the tralnlng samples. We have embedded the distibirti a vector space
by settingpy (¢ (0,x)) = el fs(x). So, we have to formulate the maximum like-
lihood criterion for the functiorf,(x) directly. It is well known that a hypothe-
sis minimizing the KL-divergence with respect to the enwgalidistribution also
maximizes the likelihood of the given sample. ke 0] it is shown that learn-
ing with respect to the KL-divergence is related to learnwith respect to the
guadratic distance in the sense that one have to minimize

2

L(#) = IIfe( *) —eal® (6)
0

TF

with respect to the parametetsBut, the equivalence only holdsfifis contrained
to be a density, i.e. all entries are positive and sum up tlih we want to solve
this problem by an ordinary kernelized regression we areahtat to forcefy(x)
to behave strictly like a density. But, for a kernel of locapport, for example the
exponential kernel, the solution behaves very much likemthgimum likelihood
solution. As usual in kernelized regression, the coefftsigfbi(X) are modelled
by a linear combination of kernel evaluation



The set) of complex weighting factor§ = {a}' € C|k =0,...,.N -1, | =
0,...,lmax,? = 0,..., E — 1} have to be learned. We can let the Fourier index
range only fron to /.« because the function that we want to learn is real valued,
then components with the negative index are the complexigaig of the positive
ones. The minimization probleng) translates directly to the problem of solving
for eachl andi the linear equations:

N—1

Ui kY boi i
E K'(x?,x")ay" = e
k=0

If we truncate the Fourier expansion aftgg coefficients and us& components
for the radial part of the function, we have to solve in tqfakyx + 1) - £ linear
equations of dimensiofy.

5.3 Training of the Shape Prior

To model the shape densityc|v, ¢) we want to use d/-dimensional complex
gaussian model. This means that we interpret the posifi@an&? as numbers in
the complex plan€. We will indicate this by omitting the vector arrows, i.e. we
write c instead off andc instead ofc. This approach has two advantages. At first,
it forces the one-dimensional marginals (real two-dimemnal) of any Gaussian
to be isotropic (see appendix ). This is a reasonable assumiptthe presence of
the invariance constraints. The second reason is that thelea representation
is very well suited for the optimization procedure appliater.

We already sketched how to include the invariance conssréiy a normal-
ization approach. Thus, given the covariance mattix C**M and the mean
m € C the distribution has the form

p(c|v, ¢, m, C) o e~ (e (m+v1))TCT e (e¥mtoL))
The Gaussian assumption can also be interpreted as a "sprougl as proposed
by Fischler and ElschlageFischler 73to model the shape variations. The mean
m can be interpreted as the mean or standard shape of the phjecbnstellation.
The covariance matrix models the stiffness of the connedieiween the parts.

To learn the model we always assume position and orientabomalized ob-
jects, i.e. we learp(c|0,0). Itis assumed that the user has labeled a sufficient set
of training objects by manually selecting thé object parts. The learning process

21



itself is a usual estimation of the mean and covariance peters1 We further as-
sume an isotropic Gaussian error model of the observedrigggamples, that is
we regularize the covariance estimate @y + oI, which is, of course, also
useful in the absence of enough training samplesosfkgwe choose values in the

range from one to several pixel units.

6 Detection

As already explained the goal is to find an appropriate subsétfeature points
and a configuration such that the posterior probability

M—-1

p@|Z) o p(@) [ ] w(&17)

J=0

is maximized. We divide the problem into two parts. First waken an initial
hypothesis. We select one specific part of the object a prldris part should be
the most prominent and easily detectable of all parts. Hergart, let us say,
without restriction of generality, we compute the votinggméc, | X') and search
for all local maxima above a certain threshold. These maxdneadesignated as
our initial hypotheses. For each maximum we gather all rimghg keypoints
within a specific distance into the image portibnFor this portion we search for
an optimal configuratio@ by an iterative optimization procedure.

6.1 Rendering of the Voting Maps and Finding Initial Hypothe-
ses

To find the initial hypothesis we select the péyf the object a priori. We have
to compute the voting map(cy|X') relying on all detected keypoints, according
to equation 8).

As explained, the corresponding functidipéx) do not exactly behave like a
distribution. Consider a featusewhich is in terms of the feature distanjpe—x*|
very far away from the training samplg$. If we use an exponential GIM-kernel
(a kernel with local support) the functidij(x) tends towards zero. And thus,
also the mean ' f(x) tends towards zero. This is definitely not an appropriate
behavior for a density, because for any density it alwaystolsl 1" f)(x) = 1.

