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Abstract

Tensor Voting is an robust technique to extract low-level features in
noisy images. The approach achieves its robustness by exploiting coher-
ent orientations in local neighborhoods. In this paper we propose an effi-
cient algorithm for dense Tensor Voting in 3D which makes useof steer-
able filters. Therefore, we propose steerable expansions ofspherical tensor
fields in terms of tensorial harmonics, which are its canonical representa-
tion. In this way it is possible to perform arbitrary rank tensor voting by
linear-combinations of convolutions in an efficient way.

1 Introduction

The Tensor Voting (TV) framework was originally proposed byMedioni et al.
[Guy 96] and has found several application in low-level vision in 2D and 3D.
For example, it is used for perceptual grouping and extraction of line, curves and
surfaces [Mordohai 06]. The key idea is to make unreliable measurements more
robust by incorporating neighborhood information in a consistent and coherent
manner.
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Typically the initial measurements in TV are sparse to provide acceptable run-
ning times. Recently, Franken et al. [Franken] proposed an efficient way to com-
pute a dense Tensor Voting in 2D. The idea makes use of a steerable expansion
of the voting field. Steerable filters are an efficient architecture to synthesize fil-
ters for arbitrary angles from linear combinations of basisfilters [Freeman 91].
Perona generalized this concept in [Perona 95] and introduced a methodology to
decompose a given filter kernel optimally in a set of steerable basis filters. The
idea of Franken et al. [Franken] is to use the steerable decomposition of the voting
field to compute the voting process by convolutions in an efficient way. Complex
calculus and 2D harmonic analysis are the major mathematical tools that make
this approach possible. In this paper we generalize this idea to 3D. Therefore,
we introduce so called tensorial harmonics that are the basis for the steerable ex-
pansions of spherical tensor fields. They are the 3D generalization of the usual
angular Fourier expansion in 2D.

The report is organized as follows: In Section 2 a short introduction to the
harmonic analysis of 3D rotations is given. We assume that the reader is familiar
with most of the concepts and just give a review and introduceour notations. We
also show how spherical and cartesian tensors are related. In Section 3 we pro-
pose the tensorial expansion of arbitrary rank spherical tensor fields. In particular,
we consider rotational symmetric tensor fields and how they can be steered with
respect to 3D rotations. Section 4 applies these principlesto TV. The expansion of
the voting field can be easily obtained by projections onto a set of orthogonal ten-
sorial harmonics. Finally, we give some examples and hints for implementation
and end up with a conclusion.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic notions of the har-
monic analysis ofSO(3). For introductory reading we recommend mostly lit-
erature [Wormer,Rose 95] concerning the quantum theory of the angular momen-
tum, while our representation tries to avoid terms from quantum theory to also
give the non-physicists a chance for following. See e.g. [Miller 91, Weinert 80]
for introduction from an engineering or mathematical pointof view.

In the following we just repeat the basic notions and introduce our notations.
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2.1 Preliminaries

Let Dj
g be the unitary irreducible representation of ag ∈ SO(3) of orderj with

j ∈ N. They are also known as theWigner D-matrices(see e.g. [Rose 95]).
The representationDj

g acts on a vector spaceVj which is represented byC2j+1.
We write the elements ofVj in bold face, e.g.u ∈ Vj and write the2j + 1
components in unbold faceum ∈ C wherem = −j, . . . j. For the transposition of
a vector/matrix we writeuT ; the joint complex conjugation and transposition is
denoted byu⊤ = u

T . In this terms the unitarity ofDj
g is expressed by the formula

(Dj
g)

⊤
D
j
g = I.

Note, that we treat the spaceVj as a real vector space of dimensions2j + 1,
although the components ofu might be complex. This means that the spaceVj is
only closed under weighted superpositions with real numbers. As a consequence
of this we always have that the components are interrelated by um = (−1)mu−m.
From a computational point of view this is an important issue. Although the
vectors are elements ofC

2j+1 we just have to store just2j + 1 real numbers.
We denote the standard basis ofC2j+1 by e

j
m, where thenth component of

e
j
m is δmn. In contrast, the standard basis ofVj is written ascjm = 1+i

2
e
j
m +

(−1)m 1−i

2
e
j
−m. We denote the corresponding ’imaginary’ space byiVj, i.e. el-

ements ofiVj can be written asiv wherev ∈ Vj . So, elementsw ∈ iVj fulfill
wm = (−1)m+1w−m. Hence, we can write the spaceC2j+1 as the direct sum of the
two spacesC2j+1 = Vj ⊕ iVj . The standard coordinate vectorr = (x, y, z)T ∈ R3

has a natural relation to elementsu ∈ V1 by

u =
x− y√

2
c

1
1 + zc1

0 −
x+ y√

2
c

1
−1 =




1√
2
(x− iy)

z
− 1√

2
(x+ iy)


