ALBERT-LUDWIGS-UNIVERSITAT FREIBURG
INSTITUT FUR INFORMATIK
Lehrstuhl fir Mustererkennung und Bildverarbeitung

Efficient Tensor Voting with 3D
Tensorial Harmonics

Internal Report 2/08

Marco Reisert

February 2008






Efficient Tensor Voting with 3D Tensorial
Harmonics

Marco Reisert
Computer Science Department
Albert-Ludwigs-University Freiburg
79110 Freiburg, Germany
reisert@informatik.uni-freiburg.de

February, 2008

Abstract

Tensor Voting is an robust technique to extract low-leveltdiees in
noisy images. The approach achieves its robustness byitixgplooher-
ent orientations in local neighborhoods. In this paper wappse an effi-
cient algorithm for dense Tensor Voting in 3D which makes ofsteer-
able filters. Therefore, we propose steerable expansiogghafical tensor
fields in terms of tensorial harmonics, which are its camaniepresenta-
tion. In this way it is possible to perform arbitrary rank $en voting by
linear-combinations of convolutions in an efficient way.

1 Introduction

The Tensor Voting (TV) framework was originally proposed Mgdioni et al.
[Guy 96] and has found several application in low-level esin 2D and 3D.
For example, it is used for perceptual grouping and exwadatf line, curves and
surfaces([Mordohai 06]. The key idea is to make unreliablasneements more
robust by incorporating neighborhood information in a ¢stent and coherent
manner.



Typically the initial measurements in TV are sparse to piexdacceptable run-
ning times. Recently, Franken et al._[Franken] proposedfisient way to com-
pute a dense Tensor Voting in 2D. The idea makes use of a Bleergpansion
of the voting field. Steerable filters are an efficient aratitee to synthesize fil-
ters for arbitrary angles from linear combinations of bdsiers [Freeman S91].
Perona generalized this conceptlin [Perona 95] and intextiaanethodology to
decompose a given filter kernel optimally in a set of steerdlalsis filters. The
idea of Franken et al. |Franken] is to use the steerable deasition of the voting
field to compute the voting process by convolutions in aniefficway. Complex
calculus and 2D harmonic analysis are the major mathenha&tioks that make
this approach possible. In this paper we generalize this ide8D. Therefore,
we introduce so called tensorial harmonics that are thesldasthe steerable ex-
pansions of spherical tensor fields. They are the 3D gerat@n of the usual
angular Fourier expansion in 2D.

The report is organized as follows: In Sectidn 2 a short thicdion to the
harmonic analysis of 3D rotations is given. We assume tleatghder is familiar
with most of the concepts and just give a review and introdugenotations. We
also show how spherical and cartesian tensors are relate8Sedtion 3 we pro-
pose the tensorial expansion of arbitrary rank sphericaldefields. In particular,
we consider rotational symmetric tensor fields and how tleeyle steered with
respect to 3D rotations. Section 4 applies these principl&¥. The expansion of
the voting field can be easily obtained by projections ontetatorthogonal ten-
sorial harmonics. Finally, we give some examples and hortsmiplementation
and end up with a conclusion.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic oni of the har-
monic analysis ofSO(3). For introductory reading we recommend mostly lit-
erature/[Wormer, Rose B5] concerning the quantum theoryeodhgular momen-
tum, while our representation tries to avoid terms from dquantheory to also
give the non-physicists a chance for following. See é.gllBv101,Weinert 80]
for introduction from an engineering or mathematical pointiew.

In the following we just repeat the basic notions and intieaur notations.



2.1 Preliminaries

Let D] be the unitary irreducible representation of & SO(3) of orderj with

j € N. They are also known as th&igner D-matriceqsee e.g.[[Rose 95]).
The representatiol)) acts on a vector spack; which is represented b§>+'.
We write the elements of/; in bold face, e.g.u € V; and write the2; + 1
components in unbold facg,, € C wherem = —j, ... 5. For the transposition of
a vector/matrix we writaxa”’; the joint complex conjugation and transposition is
denoted byu" = T”. In this terms the unitarity db/ is expressed by the formula
(Dg)TDg =1

Note, that we treat the spadg as a real vector space of dimensians+ 1,
although the components afmight be complex. This means that the spaGes
only closed under weighted superpositions with real nusib&s a consequence
of this we always have that the components are interrelateghb= (—1)"u_,.
From a computational point of view this is an important issudthough the
vectors are elements 6/*! we just have to store jugt + 1 real numbers.