But, in the actual implementation we neglect this effectisTéjustifiable because
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for the sample very far from the training samples we do notteaw knowledge,
so it is reasonable that they do not contribute to the ovprabability.

We directly use the contribution of the functifiy{x) from all observed local
appearances” in the image under consideration to approximate the density

CQ|X Z f() e(go_gk),

(ZF xk)ex

In practice the voting map is rendered at a lower resolutian the original image.
This is mainly due to complexity reasons. We use sizes frolfruipeto fourth of
the original resolution, depending on the size of searcligelct In Figure3 we
show an example of a rendered voting map.

035

B . s
{- - ' 0.25
-

Figure 3: Example for a voting map. On the top you see the original image
together with the detected keypoints marked by small cepssethe bottom the
rendered voting map. The voting map is rendered at half ofékelution of the
original image. One can see that the voting map is also negatisome points,
because of the non-density-like behavior of the voting fioms.

Finally, we select the local maxima of the voting map asahhiypotheses. At
this point one could be already finished. One could desighatee local maxima
above a certain threshold as successful detections and them. But we want to
go a step further and apply the already sketched verificatage. Therefore, we
select for each initial hypotheses a subgetd keypoints whose distance is lower
than a specific threshold to the initial detection. Basednisgubset we render
the voting maps for the other parts of the object and prodess tas explained in
the next section.
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6.2 Hypothesis Verification / An Active Point Model

Having found the sef the voting maps for all other object parts are rendered
based on this subset. To obtain higher accuracy the resolatithis voting maps
are usually chosen higher than for the initial hypothesisen, we normalize the
rendered voting maps such that they are probability dessitiVe set all negative
entries to zero and normalize the sum over all entrids to

The goal of the verification process is to find a configuratipan orientation
¢ and a positiony such that the log-likelihood is maximized

(e, 6,v) = log (pww, o 1 v m)

We use an iterative approach for optimization. In the firepste assume that
the current modet is fixed. Under the assumption that the mean shageas a
vanishing center of gravity 'm = 0, it is easy to compute the optimaland ¢
analytically by Procrustes analysis (see eMpaidia 99),

14T -1
U—M]_CC

¢ = arglc'C 'm)

This is only possible due to our restriction td&dimensional complex Gaussian
model, instead of the\/-dimensional real model. Afterwards, we make a gradi-
ent descent foe — ¢+ oV L, wherea is a step width. These two procedures are
repeated until a stop criterion is met. Such an optimizaigorithm is typical for
active-contour approaches that incorporate a prior inftion about the shape of
the contour. In our case the shape prior is the maaof the gaussian distribu-
tion and the covariance matri® models the typical variation. In Algorithiathe
optimization procedure is presented in pseudo code.

The question remains how to obtain good initializationdhefparameters. As
we already have an initial guess for the object partit is obvious to use this
for initialization. But still ¢ is arbitrary. To get a good initial estimate forwe
learn an additional distribution, namely¢|x). In this case the output vector is
just a distribution over the angtein Fourier representation. It is assumed that the
training samples are all given in normalized orientatiany& just have to learn
a function which for all training samples returns a vectothwits only entry at
positiong = 0.

As initial estimates we use the four highest local maximaheféstimate for
p(¢|Z). Finally, if we have obtained the optimal configuratiéif' we compute
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Algorithm 2 Optimization Procedure
1: Initialize ¢

2: repeat
3 Letv=L17C'c” andg = argm"C~'c)
4 Letk — |veelm Vp(eg,17)

p(es’1) 7T plel) 1T

5:  Updatect*) = c® + a(k — C(em + vl — c?))
6: Increment =i+ 1.
7: until ¢+ — ¢ < threshold

the probabilityp(c°P*| Z) and select the highest of the results of the different ini-
tializations. We call thig(c°P'| 7) estimate the detection confidence forAs a
final step, it is decided via thresholding of the detectionfictence whether the
object is present or not.

7 EXxperiments

For the actual implementation of the proposed approach wed Msatlab and
C++. The time-consuming tasks, including the computation effdatures, the
kernel matrix and the voting maps are implemente@++ using thanexinterface
of Matlab. The development and experiments took place & &.8Ghzso all
timings reported below are achieved on this machine.