 = Sr ∈ V1

Note, thatS is an unitary coordinate transformation. The representation D
1
g is

directly related to the real valued rotation matrixUg ∈ SO(3) ⊂ R3×3 by D
1
g =

SUgS
⊤

Definition 2.1. A functionf : R3 7→ C2j+1 is called a spherical tensor field of
rank j if it transforms with respect to rotations as

(gf)(r) := D
j
gf(U

T
g r)

for all g ∈ SO(3). The space of all spherical tensor fields of rankj is denoted by
Tj .
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2.2 Spherical Tensor Coupling

Now, we define a family of bilinear forms that connect tensorsof different ranks.

Definition 2.2. For everyj ≥ 0 we define a family of bilinear forms of type

◦j : Vj1 × Vj2 7→ C
2j+1

wherej1, j2 ∈ N has to be chosen according to the triangle inequality|j1 − j2| ≤
j ≤ j1 + j2. It is defined by

(ejm)⊤(v ◦j w) :=
∑

m=m1+m2

〈jm | j1m1, j2m2〉vm1wm2

where〈jm | j1m1, j2m2〉 are the Clebsch-Gordan coefficients.

The characterizing property of these products is that they respect the rotations
of the arguments, namely

Proposition 2.3. Letv ∈ Vj1 andw ∈ Vj2 , then for anyg ∈ SO(3)

(Dj1
g v) ◦j (Dj2

g w) = D
j
g(v ◦j w)

holds.

Proof. The components of the left-hand side look as

(ejm)⊤((Dj1
g v) ◦j (Dj2

g w))

=
∑

m=m1+m2
m′

1
m′

2

〈jm|j1m1, j2m2〉Dj1
m1m′

1
Dj2
m2m′

2
vm′

1
wm′

2

First, one have to insert the identity by using orthogonality relation (7) with re-
spect tom′

1 andm′
2. Then we can use relation (15) and the definition of◦j to prove

the assertion.

Proposition 2.4. If j1 + j2 + j is even, than◦ is symmetric, otherwise antisym-
metric. The spacesVj are closed for the symmetric product, for the antisymmetric
product this is not the case.

j + j1 + j2 is even⇒ v ◦j w ∈ Vj

j + j1 + j2 is odd ⇒ v ◦j w ∈ iVj,

wherev ∈ Vj1 andw ∈ Vj2.
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Proof. The symmetry and antisymmetry is founded in the symmetry properties
of the Clebsch-Gordan coeffcients in equation (13). To showthe closure property
consider

(ejm)⊤v ◦j w =
∑

m=m1+m2

〈jm|j1m1, j2m2〉vm1wm2

=
∑

m=m1+m2

(−1)m〈jm|j1m1, j2m2〉v−m1w−m2

=
∑

m=m1+m2

(−1)m+j+j1+j2〈j(−m)|j1m1, j2m2〉vm1wm2

= (−1)m+j+j1+j2(ej−m)⊤v ◦j w,

where we used the symmetry property given in equation (14). Hence, we have for
evenj + j1 + j2 the ’realness’ condition complying toVj and for oddj + j1 + j2
the ’imaginaryness’ condition foriVj, which prove the statements.

For the special casej = 0 the arguments have to be of the same rank due to
the triangle inequality. Actually in this case the symmetric product coincides with
the standard inner product

v •0 w =

m=j∑

m=−j
(−1)mvmw−m =

1√
2j + 1

w
⊤
v,

wherej is the rank ofv andw.
The introduced product can also be used to combine tensor fields of different

rank by point-wise multiplication.

Proposition 2.5. Letv ∈ Tj1 andw ∈ Tj2 andj chosen such that|j1 − j2| ≤ j ≤
j1 + j2, then

f(r) = v(r) ◦j w(r)

is in Tj, i.e. a tensor field of rankj.

In fact, there is another way to combine two tensor fields: by convolution. The
evolving product respects the translation in a different sense.

