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Abstract

Steerable filters are a valuable tool for various low-level vision tasks.
In this paper we address steerable filters for rotations in three dimensions.
For two dimensions the theory is well developed. It is commonto compute
higher order expansions of certain type of filters and steer them according to
their maximal response. The simplicity in 2D is due to the Fourier theory:
the irreducible subspaces are just one dimensional.

In three dimensions the theory gets much more intricate, theirreducible
subspaces grow with each order. This paper proposes a study of the related
issues. In particular, we propose a spherical derivative that respects the 3D
rotation behavior and connects spherical tensor fields of different degrees.
The proposed theory allows to compute steerable filters in a very efficient
way by repeated applications of such derivatives. We focus on spherical
derivatives of the Gaussian and show how it is possible to construct Gabor
filters by the help of these derivatives. We further considerharmonic projec-
tions of the Gabor filters, because they are cheaper to compute. They may
be considered as canonical surface templates.
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1 Introduction

One often needs to compute the same filter responses for different orientations.
In the early 1990s Freeman and Adelson [1] introduced an efficient architecture
to synthesize filters for arbitrary angles from linear combinations of basis filters.
They called their concept ’steerable filters’, because it allows one to adaptively
steer the filter to any orientation. Nowadays, steerable filters are an indispensable
tool in early vision. Perona generalized the concept in [2] to arbitrary deformation
groups and introduced a methodology to decompose a given filter kernel optimally
in a set of steerable basis filters.

Derivatives of radial symmetric functions play both in 2D and 3D an important
role. They naturally provide a steerable set of filters, theyare simple to compute
and the interpolation functions can be computed analytically. But already in 2D
these interpolation functions look already quite cumbersome if the degree of the
derivative is higher than two. And also the steering becomescomputationally
quite costly because all derivatives of a certain order are involved. It was already
shown that in 2D there is a solution to this problem by complexanalysis [3]. By
interpreting the image plane as the complex plane and applying complex deriva-
tives the steering can performed by simple multiplicationswith a unit complex
number. This work is about generalizing this idea to 3D.

We propose two main contributions. On the one hand we introduce so called
spherical derivatives. They are characterized by the fact that they behave in a
covariant manner with respect to rotations. In this way, they connect spherical
tensor fields of different degrees. They replace the usual complex derivatives in
the 2D case. Secondly, we work out how any analytical function can be written
as a Taylor series in terms of these spherical derivatives. Particularly, we consider
Gabor functions in this representation, which have a quite canonical form. Un-
fortunately the representation of the Gabor still involvesspherical derivatives of
any order. We will derive that the restriction on a certain subset of coefficients in
the spherical expansion of the Gabor is equivalent to projecting the Gabor onto its
harmonic part. To see this we compute the reproducing kernelof the space of har-
monic functions. In fact, the harmonic projection of the Gabor is just a imaginary
evaluation of the reproducing kernel.

Practically, this work is relevant for all those who want to compute steerable
responses quickly in 3D in a dense manner. For example, for dense surface de-
tection the proposed harmonic projection of the Gabor is very well suited. The
workflow of the algorithm is quite simple. First, apply a smooth onto the 3D im-
age with a Gaussian of widthσ determining the scale. Then, apply iteratively the
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spherical derivative using a finite difference scheme and make a proper weighting
of them to determine the shape of the template. The computational effort here is
just linear in the number of computed coefficients. The output of the procedure is
a number of tensor images of growing dimension as known from usual spherical
harmonic representations. Using this representation we can perform a steering
just by computing inner products with spherical harmonics.If one wants to find
directions of maximal response one can accomplish this by using a 2D FFT for
each voxel. Note, that the bottleneck of our approach is the memory consumption.
For each voxel in the 3D volume we have to store intermediately ℓ2max numbers,
whereℓmax is the cutoff frequency of the expansion. For large volumes and high
ℓ2max this will cause definitely problems. But this is inherent problem with higher
order steerable filters in three dimensions.