We denote the standard basis@¥ ! by e/ , where thenth component of
el, is 6,,,. In contrast, the standard basis Bf is written asci, = Hel +
(—1)m17‘ie{m. We denote the corresponding 'imaginary’ spaceiBy i.e. el-
ements ofiV; can be written asv wherev € V;. So, elementsv < iV fulfill
W, = (—1)™w_,,. Hence, we can write the spat&’*! as the direct sum of the
two space€**! = V; @iV;. The standard coordinate veciot (z,y, 2)" € R?
has a natural relation to elemenisc V; by

1 .
_ ﬁ(ﬂf—ly)
:xﬁyc}—kzcé—%cil: z =SreV,
— 75 (2 +1y)

Note, thatS is an unitary coordinate transformation. The represemtdﬂi 5
directly related to the real valued rotation mattiy € SO(3) C R*** by D, =
SuU,S’

Definition 2.1. A functionf : R?® — C% ! is called a spherical tensor field of
rank j if it transforms with respect to rotations as

(gF)(r) := DIF(UTr)

forall g € SO(3). The space of all spherical tensor fields of ragnik denoted by
7.
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2.2 Spherical Tensor Coupling
Now, we define a family of bilinear forms that connect tenswrdifferent ranks.
Definition 2.2. For every; > 0 we define a family of bilinear forms of type
o 1 Vi, X Vj, 1+ CH!
wherej, j, € N has to be chosen according to the triangle inequdlity— j»| <

j < j1 + jo. Itis defined by

(ein)T(v Oj W) = Z <]m | j1m17j2m2>vm1wm2

m=mj+ma
where(jm | jim;, joms) are the Clebsch-Gordan coefficients.

The characterizing property of these products is that tesgect the rotations
of the arguments, namely

Proposition 2.3. Letv € V;, andw € V,, then for anyy € SO(3)
(DJ'v) o; (Df*w) = Di(v o; w)
holds.
Proof. The components of the left-hand side look as
(e,) " ((D3'v) o (Dj2w))
= Z <jm|j1m17j2m2>Di7ilm/1 Df—;mévm’lwmé
m=mq-+mo
rn’lmé

First, one have to insert the identity by using orthogogakdation [I) with re-
spect tan} andm),. Then we can use relatiodn{15) and the definition;ab prove
the assertion. O

Proposition 2.4. If j; + j, + j IS even, thar is symmetric, otherwise antisym-
metric. The spaces; are closed for the symmetric product, for the antisymmetric
product this is not the case.

j+j1+jaiseven=vo,w eV
J+n+jisodd = vo,we iV,

wherev € V;, andw € V,.



Proof. The symmetry and antisymmetry is founded in the symmetrpgnttes
of the Clebsch-Gordan coeffcients in equatiod (13). To stimiclosure property
consider

(e],) Vo w = Z (gmljima, jamea)Om, W,

m=mji+ma2

- Z (=)™ (jm|jima, jama)v W,
m=mj+mz

= Z (_1)m+j+jl+j2 (4 (=m)|71m1, Jama) Vi, Wi,
m=mi+ma

= (e, ) Y,

where we used the symmetry property given in equafioh (1dhdd, we have for
evenj + j; + jo the realness’ condition complying 83, and for oddj + j; + 72
the 'imaginaryness’ condition fd#/;, which prove the statements. O

For the special casg = 0 the arguments have to be of the same rank due to
the triangle inequality. Actually in this case the symnnioduct coincides with
the standard inner product

m=j

1 T
Vew = E (=) "vpw_py = —=WwW v,
— V25 +1

wherej is the rank ofv andw.
The introduced product can also be used to combine tensds éldifferent
rank by point-wise multiplication.