Proposition 2.6. Letv ∈ Tj1 andw ∈ Tj2 andj chosen such that|j1 − j2| ≤ j ≤
j1 + j2, then

(v◦̃jw)(r) :=

∫

R3

v(r′ − r) ◦j w(r′) dr′

is in Tj, i.e. a tensor field of rankj.
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2.3 Relation to Cartesian Tensors

The correspondence of spherical and cartesian tensors of rank 0 is trivial. For
rank 1 it is just the matrixS that connects the real-valued vectorr ∈ R3 with
the spherical coordinate vectoru = Sr ∈ V1. For rank2 the consideration gets
more intricate. Consider a real-valued cartesian rank-2 tensorT ∈ R3×3 and the
following unique decomposition

T = αI3 + Tanti + Tsym,

whereα ∈ R, Tanti is an antisymmetric matrix andTsym a traceless symmetric
matrix. In fact, this decomposition follows the same manneras the spherical ten-
sor decomposition. A rank0 spherical tensor corresponds to the identity matrix
in cartesian notation, while the rank1 spherical tensor to a antisymmetric3 × 3
matrix or, equivalently, to a vector. The rank2 spherical tensor corresponds to
a traceless, symmetric matrix. Let us consider the spherical decomposition. For
convenience letTs = STS

⊤, then the components of the corresponding spherical
tensorsbj ∈ Vj with j = 0, 1, 2 look as

bjm =
∑

m1+m2=m

〈1m1, 1m2|jm〉T sm1m2
,

whereb0 corresponds toα, b1 to Tanti andb
2 to Tsym. The inverse of this ’carte-

sian to spherical’-transformation is

T sm1m2
=

2∑

j=0

m=j∑

m=−j
〈1m1, 1m2|jm〉bjm.

In particular, consider a cartesian symmetric2-tensor and its eigensystem. In
spherical tensor notation the spherical tensorb

2 is decomposed into products of
three1-tensorsvk ∈ V1 as

b
2 =

1∑

k=−1

λk vk ◦2 vk,

wherevk are the eigenvectors ofTs andλk the eigenvalues. Note thatb
2 is invari-

ant against a common shift of the eigenvalues by some offsetγ. It is ’traceless’ in
sense that

1∑

k=−1

vk ◦2 vk = 0,
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for any set of orthogonal vectorsv−1,v0,v1 ∈ V1. This offset, namely the trace
of T is covered by the zero-rankb0. It corresponds to the ’ballness’ or ’isotropy’
of T.

2.4 Spherical Harmonics

We denote the well-known spherical harmonics byY
j : S2 → Vj. We always,

write Y
j(r), wherer may be an element ofR3, but Yj(r) is independent of the

magnitude ofr. We know that theYj provide an orthogonal basis of scalar func-
tion on the 2-sphereS2. Thus, any real scalar fieldf ∈ T0 can be expanded in
terms of spherical harmonics in an unique manner:

f(r) =

∞∑

j=0

a
j(r)⊤Y

j(r)

In the following, we always use Racah’s normalization (alsoknown as semi-
Schmidt normalization), i.e.

〈Y j
m, Y

j′

m′〉 =
1

4π

∫

S2

Y j
m(s) Y j′

m′(s)ds =
1

2j + 1
δjj′δmm′

where the integral ranges over the 2-sphere using the standard measure. One
important property of the Racah-normalized spherical harmonics is thatYj⊤

Y
j =

1. Another important and useful property is that

Y
j =

1

〈j0|j10, j20〉
Y
j1 ◦j Y

j2 (1)

if j + j1 + j2 is even. We can use this formula to iteratively compute higher order
Y
j from given lower order ones. Note thatY

0 = 1 andY
1 = Sr, wherer ∈ S2.

The spherical harmonics have a variety of nice properties. One of the most
important ones is that eachYj, interpreted as a tensor field of rankj is a fix-point
with respect to rotations, i.e.