Experiments on two different databases are presented. hEhdetection of
planes on aerial photographs and the detection of pollengna microscopical
images. There are several parameters that can be optirni#esl¢onsidered data.
The parameters for the feature computation are: the cutdiencyl,.x for the
Fourier transform, the number of bilsin angular directior, the number of bins
D in radius direction/ and the maximal radiug,a in pixel units. For the voting
scheme, there is the numbe&rof triangular shaped envelope functions that are
used to synthesize the voting function and the radial rangg over which they
are distributed. The parameters for the different database shown in Tablé.
They were chosen manually by trial and error on small trgsiets.

Another important parameter is the number of keypoints. tRertraining
phase we adjusted the threshold such that the number of kegstay below ap-
proximately 500 in order to keep the detection times in ageable range. During
the detection process the threshold is usually reducedat@atbo keypoints are
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found in regions with very low contrast.

7.1 Comparison to Reference Methods

We proposed a new type of local feature descriptor togetit@rawnew paramet-

ric voting scheme. To examine the performance of our featweehave chosen to
consider additionally the so called GLOH features that areenitly known to be

one of the best local descriptors. On the other hand, to coerpea proposed vot-
ing scheme, we will consider also a non-parametric votimg iusually applied

for GHT-based object detectors.

7.1.1 GLOH Features

The GLOH (Gradient Location and Orientation Histogramjtdieas Mikolajczyk 05
are a further development of the SIFT featuresve 04. They were built to in-
crease its robustness and distinctiveness. Compared ¥ SI& histogram is
computed for 17 location and 16 orientation bins in a logapdbcation grid.
PCA is used to reduce the dimension to 128. The GLOH featuilebewsed to
compare our features introduced above with the stateesfith

To obtain rotation invariance the GLOH features are steatede main gra-
dient direction that is estimated from the local neighboxhdf the main gradient
direction is not unique the feature is computed for sevarattons.

7.1.2 Non-Parametric Voting

Traditionally, the GHT-baseallard 81 object detection systems like the ISM
[Leibe 04 or others Mikolajczyk 06, Teynor 07 rely on a non-parametric voting
scheme. That is, the conditional density | X) = p(¢| (%,x)) is estimated in a
non-parametric manner (see e Qua 73 for non-parametric density estimation
in the context of pattern recognition). To make the compamateasible most

Feature Voting
lmax B D dmax | £ Wmax
Pollen 8 8 6 157 40
Planes 6 6 4 12 |7 40

Database

Table 1: Parameters for the different databases
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approaches compute beforehand a so called codebook ofdppebrance. The
entries of this codebook can be imagined as those patteirest contain the main
support of the density. Those patterns are usually chosée tduster centers
that are obtained e.g. by agglomerative or k-means clasterHow to obtain
optimal codebooks is still an open problem. Depending orytpe of clustering,
it involves the tuning of a lot of parameters and severalgieshoices have to be
made. We want to circumvent this to avoid any pitfalls by gsirtiraditional kernel
density estimator with a Gaussian kernel. Though this igedume consuming but
it is probably the most simple and most canonical way.

Assume that the set of training samplEs= {(z*, X*) | k =
are given in a translation normalized form, thati§, X*) = (z*,
the density estimate looks as follows

N-— . 2 X_Xk; 2

k=0 Uspat Ofeat

0,...,N—1}
(0,x*)). Then

whereog,, andoz,,, are fixed width parameters. The tetiix) is a normaliza-
tion factor that ensures that¢ | X) is a conditional probability density. It is

proportional to
-« % — x*|?
Z(x) g exp <—f)

Ofeat

The actual implementation is quite simple. Assume we havengihe set of local
appearance patchas To render the voting map we have to do the following. For
eachX = (Z,x) € X we castV votes at the positiond+z* fork =0,..., N—1.
Each vote is weighted by exp(— M) The spatial form of the vote is a
Gaussian. To avoid to render for eac‘ﬁI vote a Gaussian intedtieg map, we
just accumulate a single pixel by the appropriate weight @mole the voting
map later with a Gaussian when all votes have been casted.

The above presented non-parametric voting scheme is arglation equiv-
ariant. The rotation equivariance is usually incorpordigdh normalization ap-
proach (see e.gMikolajczyk 06 or [Teynor 07). We do not want to show this
here in detail. The approach is only modified slightly. Théing directionsz*
are measured relative to the gradient main directions arole training points
and votes are then casted relative to the gradient maintidinesf the observed
keypoints. If the gradient main direction is not unique theples are duplicated
for all local direction maxima that are abo$&% of the global one.
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7.1.3 Evaluation

For evaluation and comparison we consider Precision/Rg@ghs and the equal
error rate (EER). The equal error rate is the error rate nbthivhen the number
of objects that are not detected is the same as the numberoofyvaetections.
We consider an object to be detected if a detection is less la#f the object

size away from the object’s center. If there are multipleedgbns in this range
with different detection confidences we choose the deteatith the maximal

confidence.