A detailed version of this paper can be found in [4], it includes proofs and
more detailed explanations. The paper is organized as follows: In the following
subsection we make a small review over related work. Then we give in Section 2
a short introduction to the harmonic analysis of 3D rotations. We assume that the
reader is familiar with most of the concepts and just give a review and introduce
our notations. In Section 3 we introduce the spherical derivative and examine what
happens if we apply them multiple times. Using the expansionof the plane wave
in spherical harmonics we can derive a Taylor series writtenin spherical form.
This Taylor series also provides a shift formula in differential form. Section 4
introduces briefly the reproducing kernel Hilbert space of harmonic functions and
how the reproducing kernel provides an orthogonal projection onto it. We further
show how spherical derivatives of Gaussians are directly related to the basis of
this space. Then, in Section 5, we show how Gabor functions can be generated
by imaginary shifts and how this fact can be used to compute steerable Gabors
in an efficient manner. Secondly, we project the Gabor onto its harmonic part,
which is much cheaper to compute. Finally, we give some examples and hints for
implementation and end up with a conclusion.

1.1 Related Work

While steerable filters are a common tool in image processingand low level com-
puter vision in 2D [2, 5], there are only a few approaches thatstudy 3D steerabil-
ity. Freeman and Adelson [1] introduced the concept of steerability in 3D and
used Gaussian derivatives for filtering. In [6] steerable filtering is used for local
orientation analysis and feature detection in 3D. In [7] applications to motion es-
timation are discussed. Yu et al [8] used conic kernels to improve the orientation
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resolution.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic notions of the harmonic
analysis ofSO(3). For introductory reading we recommend mostly literature
[9, 10] concerning the quantum theory of the angular momentum, while our repre-
sentation tries to avoid terms from quantum theory to also give the non-physicists
a chance for following. See e.g. [11, 12] for introduction from an engineering
viewpoint.

In the following we just repeat the basic notions and introduce our notations.
The only uncommon issue in this section is the specific definition of the spherical
product.

2.1 Preliminaries

Let Dj
g be the unitary irreducible representation of ag ∈ SO(3) of orderj with

j ∈ N. They are also known as theWigner D-matrices(see e.g. [10]). The
representationDj

g acts on a vector spaceVj which is represented byC2j+1. We
write the elements ofVj in bold face, e.g.u ∈ Vj and write the2j+1 components
in unbold faceum ∈ C wherem = −j, . . . j. The standard basis ofVj is written
ase

j
m. For the transposition of a vector/matrix we writeu

T ; the joint complex
conjugation and transposition is denoted byu

⊤ = u
T . In this terms the unitarity

of Dj
g is expressed by the formula(Dj

g)
⊤
D
j
g = I.

Note, that we treat the spaceVj as a real vector space of dimensions2j + 1,
although the components ofu might be complex. This means that the spaceVj is
only closed under weighted superpositions with real numbers. As a consequence
of this we always have that the components are interrelated by um = (−1)mu−m.
From a computational point of view this is an important issue. Although the
vectors are elements ofC2j+1 we just have to store just2j + 1 real numbers.
So, the standard coordinate vectorr = (x, y, z)T ∈ R3 has a natural relation to
elementsu ∈ V1 by

u =




w
z

−w


 =




1√
2
(x− iy)

z
− 1√

2
(x+ iy)


 = Sr ∈ V1
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Note, thatS is an unitary coordinate transformation. Actually, the representation
D

1
g is directly related to the real valued rotation matrixUg ∈ R3×3 by D

1
g =

SUgS
⊤

Definition 2.1. A functionf : R3 7→ Vj is called a spherical tensor field of rankj
if it transforms with respect to rotations as

(gf)(r) := D
j
gf(U

T
g r)

for all g ∈ SO(3). The space of all spherical tensor fields of rankj is denoted by
Tj .