(gYj)(r) = D
j
gY

j(UT
g r) = Y

j(r)

or in other wordsYj(Ugr) = D
j
gY

j(r). A consequence of this is that the expan-
sion coefficients of the rotated function(gf)(r) = f(UT

g r) just look asDj
ga

j(r).
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3 Tensorial Harmonic Expansion

We propose to expand a tensor fieldf ∈ Tℓ of rankℓ as follows

f(r) =

∞∑

j=0

k=ℓ∑

k=−ℓ
a
j
k(r) ◦ℓ Yj(r),

whereajk(r) ∈ Tj+k are expansion coefficients. Note, that forℓ = 0 the expansion
coincides with the ordinary scalar expansion from above. Wecan further observe
that

(gf)(r) = D
ℓ
gf(U

⊤
g r)

=

∞∑

j=0

k=ℓ∑

k=−ℓ
(Dj+k

g a
j
k(r)) ◦ℓ Yj(r) (2)

i.e. a rotation of the tensor field affects the expansion coefficientsa
j
k to be trans-

formed byDj+k
g .

By settinga
j
k(r) =

∑m=j+k
m=−(j+k) a

j
km(r)ej+km we can identify the functional

basisZj
km as

f(r) =

∞∑

j=0

k=ℓ∑

k=−ℓ

m=j+k∑

m=−(j+k)

ajkm(r) e
j+k
m ◦ℓ Yj(r)︸ ︷︷ ︸

Z
j
km

,

Proposition 3.1 (Tensorial Harmonics). The functionsZj
km : S2 7→ Vℓ provide

an complete and orthogonal basis of the angular part ofTℓ, i.e.
∫

S2

(Zj
km(s))⊤Z

j′

k′m′(s)ds =
4π

Nj,k
δj,j′δk,k′δm,m′ ,

where

Nj,k =
1

2ℓ+ 1
(2j + 1)(2(j + k) + 1).

The functionsZj
km are called the tensorial harmonics.
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Proof. We first show the orthogonality by elementary calculations:

1

4π

∫

S2

(Zj
km(s))⊤Z

j′

k′m′(s)ds

=

ℓ∑

M=−ℓ
〈ℓM |(j+k)m,j(M−m)〉〈ℓM |(j′+k′)m′,j′(M−m′)〉 1

4π

∫
S2 Y

j
M−mY

j′

M−m′︸ ︷︷ ︸
δ
j,j′

δ
m,m′

2j+1

=
δj,j′δm,m′

2j + 1

ℓ∑

M=−ℓ
〈ℓM |(j+k)m,j(M−m)〉〈ℓM |(j+k′)m,j(M−m)〉

︸ ︷︷ ︸
2ℓ+1

2(j+k)+1
δ(j+k),(j+k′)

= δj,j′δk,k′δm,m′

1

2(j + k) + 1

2ℓ+ 1

2j + 1

In line 2 we use the orthogonality of the Racah-normalized spherical harmonics.
In the third line we use the orthogonality relation for the Clebsch Gordan coeffi-
cients given in (9).

Secondly, we want to show that the expansion of a spherical tensor fieldf ∈ Tℓ
in terms of tensorial harmonics is unique and complete. Everybody agrees that
the expansion of the individual components(eℓM )⊤f in spherical harmonics is
complete. That is, we can write the expansion as

(eℓM)⊤f(r) =

∞∑

j=0

j∑

n=−j
b
j
M(r)⊤Y

j(r),

whereb
j
M(r) ∈ Vj are the expansion coefficients for theM th component. We

show the completeness of the tensorial harmonics by connecting them in an one-
to-one manner with this ordinary spherical harmonic expansion of the spherical
tensor field. For convenience we just consider thejth term in the expansion,
i.e. the homogeneous part off of order j that we denote byf j . We start with
the expansion in terms of tensorial harmonics and rewrite them to identify the
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elements ofbjM(r) written asbjM,n(r) in terms of theajkm(r). And so,

(eℓM)⊤f
j(r) =

ℓ∑

k=−ℓ

∑

m+n=M

ajkm(r)〈ℓM |(j + k)m, jn〉Y j
n (r)

=

j∑

n=−j
Y j
n (r)

ℓ∑

k=−ℓ

∑

m

ajkm(r)〈ℓM |(j + k)m, jn〉
︸ ︷︷ ︸

bj
M,n

(r)

=

j∑

n=−j
bjM,n(r)Y

j
n (r).