Proposition 2.5. Letv € 7;, andw € 7, andj chosen such thag; — j»| < j <
J1+ J2, then

f(r) =v(r) o; w(r)
isin7;, i.e. atensor field of rank.

In fact, there is another way to combine two tensor fields:dowolution. The
evolving product respects the translation in a differensse

Proposition 2.6. Letv € 7;, andw € 7, and;j chosen such thaf; — jo| < j <

(vojw)(r) := /R3 v(r' —r) o; w(r') dr’

isin7;, i.e. atensor field of rank.



2.3 Relation to Cartesian Tensors

The correspondence of spherical and cartesian tensorsiofre trivial. For
rank 1 it is just the matrixS that connects the real-valued vecioe R3 with
the spherical coordinate vectar= Sr € V;. For rank2 the consideration gets
more intricate. Consider a real-valued cartesian ratdnsorT ¢ R3*3 and the
following unique decomposition

T = ol + Tani + Tsyma

wherea € R, Ty is an antisymmetric matrix antfsy,, a traceless symmetric
matrix. In fact, this decomposition follows the same maragethe spherical ten-
sor decomposition. A ran# spherical tensor corresponds to the identity matrix
in cartesian notation, while the rarikspherical tensor to a antisymmet8icx 3
matrix or, equivalently, to a vector. The ragkspherical tensor corresponds to
a traceless, symmetric matrix. Let us consider the spHetemamposition. For
convenience leT* = STS', then the components of the corresponding spherical
tensorsb’ € V; with j = 0, 1,2 look as

b = Z (Imy, Imy|jm) T, ..,

mi1-+mo=m

whereb" corresponds te, b! to Tany andb? to Teym. The inverse of this 'carte-
sian to spherical’-transformation is

2 m=j
Ty = Z Z (Imy, Imy|jm)bl .

j=0 m=—j
In particular, consider a cartesian symmettitensor and its eigensystem. In

spherical tensor notation the spherical terisbis decomposed into products of
threel-tensorsv, € V; as

1
b>= > Mvio vy,

k=-1

wherev,, are the eigenvectors @ and)\, the eigenvalues. Note thit is invari-
ant against a common shift of the eigenvalues by some offdeéts 'traceless’ in
sense that



for any set of orthogonal vectoss 1, vy, v; € V;. This offset, namely the trace
of T is covered by the zero-rai¥. It corresponds to the 'ballness’ or 'isotropy’
of T.

2.4 Spherical Harmonics

We denote the well-known spherical harmonics¥y : S* — V;. We always,
write Y7 (r), wherer may be an element &3, but Y?(r) is independent of the
magnitude of. We know that théy’/ provide an orthogonal basis of scalar func-
tion on the 2-spherg?. Thus, any real scalar fielfl € 7, can be expanded in
terms of spherical harmonics in an uniqgue manner:

) = > Y

In the following, we always use Racah’s normalization (ks@wn as semi-
Schmidt normalization), i.e.

1 0.0

= I = g5 ¢ 10 O

. -/ 1 . !
VY = 4= [ vae) Vis)ds
52
where the integral ranges over the 2-sphere using the sthmd@asure. One
important property of the Racah-normalized spherical loauios is thaty’ ' Y7 =
1. Another important and useful property is that

Y= —— ! Yo, Y7 (1)
(40[410, j20) !
if 74 j1 + j2 IS even. We can use this formula to iteratively compute higheer
Y’ from given lower order ones. Note th¥ = 1 andY! = Sr, wherer € S2.
The spherical harmonics have a variety of nice propertiase &f the most
important ones is that ead¥, interpreted as a tensor field of rajks a fix-point
with respect to rotations, i.e.

(gY7)(r) = DY’ (Uyr) = Y/(r)

or in other wordsY’(U,r) = DJY’(r). A consequence of this is that the expan-
sion coefficients of the rotated functignf)(r) = f(U{r) just look asD/a’(r).