7.2 Aircraft Detection

To demonstrate the effectiveness of our approach, we lesyhtem to detect
planes on aerial photographs of airports. We obtained 2i@dlaerages from
Google EartR of the airports of Frankfurt, Munich, London and New York.€Th
altitude of the images is approx. 700ft. Each image is sctddtie of size of
1200 x 1000. A plane has then an average size of about 50 pixels. All iméme
gether contain 208 airplanes. The images show heavy chuttéthere are many
possible candidates for false positive detections. Addilly, the lighting condi-
tions change such that the system has to cope with many kirdierent shad-
ows. And finally, there are planes of different sizes, theesygs confronted with
scale changes up to a factor of two. To cope with such scalegesave applied
the system at four different scales, where the scale is sahhggarithmically by a
subsampling factor of .2, that is, the smallest image is by a factoriaf* smaller
than the original. To get the initial hypotheses the fouingptnaps from the dif-
ferent scales are stacked together in a 3D voting stack antbtlal maxima in
this 3D stack serve as detection hypotheses.

Figure4 shows the images that were used for training. They are chsgsn
that the typical variations for the different kinds of shadocan be learned. We
selected three object parts: the region where the wingshtthe fuselage, that
is the 'center’ of the object and the two tips of the wings. Tleater is used to
gather the initial hypotheses.

In Figure6 a detection example is shown to give an impression of the com-
plexity of the images and of the performance of the systeme ddmputation
time heavily depends on the complexity of the scene. For itlengexample, that
is one of medium complexity, our algorithm needs about 1@isés. Most of
the time is spend for the verification stage. In Fighr®me typical examples of

2Google Earth, A 3D Interface to the Plankttp://earth.google.com
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Figure 4: Training Images. The six images that were used for training. We let
the plane consist of three parts: the center and the two tigbeeavings. They are
marked by black stars.

Figure 5:Planes that were not detected.

missing detections are shown. Their small size and the h&fsagows seem to be
responsible for the misses.

In Figure7(a)we show a PR-graph that shows the performance of our detec-
tion system with and without verification by the active pambdel. The voting
function is based on a GIM-kernel with an exponential basrsé&l. It is obvious
that the verification method improves the results dramiyicaVith verification
we obtain a EER 080.3%. Without verification we are only able to get a EER of
41.8%. The overall number of detected aircraft6%) is not derogated.

For further comparison we want to leave out the verificatiages and directly
work with initial hypotheses that are obtained by the votmagp for the center
of the aircraft. This allows us to figure out more clearly tmelerlying circum-
stances. And secondly, in literature there is no comparnediidation approach
that works in a rotation invariant manner (to the author'swledge). Although
the ISM [Leibe 04 uses segmentation masks to obtain even better confidence
scores, it does not work in a rotation invariant manner andreegalization is not
straight forward.

In the next experiment we compare the GIM-kernels for ddfekind of non-
linearities as given in equatiof)( Figure7(b) shows the results. It is astonishing
that already a linear kernel works quite well. Note, that mkbzed regression
with a linear kernel is equivalent to a traditional lineagmession scheme, i.e.
the mapping from the local features onto the voting funcitoa linear one. The
guadratic kernel improves the performance but cannot ctenwaiéh the exponen-
tial kernel. Actually, the approximation of the exponehitiarnel is as good as the
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Figure 6:Recognition examples for the plane databaseTlhe yellow rectangles
and dots indicate the detected configuration. The white giotsthe position of
the initial hypotheses. The white arrows show two falsetpasifive not detected
false negatives and one example for a wrong determinatidheobrientation of

the plane.
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Figure 7: Evaluation of our method

exponential itself. That is quite astonishing. The undegyeature space of this
approximative kernel is just the direct sum of feature spHdbe linear and the
quadratic kernel. Thus, it seems that the feature spaces ale worse than the
combination of both with a proper weighting. The value fowas chosen by a
manual tuning on a small training set.

In another experiment we compared the different kind of eayiant kernels.
We always used an exponential scalar basis kernel. In Fi§(agwe show
the Precision/Recall graph for the GIM-kernel, the Norzetion-kernel and the
Maximum-Matching-kernel. The GIM-kernel performs besbsely followed by
the N-kernel and the MM-kernel. Itis astonishing that the Mbtnel is a little bit
worse than the N-kernel. One might expect that a matchingoiemeliable than
a normalization of the patches. But overall, the differanae not very distinct.