Now, we just have to give the inverse relation that computes theajkm out of the
bjMn. This can be accomplished by

∑

M,n

bjM,n(r)〈ℓM |(j + k′)m′, jn〉

=
∑

M,n

ℓ∑

k=−ℓ

∑

m

ajkm(r)〈ℓM |(j + k)m, jn〉〈ℓM |(j + k′)m′, jn〉

=
ℓ∑

k=−ℓ

∑

m

ajkm(r)
∑

M,n

〈ℓM |(j + k)m, jn〉〈ℓM |(j + k′)m′, jn〉
︸ ︷︷ ︸

δk,k′δm,m′
2ℓ+1

2(j+k′)+1

=
2ℓ+ 1

2(j + k′) + 1
ajk′m′(r),

where we used again the orthogonality relation for the Clebsch Gordan coeffi-
cients given in (9). This provides the one-to-one relation between the tensorial
harmonic expansion with the component-wise spherical harmonic expansion and
proves the statement.

3.1 Symmetric Tensor Fields

Typical voting fields used for TV show certain symmetry properties. We figured
out three symmetries that let vanish specific terms in the tensorial expansion: the
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rotationally symmetry with respect to a certain axis, the absence of torsion and
reflection symmetry.

The rotation symmetry of a spherical tensor fieldf ∈ Tℓ about thez-axis is
expressed algebraically by the fact thatgφf = f for all rotationgφ around thez-
axis. Such fields can easily be obtained by averaging a general tensor fieldf over
all these rotations

fs =
1

2π

∫ 2π

0

gφf dφ.

It is well known that the representationDj
gφ

of such a rotation is diagonal, namely

Dj
gφ,mm′ = δmm′eimφ. Hence, the expansion coefficientsajkm of fs vanish for all

m 6= 0. Thus, we can write any rotation symmetric tensor field as

fs(r) =
∞∑

j=0

k=ℓ∑

k=−ℓ
ajk(r) e

j+k
0 ◦ℓ Yj(r). (3)

We call such a rotation symmetric field torsion-free ifgyzfs = fs, wheregyz ∈
O(3) is a reflection with respect to theyz-plane (orxz-plane). The action of such
a reflection on spherical tensors is given byDj

gyz,mm′ = (−1)mδm(−m′). Similar to
the rotational symmetry we can obtain such fields by averaging over the symmetry
operation

fstf =
1

2
(fs + gyzfs).

Note, that the mirroring operation for a spherical harmonicis just a complex con-
jugation, that isYj(UT

gyz
r) = Yj(r). The consequence for equation (3) is that all

terms where thek + ℓ are odd vanish. The reason for that is mainly Proposition
2.4 because with its help we can show that

D
ℓ
gyz

(ej+k0 ◦ℓ Yj(UT
gyz

r)) = (−1)(k+ℓ)(ej+k0 ◦ℓ Yj(r))

holds.
Finally, consider the reflection symmetry with respect to the xy-plane. This

symmetry is particularly important for rank 2 spherical tensor fields. In TV such
fields are typically aligned or ’steered’ with quantities ofthe same, even rank. For
even rank tensors the parity of the underlying quantity is getting lost, so the voting
field has to invariant under such parity changes. This symmetry is algebraically
expressed bygxyfs = fs wheregxy ∈ O(3) is a reflection with respect to the
xy-plane, whose action on spherical tensors is given byDj

gyz,mm′ = (−1)jδmm′ .
Averaging over this symmetry operation has the consequencethat expansion terms
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with oddj are vanishing. For odd rank tensor fields the reflection symmetry is not
imperative. But there is typically an antisymmetry of the form gxyfs = −fs. This
antisymmetry let vanish the expansion terms with even indexj.

3.2 Expanding Rotation-Symmetric Fields in Polar Represen-
tation

We write the spherical tensor field in polar representationf(r, θ, φ), wherecos(θ) =
z/r andφ = arg(x + iy). Consider a field of rankℓ. In polar representation the
rotation symmetry with respect to thez-axis is expressed by the fact that for all
m = −ℓ, . . . , ℓ we have

fm(r, θ, φ) = αm(r, θ)eimφ,

wherefm denote the components of the spherical tensor andαm(r, θ) ∈ C is
colatitudinal/radial dependency of the field. This is easy to see because then
fm(r, θ, φ − φ′)eimφ

′

= fm(r, θ, φ). For torsion-free tensor fields we addition-
ally know thatαm(r, θ) ∈ R. To project such a symmetric kind of field on the
tensorial harmonics consider themth component of the tensorial harmonicZ

j
k0:

(eℓm)⊤Z
j
k0(θ, φ) = (eℓm)⊤(ej+k0 ◦ℓ Yj(θ, φ))

= 〈ℓm | (j + k)0, jm〉Y j
m(θ, φ)

= 〈ℓm | (j + k)0, jm〉eimφ
√

(j −m)!