3 Tensorial Harmonic Expansion

We propose to expand a tensor fi€ld 7, of rank/ as follows

oo k=
ZZ Ong

7=0 k=

whereal,(r) € 7T, are expansion coefficients. Note, thatfer 0 the expansion
coincides with the ordinary scalar expansion from above cevefurther observe
that

(9F)(r) = Dyf(U,x)

-3 Z D/ al (1)) o, Y (r) 2)

7=0 k=—¢

i.e. a rotation of the tensor field affects the expansionfumefitsa, ' to be trans-
formed byD/**.

By settinga{;(r) = Zﬂ_]f(j’:k) al (r)elt* we can identify the functional
basisZ;,  as

co k=¢ m=j+k

ZZ Z akm (r) el % o, Yi(r),

J=0 k=—fm=—(j+k) 7

km

Proposition 3.1 (Tensorial Harmonics)The functionszim : §% — V, provide
an complete and orthogonal basis of the angular parfgi.e.

. . 47
[ B8 (s = i

Jk

where

Njk = 5527 (27 + DG+ F) +1).

The function&/  are called the tensorial harmonics.
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Proof. We first show the orthogonality by elementary calculations:

1

Trpg’
[ @ s
‘g . .
=) MMMﬂ«»mﬂM>m»wMMf+vawuwﬂW»;%jgaﬁ&_mY&,m/

M=—¢ 5. /6 ,
7,3 " m,m

2j+1

8 16 ‘
= g Zmm’” 4 j+k)m,j(M—m)) (¢ j+k"Ym,j(M—m
2+ 1 :_Z< M|(+k)m,j(M—m)){EM|(G+k")m,j(M—m))

>3

20+1 6v . ,
2(j+k)+1°(i+k),(G+K")

1 20+ 1

2 +k)+125+1

= 0 Ok k' O,/

In line 2 we use the orthogonality of the Racah-normalizdeespal harmonics.
In the third line we use the orthogonality relation for thekXch Gordan coeffi-
cients given in[(P).

Secondly, we want to show that the expansion of a spheriesbtdieldf € 7,
in terms of tensorial harmonics is unique and complete. ¥ty agrees that
the expansion of the individual componertts,) "f in spherical harmonics is
complete. That is, we can write the expansion as

SN Y

Jj=0 n=—j

whereb’, (r) € V; are the expansion coefficients for théth component. We
show the completeness of the tensorial harmonics by coimgetiem in an one-
to-one manner with this ordinary spherical harmonic exjpamef the spherical
tensor field. For convenience we just consider jheterm in the expansion,
i.e. the homogeneous part bfof order;j that we denote by’. We start with
the expansion in terms of tensorial harmonics and rewrigentho identify the

11



elements ob?, (r) written asb}, , (r) in terms of thex/, ,(r). And so,

(ey) £ (r) = Z Y @M + k)m, jn)Y (x)

k=—fm+n=M
J
= ZYV{ Zzakm (CM|(j + k)ym, jn)
n=—j k=—f m

bg\/l,n(r)

J
= > by (Y

n=—j

Now, we just have to give the inverse relation that compdﬁe&@m out of the
bhs,,- This can be accomplished by

> Wy ()(EM(G + K, jn)

Mn

= Z S al, (F)(EMI( + k)m, jn) (EM](F + K)n', jn)

Mmnk=—¢ m
= Z > al,(r Z OM (5 + k)m, gn) (EM|(5 + K'Y, jn)
k=—0¢ m Mmn
20+ 1

— J
a1

where we used again the orthogonality relation for the @lelSordan coeffi-
cients given in[(B). This provides the one-to-one relatietween the tensorial
harmonic expansion with the component-wise spherical barcrexpansion and
proves the statement. O

3.1 Symmetric Tensor Fields

Typical voting fields used for TV show certain symmetry pmtigs. We figured
out three symmetries that let vanish specific terms in theaeeal expansion: the

12



rotationally symmetry with respect to a certain axis, theeaize of torsion and
reflection symmetry.