Finally, we make a comparison of the proposed parametringatith the
non-parametric voting scheme and secondly, a comparistiredsLOH features
with our EGH features. We used a N-kernel for the parametitcng scheme,
because it is the only kernel that works efficiently with thied} features. The
results are concluded in Figuégb). We can observe a clear difference between
the non-parametric approach in comparison to the parasragigroach. The para-
metric approach works definitely better than the non-patacepproach. In Fig-
ure9 we show two exemplary voting maps for the non-parametricgardmetric
approach. The non-parametric approach has obvious prelteregions with lots
of spurious keypoints. The reasons for that are difficultétednine, we figured
out three main issues.

Firstly, the parametric representation of the voting fiorciallows to handle
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Figure 8. Comparison to reference methods

radial and angular deformation independently, becausesitpanded in polar co-
ordinates. This means that the smoothing parameters caméeé independently
in radial and angular direction. We found that this relasgiaop is an important fac-
tor for the performance of the parametric approach. For treparametric case
it is only possible to incorporate the smoothing efficiemtlyan isotropic manner
(controlled byospatin equation 7).

For the non-parametric approach the paramstgrcontrolls the trade-off be-
tween specificity for the searched class of objects and tobss against intra-
class variations. With growingiea: We become robust against variations of the
object but also induce lots of false positive detections. fovimd that this trade-
off has a major impact on the performance of the non-paraenapproach. It
seems that the parametric approach can handle this trédeioh better. There
are two parameters that play a similar role for the parameipproach. In the
case of a exponential basis kernel, thearameter, and secondly during the train-
ing stage one can apply a kernelized ridge regression (aleaik as regularized
regression), where the regularization parameter playsndasirole. We found
that the choice for both are very easy and robust. For oustasknever found
a regularized regression to be superior to a non-reguthrizer the\ parameter
we found that once it was adapted to the type of feature it veag nobust and
application independent.

We already mentioned that our parametric voting algoritlam &lso produce
negative contributions, that is, it cannot be interpreted@ aeal probability den-
sity anymore. In fact, this 'fault’ of our approach helps @l false positive
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Figure 9: Voting Map Comparison. On the left you see the original image to-
gether with the detected keypoint, on the upper right thengotap produced
by the parametric approach, on the lower right the voting prapluced by non-
parametric approach.

detections in regions that contain lots of spurious keyjsoibue to the negative
voting contributions it can happen that votings destratyivnterfere. Only if the

contributions show a kind of coherence the votes show coctste interference
and thus strong responses.

Finally, consider in Figur&(a)the performance differences for the GLOH and
EGH features. It seems that our features perform slighttiebéut not signifi-
cantly. And even the comparison is not really fair becausepdirameters of our
features were specifically tuned for the considered datadele the parameters
of the GLOH features were fixed from the beginning (excepotlerall radius, it
was chosen the same for both features).

7.3 Pollen Detection

Analysis techniques for data acquired by microscopy tyjyiceemand for a ro-

tation and translation invariant treatment. The microszapmages of particles
like cells or pollen have usually no predetermined orieatatthe positions of the
particles are unknown and even the number of particles ikmmt#n a-priori. We

want to demonstrate the effectiveness of our system withlarpdetection task.
Applications of such a system are manifold. Palynology,dtuely and analysis
of pollen, is an interesting topic with very diverse appiicas like in forensics.
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Pollen-forcasts for allergological relevant pollen spedis also an important is-
sue. Most of the pollen species are very easily detectabla siynple Hough
Transform because they have a round, circle-like strucBu¢ a high amount of
fossil pollen and also pollen of today’s conifers have nathsan easy detectable
structure.

The data used in this experiment was recorded with an opticabscope in
conjunction with the OMNIBUSS projec8fcharring O Originally the samples
are of sizel392 x 1040 x 70. For recognition the sharpest of the 70 image layers
is selected and this layer is downscaled to a siz&6fx 191, which is more than
enough for the detection task. The pollen’s size is betwefifthaup to a tenth
of the image size. To get an impression, have a look at theifoages at Figure
11. The used training examples are shown in FigiiieWe selected three parts to
represent the pollen. The center and the two charactebistok dots. The center
is used to obtain the initial votes. 549 images were selettetesting. Nearly
half of the images contain dust and dirt and no pollen at die ®thers from one
up to approximately 10 pollen. In total the images cont@hpollen. We labeled
them manually by determining just the position of the pall&he orientation of
the pollen is not verified in the experiments.