(j +m)!
P j
m(cos(θ))

= Cℓjme
imφP j

m(cos(θ))

Now, using this expression the projection onZ
j
k0 yields

〈Zj
k0, f〉S2 =

π/2∫

−π/2

2π∫

0

Z
j
k0(θ, φ)⊤f(r, θ, φ) sin(θ) dφdθ

= 2π
ℓ∑

m=−ℓ
Cℓjm

π/2∫

−π/2

αm(r, θ)P j
m(cos(θ)) sin(θ)dθ

The residue integral may be computed numerically or analytically.
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3.3 Rotational Steering

By equation (2) the tensorial harmonics are very well suitedto rotate the expanded
spherical tensor field. We want to show how to steer a rotationsymmetric field
efficiently in a certain direction.

Consider a general rotationgn ∈ SO(3) that rotates thez-axisrz = (0, 0, 1)⊤

to some given orientationn ∈ R3, i.e. Rgnrz = n. Of course, there are several
rotations that can accomplish this. But, if we apply such a rotation on a rotational
symmetric fieldfs this additional freedom does not have an influence on the result.
Starting from the general rotation behavior of the tensorial harmonic expansion in
eq. (2) one can derive that the symmetric tensor fieldfs rotates as

(gnfs)(r) =

∞∑

j=0

k=ℓ∑

k=−ℓ
ajk(r) Y

j+k(n) ◦ℓ Yj(r) (4)

This expression is the basis for the proposed method. To prove equation (4) one
needs to know thatYj(rz) = e

j
0.

4 Steerable Tensor Voting

The general idea of Tensor Voting is as follows: Assume, we want to enhance
a certain feature in an image, e.g. edges. Therefore, we compute two kind of
images. On the one hand a scalar feature imagem : R3 → R that contains the
evidence for the occurrence of the feature, e.g. the gradient magnitude in the case
of edges. And secondly, an orientational imagen : R3 → R3 that contains the
orientation of the feature of interest, e.g. the gradient direction. Now, the idea is
to let each pixelr′ cast tensor-valued votes for the presence of the feature in its
neighborhood, where the vote is weighted by the evidencem(r′) for the feature.
The orientation of the voting field depends on the local orientationn(r′). Thus, a
positionr gets the contributionVn(r′)(r − r

′) m(r′) from positionr
′, whereVn

is the tensor-valued voting field whose superscript determines the directionn in
which the function is oriented. By collecting all contributions from all positionr′

in an additive manner we arrive at the final expression for theenhanced feature
image

U(r) =

∫

R3

V
n(r′)(r− r

′) m(r′) dr′ (5)
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Now, we restrict to rotational symmetric voting fields. Following the last section
we set the voting field to

V
n(r) = (gnfs)(r),

wherefs is the rotational symmetric field. Inserting this expression in (5) and
using eq. (4) yields

U(r) =

∫

R3

V
n(r′)(r − r

′) m(r′) dr′

=

∫

R3

(gn(r′)fs)(r − r
′) m(r′) dr′

=




∫

R3

∞∑

j=0

k=ℓ∑

k=−ℓ
ajk(|r − r

′|)

Y
j+k(n(r′)) ◦ℓ Yj(r − r

′) m(r′) dr′




=




∞∑

j=0

k=ℓ∑

k=−ℓ

∫

R3

m(r′)Yj+k(n(r′))︸ ︷︷ ︸
Ej+k(r′)

◦ℓ

ajk(|r − r
′|)Yj(r − r

′)︸ ︷︷ ︸
A

j
k
(r−r′))

dr′




=
∞∑

j=0

k=ℓ∑

k=−ℓ
E
j+k◦̃ℓAj

k

where
E
j(r) := m(r)Yj(n(r))

are combined tensor-valued evidence images and

A
j
k(r) := ajk(r)Y

j(r)

is the harmonic expansion of the voting fieldVrz steered inz-direction. The
coefficientsajk(r) can be obtained by a projection on the tensorial harmonics

ajk(r) = Nj,k

∫

S2
r

(Zj
k0(r))

⊤
V

rz(r) dr, (6)

due to the symmetry onlyZj
k0 are involved.
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Algorithm 1 Voting Algorithm