2.2 Spherical Tensor Coupling

Now, we define a family of symmetric bilinear forms that connect tensors of dif-
ferent ranks.

Definition 2.2. For everyj ≥ 0 we define a family of symmetric bilinear forms of
type

•j : Vj1 × Vj2 7→ Vj

wherej1, j2 ∈ N has to be chosen according to the triangle inequality|j1 − j2| ≤
j ≤ j1 + j2 andj1 + j2 + j3 has to be even. It is defined by

(ejm)⊤(v •j w) :=
∑

m=m1+m2

〈jm | j1m1, j2m2〉
〈j0 | j10, j20〉

vm1wm2

where〈jm | j1m1, j2m2〉 are the Clebsch Gordan coefficients (see e.g. [10]).

Up to the factor〈j0 | j10, j20〉 this definition is just the usual spherical tensor
coupling equation which is very well known in quantum mechanics of the angu-
lar momentum. The additional factor is just for convenience. It normalizes the
product such that it shows a more gentle behavior with respect to the spherical
harmonics as we will see later.

The characterizing property of these products is that they respect the rotations
of the arguments, namely

Proposition 2.3. Letv ∈ Vj1 andw ∈ Vj2 , then for anyg ∈ SO(3)

(Dj1
g v) •j (Dj2

g w) = D
j
g(v •j w)

holds.
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Proof. The components of the left-hand side look as

(ejm)⊤((Dj1
g v) •j (Dj2

g w))

=
∑

m=m1+m2
m′

1m′
2

〈jm|j1m1, j2m2〉
〈j0 | j10, j20〉

Dj1
m1m′

1
Dj2
m2m′

2
vm′

1
wm′

2

First one have to insert the identity by using orthogonalityrelation (11) with re-
spect tom′

1 andm′
2. Then we can use relation (19) and the definition of•j to prove

the assertion.

For the special casej = 0 the arguments have to be of the same rank due to
the triangle inequality. Actually, in this case the new product coincides with the
standard inner product

v •0 w =

m=j∑

m=−j
(−1)mvmw−m = w

⊤
v,

wherej is the rank ofv andw. Further note, that if one of the arguments of• is
a scalar, then• reduces to the standard scalar multiplication, i.e.v •j w = vw,
wherev ∈ V0 andw ∈ Vj. Another remark is that• is not associative.

The introduced product can also be used to combine tensor fields of different
rank by point-wise multiplication.

Proposition 2.4. Letv ∈ Tj1 andw ∈ Tj2 andj chosen such that|j1 − j2| ≤ j ≤
j1 + j2, then

f(r) = v(r) •j w(r)

is in Tj, i.e. a tensor field of rankj.

2.3 Spherical Harmonics

We denote the well-known spherical harmonics byY
j : S2 → Vj. We always,

write Y
j(r), wherer my be an element ofR3, but Yj(r) is independent of the

magnitude ofr. We know that theYj provide an orthogonal basis of scalar func-
tion on the 2-sphereS2. Thus, any real scalar fieldf ∈ T0 can be expanded in
terms of spherical harmonics in an unique manner:

f(r) =

∞∑

j=0

a
j(r)⊤Y

j(r)
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In the following, we always use Racah’s normalization (alsoknown as semi-
Schmidt normalization), i.e.

〈Y j
m, Y

j′

m′〉 =
1

4π

∫

S2

Y j
m(s) Y j′

m′(s)ds =
1

2j + 1
δjj′δmm′

where the integral ranges over the 2-sphere using the standard measure. One
important property of the Racah-normalized spherical harmonics is thatYj⊤

Y
j =

1. Another important and useful property is thatY
j = Y

j1 •j Y
j2. We can use

this formula to iteratively compute higher orderY
j from given lower order ones.

Note thatY0 = 1 andY
1 = Sr, wherer ∈ S2.