In Figure12(a)we compare four different types of approaches. Our paramet-
ric kernel-based methods based on the GIM-kernel, N-keme&IMM-kernel and
the non-parametric approach. For all four methods we orggntethe results for
our EGH features. The results for the GLOH features showitgtiskely the same
behavior. When comparing the kernel-based approachesaonebserve that the
GIM-kernel again performs best, while this time the MM-kelris better than the
N-kernel. It seems that the normalization is not so relidbtehis task. In con-
trast to the experiences from the aircraft detection, imetthe non-parametric
approach works much better and is competitive with the patacapproach. It
works as good as the MM-kernel.

Why does the non-parametric approach perform so badly sattcraft de-
tection and on the other hand show comparable results fqpdahen task? It is
difficult to answer this question. One major difference kedwthe two databases

Figure 10: Pollen training images The white dots indicate the location of the
object parts.
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(a) Agglomerated

&

(c) False Positive

(d) False Positive

Figure 11:Recognition examples for the pollen databaseThe yellow rectan-
gles and dots indicate the detected configuration. The gtetsrgive the position
of the 20 initial hypotheses. Imagé4(a)and11(b)show two difficult examples
that are perfectly solved. Imag&4(c)and11(d)show two typical false positive
detection. If two pollen are very near, their parts may befesed.
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Figure 12: Evaluation on the Pollen database
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is that the airport images show much more possible candidatdalse positive
detections. For example, compare Fig@mith one of the images in Figurgl.
The airport images contain much more spurious keypointsdbanot belong to
the objects of interest. The aircrafts often do not show trengest local varia-
tions in comparison to the clutter. Contrarily, the congetlen are often the most
prominent objects in the images, they show the strongeat i@iations and the
most salient keypoints are located on the pollen itself.sThe can suspect that
the parametric approach can cope much better with a high euonfospurious
keypoints and, hence, is more robust to false positives. hBut to verify this
conjecture? If we assume that the most salient keypointetexted on the pollen
itself it should be possible by choosing a high saliencyshoéd that most of the
detected keypoints are on the pollen. Then, the resulthi®onbn-parametric ap-
proach should get comparable to the parametric approachube there are only
a very low number of spurious keypoints. On the other hartfteisaliency thresh-
old is very low and the number of spurious keypoints is latige advantage of the
parametric approach should become obvious. So, we madeieoes for var-
ious saliency thresholds. We recorded the EER-rate for éin@npetric approach
with a GIM-kernel and the non-parametric approach, theliesue reported in
Figure12(b). In fact, our conjecture is confirmed. For a high number ofdegts
the parametric approach shows one percent less error thaothparametric one.
On the other hand, for a low number of keypoints, the diffeesmget negligible.

8 Conclusion

In this article we presented a rotation invariant objecedebn concept. The sys-
tem is well motivated in a probabilistic framework. The inaace demands are
gently introduced into the framework by the idea of usingmRatalued kernels.
The experiments have shown that the system works for vefgrdift problems
and can achieve competitive results.

Although the running times for the presented tasks are &abkyp they restrict
the system to small training set sizes. The training setlsi®sea direct influence
on the number of support vectors and hence on the run-timeas, The system is
yet not able to model too large variations within one objéass while working
in reasonable time. Here is space for further improvements.

The number of keypoints has even the same impact on the mends the
support vectors. We have shown that the number of keypoastaigh influence
on the performance of the system. Probably the best would degignate each
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pixel in the image to be a keypoint, which is unfortunatelyamtoo expensive. A
possible way out would be to construct object specific kenjpaeétectors.

9 A Complex Gaussian Density

Letc € V be aM-dimensional vector in a complex valued vector space. Eurth
letm € VV amean and € L( V') a positive definite covariance matrix, then

! ! "Clc—m
) = Gty o (3¢ =€ e - m)

defines a probability density oli. Any one-dimensional marginalc'w = w)
in directionw € V is of the form

1 2
plu) = 5w (g7 o —mP),

wherek € R is positive and real aneh € C. This easy to see, because any
marginal is again a complex Gaussian density and a one-gioral complex
Gaussian has by definition a positive definitec R variance. Hence, any one-
dimensional complex Gaussian has a spherical invariaott@igic) variance in the
complex plane.
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