Input: m ∈ T0, n(r) ∈ T1, A
j
k ∈ Tj

Output: U ∈ Tℓ
1: Let E0 := m
2: for j = 1 : (jmax + ℓ) do
3: E

j := (Ej−1 ◦j n)/〈j0|10, (j − 1)0〉
4: end for
5: for j = 0 : jmax do
6: for k = −ℓ : 2 : ℓ do
7: ComputeU := U + E

j+k ◦̃ℓ Aj
k

8: end for
9: end for

5 Implementation and Experiments

In Algorithm 1 the voting algorithm is depicted. The input are the evidence im-
agem, an orientation image in spherical notation which is normalized such that
||n(r)|| = 1 and the expansionAj

k of the voting field. From line 2-4 the tensor-
valued evidence imagesEj are computed iteratively by using equation (1). From
line 5-9 the actual voting is performed. The◦̃ℓ operation can performed efficiently
by the use of a FFT. The inner loop overk has a step-width of 2 because the voting
field is torsion-free. One might use also for outer loop overj a stepwidth of two
because of the reflection symmetry with respect to the parity, but in the further
experiments we used a stepwidth of one.

To compute theAj
k one first have to compute the radius dependent expansion

coefficientsajk(r) as given in equation (6). In practice, they can be computed
analytically or numerically if the analytical way is too difficult. As an example
we expanded Medioni’s voting field as a rank 1 voting field in a numerical way.
Due to the rotation symmetry of the field we sample the voting field just on a
2D polar grid(r, θ), whereθ is the colatitudinal angle. The projection onto the
tensorial harmonics involves projections onto the associated Legendre polynomial
P j

0 (cos(θ)) and form = ±1 onP j
±1(cos(θ)) and then a weighted sum of the results

according to the definition of the tensorial harmonics (see Section 3.2).
In Figure 1 we show approximations for different degrees of expansion. For

jmax = 8 the artefacts are already very low. We conducted our experiments on aIn-
tel Xeon X5365 / 3Ghz(4MB Cache, single threaded). For convolution theFFTW
is used with ’patient’ as planning-mode. In Table 1 we concluded the running
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jmax 4 6 8 4 6 8
vol 1283 1283 1283 2563 2563 2563

time (s) 5 10 15 45 81 170

Table 1: Computation times for a rank 1 voting field

Figure 1: Rank 1 voting field for different degree of expansion (jmax = 2, 4, 6, 8)
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Figure 2: Noisy Confocal Data. On the lower left: after TV processing. On the
lower right: Gradient magnitude of smoothed volume (σ = 3px).

times for different expansion degrees and volume sizes. Thetimes measurements
include the computation of the evidence imagesEj, their transformation in Fourier
domain and the rendering of the voting images. Note, that during rendering we
need not to transform back into spatial domain, because justlinear operations are
involved. Only one FFT at the end is needed to get the final voting result. In Fig-
ure 2 we show a toy example for noisy data acquired with confocal laser-scanning
microscopy. We applied a rank 1 TV scheme. A slice of the original noisy data
together with the magnitude of the TV processed are shown. For comparison, the
gradient magnitude of the Gaussian-smoothed image is shown.

6 Conclusion

In this work we have presented an efficient computational scheme for Tensor Vot-
ing in 3D. The idea is based on a steerable decomposition of the voting field.
Therefore, we proposed so called tensorial harmonics. We firstly presented them
in this simple and computationally convenient form. Based on the tensorial ex-
pansion of the voting field it is possible to perform the voting process solely by
convolutions and spherical multiplications. In toy experiments the validity and
speed of the approach were shown.
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A Spherical Harmonics

We always use Racah-normalized spherical harmonics. In terms of Legendre
polynomials they are written as

Y ℓ
m(φ, θ) =

√
(l −m)!

(l +m)!
P ℓ
m(cos(θ))eiφ

We always writer ∈ S2 instead of(φ, θ). The Racah-normalized solid harmonics
can be written as

Rℓ
m(r) =

√
(ℓ+m)!(ℓ−m)!