The rotation symmetry of a spherical tensor fiél¢ 7, about thez-axis is
expressed algebraically by the fact tiggf = f for all rotationg, around the:-
axis. Such fields can easily be obtained by averaging a gaeesor fieldf over

all these rotations )
1 T

f.=— f do.

s 271_/0 9o 0]

It is well known that the representati®g¢ of such a rotation is diagonal, namely
D’ = S €. Hence, the expansion coefficients, of fs vanish for all

gg,mm/

m # 0. Thus, we can write any rotation symmetric tensor field as

60 = 0 Y alr) e o YI(). ©

We call such a rotation symmetric field torsion-freg jffs = fs, whereg,. €
O(3) is a reflection with respect to the-plane (orzz-plane). The action of such
a reflection on spherical tensors is givenlbzbmm, = (=1)™6p(—nv)- Similar to
the rotational symmetry we can obtain such fields by avegpower the symmetry
operation

1
fsr = a(fs + gyzfs)-

Note, that the mirroring operation for a spherical harmasjast a complex con-
jugation, that isY?(U? r) = Y7(r). The consequence for equati@h (3) is that all
terms where thé + ¢ are odd vanish. The reason for that is mainly Proposition
[Z.4 because with its help we can show that

D! (e} o, Y/(UL r)) = (—1)* (e} ** o, Y(r))
holds.

Finally, consider the reflection symmetry with respect te th-plane. This
symmetry is particularly important for rank 2 sphericalgenfields. In TV such
fields are typically aligned or 'steered’ with quantitiesloé same, even rank. For
even rank tensors the parity of the underlying quantity tigglost, so the voting
field has to invariant under such parity changes. This symymetalgebraically
expressed by, f; = f; whereg,, € O(3) is a reflection with respect to the
zy-plane, whose action on spherical tensors is gively ., = (—1)76,m-
Averaging over this symmetry operation has the consequbatexpansion terms

13



with odd are vanishing. For odd rank tensor fields the reflection sytryngenot
imperative. But there is typically an antisymmetry of thenfioy,, f; = —f;. This
antisymmetry let vanish the expansion terms with even index

3.2 Expanding Rotation-Symmetric Fields in Polar Represen
tation

We write the spherical tensor field in polar representaiiord, ¢), wherecos(0) =
z/r and¢ = arg(x + iy). Consider a field of ranK. In polar representation the
rotation symmetry with respect to theaxis is expressed by the fact that for all
m = —/(,...,/we have

fm(rv 97 ¢) = am(r, 9)€im¢’

where f,, denote the components of the spherical tensor@apt, ) € C is
colatitudinal/radial dependency of the field. This is easys¢e because then
fn(1,0,0 — ¢)e™® = f..(r,0,¢). For torsion-free tensor fields we addition-
ally know thata,,(r, ) € R. To project such a symmetric kind of field on the
tensorial harmonics consider theth component of the tensorial harmor#g;,:

(en) " Zio(0.0) = (ef,) ()™ o YI(6,9))
= (m | (5 + k)0, im)Y;(0,¢)

Pl cos(0)

= {tm | (j + k)0, jm)e™?
= Cyjme"™ PJ (cos(0))
Now, using this expression the projectionZ};b yields

71'/2 2

(Z1y,f) g2 = / / Z1,(0,0) £(r, 0, ¢) sin() dpdd
—r/2 0

‘ /2

= 27 Z Cojm / (7, 0) P2 (cos(6)) sin(6)d

—7/2

The residue integral may be computed numerically or arcaifyi.

14



3.3 Rotational Steering

By equation[(R) the tensorial harmonics are very well suibedtate the expanded
spherical tensor field. We want to show how to steer a rotajonmetric field
efficiently in a certain direction.