∑

i,j,k

δi+j+k,ℓδi−j,m
i!j!k!2i2j

(x− iy)j(−x− iy)izk,

wherer = (x, y, z). They are related to spherical harmonics byRℓ
m(r)/rℓ =

Y ℓ
m(r)

B Clebsch Gordan Coefficients

Orthogonality
∑

j,m

〈jm|j1m1, j2m2〉〈jm|j1m′
1, j2m

′
2〉 = δm1,m′

1
δm2,m′

2
(7)

∑

m=m1+m2

〈jm|j1m1, j2m2〉〈j′m′|j1m1, j2m2〉 = δj,j′δm,m′ (8)

∑

m1,m

〈jm|j1m1, j2m2〉〈jm|j1m1, j
′
2m

′
2〉 =

2j + 1

2j′2 + 1
δj2,j′2δm2,m′

2
(9)

Special Values

〈ℓm|(ℓ− λ)(m− µ), λµ〉 =

(
ℓ+m
λ+ µ

)1/2 (
ℓ−m
λ− µ

)1/2 (
2ℓ
2λ

)−1/2

(10)

〈ℓm|(ℓ+ λ)(m− µ), λµ〉 = (−1)λ+µ

(
ℓ+ λ−m+ µ

λ+ µ

)1/2

(
ℓ+ λ+m− µ

λ− µ

)1/2 (
2ℓ+ 2λ+ 1

2λ

)−1/2
(11)
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Symmetry

〈jm|j1m1, j2m2〉 = 〈j1m1, j2m2|jm〉 (12)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈jm|j2m2, j1m1〉 (13)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈j(−m)|j1(−m1), j2(−m2)〉 (14)

C Wigner D-Matrix

The components ofDℓ
g are writtenDℓ

mn. They are called the Wigner D-matrix. In
Euler anglesφ, θ, ψ in ZYZ-convention we have

Dℓ
mn(φ, θ, ψ) = eimφdℓmn(θ)e

inψ,

wheredℓmn(θ) are the Wigner d-matrix which is real-valued. Relation to the Cleb-
sch Gordan coefficients:

Dℓ
mn =

∑

m1+m2=m
n1+n2=n

Dℓ1
m1n1

Dℓ2
m2n2

〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (15)

Dℓ1
m1n1

Dℓ2
m2n2

=
∑

l,m,n

Dℓ
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (16)

References

[Franken] FRANKEN, E., VAN ALMSICK , M., RONGEN, P., FLORACK, L.,
AND TER HAAR ROMENY, B. “An Efficient Method for Tensor
Voting Using Steerable Filters”. In:Proceedings of the ECCV
2006, pp. 228–240, Lecture Notes in Computer Science, Springer.

[Freeman 91] FREEMAN, W. T. AND ADELSON, E. H. “The Design and Use
of Steerable Filters”.IEEE Trans. Pattern Anal. Machine Intell.,
Vol. 13, No. 9, pp. 891–906, 1991.

[Guy 96] GUY, G. AND MEDIONI, G. “Inferring global perceptual con-
tours from local features”.International Journal of Computer Vi-
sion, Vol. 20, No. 1, pp. 113–133, 1996.

21



[Miller 91] M ILLER, W., BLAHUT, R., AND WILCOX , C. “Topics in Har-
monic Analysis with Applications to RADAR and SONAR”.IMA
Volumes in Mathematics and its Applications, Springer-Verlag,
New York, 1991.

[Mordohai 06] MORDOHAI, P. Tensor Voting: A Perceptual Organization Ap-
proach to Computer Vision and Machine Learning. Morgan and
Claypool, ISBN-10: 1598291009, 2006.

[Perona 95] PERONA, P. “Deformable Kernels for Early Vision”.IEEE Trans.
Pattern Anal. Machine Intell., Vol. 17, No. 5, pp. 488 – 499, 1995.

[Rose 95] ROSE, M. Elementary Theory of Angular Momentum. Dover
Publications, 1995.

[Weinert 80] WEINERT, U. “Spherical tensor representation”.Journal Archive
for Rational Mechanics and Analysis, Physics and Astronomy,
pp. 165–196, 1980.

[Wormer] WORMER, P. “Angular Momentum Theory”.Lecture Notes -
University of Nijmegen Toernooiveld, 6525 ED Nijmegen, The
Netherlands.

22


	Introduction
	Spherical Tensor Analysis
	Preliminaries
	Spherical Tensor Coupling
	Relation to Cartesian Tensors
	Spherical Harmonics

	Tensorial Harmonic Expansion
	Symmetric Tensor Fields
	Expanding Rotation-Symmetric Fields in Polar Representation
	Rotational Steering

	Steerable Tensor Voting
	Implementation and Experiments
	Conclusion
	Spherical Harmonics
	Clebsch Gordan Coefficients
	Wigner D-Matrix