Consider a general rotatign € SO(3) that rotates the-axisr, = (0,0,1)"
to some given orientation € R?, i.e. R, r, = n. Of course, there are several
rotations that can accomplish this. But, if we apply suchtatron on a rotational
symmetric fieldf this additional freedom does not have an influence on thdtresu
Starting from the general rotation behavior of the tengstiaamonic expansion in
eg. [2) one can derive that the symmetric tensor figidtates as

oo k={L

(gaf)(r) = D al(r) Y (n)o Yi(r) 4)

7=0 k=—¢

This expression is the basis for the proposed method. Teeprquation[{4) one
needs to know thaY’(r,) = e}.

4 Steerable Tensor Voting

The general idea of Tensor Voting is as follows: Assume, watw@a enhance
a certain feature in an image, e.g. edges. Therefore, we wentywo kind of
images. On the one hand a scalar feature imageR®> — R that contains the
evidence for the occurrence of the feature, e.g. the gradiagnitude in the case
of edges. And secondly, an orientational image R?> — R3 that contains the
orientation of the feature of interest, e.g. the gradiergalion. Now, the idea is
to let each pixek’ cast tensor-valued votes for the presence of the featuts in i
neighborhood, where the vote is weighted by the eviden@€) for the feature.
The orientation of the voting field depends on the local dagonn(r’). Thus, a
positionr gets the contributio’V™®") (r — r') m(r’) from positionr’, whereV™»

is the tensor-valued voting field whose superscript deteesithe directiom in
which the function is oriented. By collecting all contribarts from all position’
in an additive manner we arrive at the final expression forethiganced feature
image

= /RB V2 (r — ') m(r') dr’ (5)

15



Now, we restrict to rotational symmetric voting fields. eeling the last section
we set the voting field to

Vi(r) = (gnfs)(x),
wherefs is the rotational symmetric field. Inserting this expressio (8) and
using eq.[(}) yields

U(r) = V) (r — v m(r') dr’
R3

= [ G =) s

oo k=

BT
Y (n(r') o Yi(r — ') m(r') dr’
oo k=t .
SN [ me)yrtnee
=0 k=—t /R® ~

_ Eitk(r!)

al(lr —')YI(r — 1) dr’

J

Al (r—r"))
oo  k=¢ '
= LY
=0 k=—¢

where ‘ ‘
E’(r) := m(r)Y’(n(r))

are combined tensor-valued evidence images and
AL(r) = a(r)Y(r)

is the harmonic expansion of the voting field= steered inz-direction. The
coefficientsa) (r) can be obtained by a projection on the tensorial harmonics

al(r) = Ny / (ZL(x)) TV (x) dr 6)
S2

due to the symmetry onl¥;, are involved.
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Algorithm 1 Voting Algorithm
Input: m € 7o, n(r) € 71, A} € T,
Output: U € 7,

1: LetE? :=m

2: for j = 1: (jmax+¢) dO

3 E = (E'"'o;n)/(j0[10,(j — 1)0)
4: end for

5: for j =0 : jmax dO

6: fork=—-¢:2:/7 do

7: ComputeU := U + E/ k5 A/
8: end for

9: end for

5 Implementation and Experiments

In Algorithm[ the voting algorithm is depicted. The inpuedhe evidence im-
agem, an orientation image in spherical notation which is noreeal such that
In(r)| = 1 and the expansioA? of the voting field. From line 2-4 the tensor-
valued evidence imagds’ are computed iteratively by using equatiéh (1). From
line 5-9 the actual voting is performed. Theoperation can performed efficiently
by the use of a FFT. The inner loop ovehas a step-width of 2 because the voting
field is torsion-free. One might use also for outer loop gvarstepwidth of two
because of the reflection symmetry with respect to the pantyin the further
experiments we used a stepwidth of one.

To compute theA; one first have to compute the radius dependent expansion
coefficientsa](r) as given in equatior{]6). In practice, they can be computed
analytically or numerically if the analytical way is too fiitult. As an example
we expanded Medioni’s voting field as a rank 1 voting field inuanerical way.
Due to the rotation symmetry of the field we sample the votieffdfjust on a
2D polar grid(r, 8), whered is the colatitudinal angle. The projection onto the
tensorial harmonics involves projections onto the assedibegendre polynomial
PJ(cos(#)) and form = +1 on P/, (cos(#)) and then a weighted sum of the results
according to the definition of the tensorial harmonics (se&iSn[3.2).

In Figure[l we show approximations for different degreesxplamsion. For
Jmax = S the artefacts are already very low. We conducted our exgerisron dn-
tel Xeon X5365 / 3GhaMB Cache, single threaded). For convolution BerW
is used with 'patient’ as planning-mode. In Table 1 we codellithe running

17



Jmax 4 6 8 4 6 8
vol 1283 1 1283 | 1283 | 2563 | 256° | 2562
time (s)| 5 10 15 45 81 170

Table 1. Computation times for a rank 1 voting field

t
i

Figure 1: Rank 1 voting field for different degree of expangifax = 2,4, 6, 8)
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Figure 2: Noisy Confocal Data. On the lower left: after TV pegsing. On the
lower right: Gradient magnitude of smoothed volume= 3px).

times for different expansion degrees and volume sizestiiites measurements
include the computation of the evidence imalestheir transformation in Fourier
domain and the rendering of the voting images. Note, thahduendering we
need not to transform back into spatial domain, becausdinestr operations are
involved. Only one FFT at the end is needed to get the finahgatsult. In Fig-
urel2 we show a toy example for noisy data acquired with caifaser-scanning
microscopy. We applied a rank 1 TV scheme. A slice of the nabnoisy data
together with the magnitude of the TV processed are showncdtaparison, the
gradient magnitude of the Gaussian-smoothed image is shown

6 Conclusion

In this work we have presented an efficient computationadsehfor Tensor Vot-
ing in 3D. The idea is based on a steerable decompositioneof/aking field.
Therefore, we proposed so called tensorial harmonics. \&yfpresented them
in this simple and computationally convenient form. Basadle tensorial ex-
pansion of the voting field it is possible to perform the vgtprocess solely by
convolutions and spherical multiplications. In toy expeents the validity and
speed of the approach were shown.
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A Spherical Harmonics

We always use Racah-normalized spherical harmonics. mnstaf Legendre
polynomials they are written as

Vi(00) = (o Phlcos(O)) e

We always writer € S? instead of(¢, §). The Racah-normalized solid harmonics
can be written as

R () = /(E m(l— )l 3 SetOiciom i gk,
1,5,k

ilj1k12i21

wherer = (z,y,2). They are related to spherical harmonics By (r)/r* =
Y, (r)

B Clebsch Gordan Coefficients

Orthogonality

Z<]m|j1m1,j2m2><jm|j1m,1,j2m,2> - 5m1,m/15m2,m’2 (7)
7m
Z (gmljima, joma) (F'm/|jima, jama) = 60w m (8)
m=mi-+mz
o o 2j +1
Z<Jm\11m1,j2m2><jm\j1m1,j§m/2> = ) (9)

2]‘/ "‘1 ijjé m27m/2
mi,m 2

Special Values

1/2 _ 1/2 -1/2
ke = nm == () () (5) o

o 1/2
Um|(+ N)(m — p), M) = (—=1)M* ( €+);\+,u + 1 )

Caix+m—p (2042241 \ "
A— U 2\

11)
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Symmetry

(Jm|jimy, joma) = (jima, jama|jm) (12)
(gmljima, joma) = (=1)T72(jm|jamg, jima) (13)
(gmljima, omo) = (=172 (=m)|j1(—ma), ja(—m2))  (14)

C Wigner D-Matrix

The components db! are writtenD/, . They are called the Wigner D-matrix. In
Euler anglesp, 0, ¢ in ZYZ-convention we have

Dy (0,0,0) = €™ dy, ()™,

whered’,, (9) are the Wigner d-matrix which is real-valued. Relation t @ieb-
sch Gordan coefficients:

D.,= Y_ D&, D2 (Im|lim,lms)(In|ling,lons) (15)
JEp
DfélnlDfigng = Z Dfnn<lm|l1m1, l2m2> (ln|l1n1, l2n2> (16)
lm,n
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