The spherical harmonics have a variety of nice properties. One of the most
important ones is that eachYj, interpreted as a tensor field of rankj is a fix-point
with respect to rotations, i.e.

(gYj)(r) = D
j
gY

j(UT
g r) = Y

j(r)

or in other wordsYj(Ugr) = D
j
gY

j(r). A consequence of this is that the expan-
sion coefficients of the rotated function(gf)(r) = f(UT

g r) just look asDj
ga

j(r).
Later we will need the following definition

R
n
i (r) := rn+i

Y
n−i(r).

The functionsRn := R
n
0 are usually called regular solid harmonics and are solu-

tions of the Laplace equation. Note that theR
n are homogeneous polynomials of

ordern, meaningRn(λr) = λnRn(r) for anyλ ∈ R.

3 Spherical Derivatives

This section proposes the basic tools for dealing with derivatives in the context of
spherical tensor analysis. First, we will introduce the spherical derivative which
connects spherical tensor fields of different ranks by differentiation. Then, we
consider the representations of these derivatives in the Fourier domain. Based
on this knowledge our goal is to find a Taylor series expansionin terms of the
spherical derivatives. Therefore, we compute the spherical expansion of a plane
wave and use the representations of the spherical derivatives in the Fourier domain
to obtain a differential shift operator analog to the ordinary cartesianτ = et

T∇.
Now, let us start with the definition of the spherical derivative.

9



Proposition 3.1(Spherical Derivatives). Let f ∈ Tℓ be a tensor field. The spher-
ical up-derivative∇1 : Tℓ → Tℓ+1 and the down-derivative∇1 : Tℓ → Tℓ−1 are
defined as

∇
1
f := ∇ •ℓ+1 f (1)

∇1f := ∇ •ℓ−1 f , (2)

where

∇ = (
1√
2
(∂x − i∂y), ∂z,−

1√
2
(∂x + i∂y))

is the spherical gradient and∂x, ∂y, ∂z the standard partial derivatives.

Proof. We have to show that∇1
f ∈ Tℓ+1, i.e.

∇
1(Dℓ

gf(U
T
g r)) = D

ℓ+1
g (∇1

f)(UT
g r)

and∇1f ∈ Tℓ−1

∇1(D
ℓ
gf(U

T
g r)) = D

ℓ−1
g (∇1f)(U

T
g r)

Both statements are proved just by using the properties of•.

Note, that for a scalar function the spherical up-derivative is just the spherical
gradient, i.e.∇f = ∇

1f .
In the Fourier domain the spherical derivatives act by point-wise•-multiplications

with a solid harmonicikY1(k) = iR
1(k) = iSk wherek = ||k|| the frequency

magnitude:

Proposition 3.2(Fourier Representation). Let f̃(k) be the Fourier transformation
of somef ∈ Tℓ and∇̃ representations of the spherical derivative in the Fourier

domain that are implicitly defined bỹ(∇f) = ∇̃f̃ , then

∇̃
1
f̃(k) = iR

1(k) •ℓ+1 f̃(k) (3)

∇̃1f̃(k) = iR
1(k) •ℓ−1 f̃(k). (4)

Proof. By the ordinary Fourier corresponce for the partial derivative, namely
∂̃xf = ikxf̃ , we can also verify for the spherical gradient∇ that

∇̃ = iSk = iR
1(k)

and hence
∇̃

1
f = ˜(∇ •ℓ+1 f) = ∇̃ •ℓ+1 f̃ = iR

1(k) •ℓ+1 f̃

which was to show.
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Both statements are direct consequences of the Fourier correspondences for
the ordinary partial derivatives. For scalar fields we can generalize this statement
also for higher orders

Proposition 3.3(Multiple Spherical Derivatives). For n ≥ iwe define∇n
i : T0 →

Tn−i by

∇
n
i := ∇i∇

n := ∇1 . . .∇1︸ ︷︷ ︸
i−times

∇
1 . . .∇1

︸ ︷︷ ︸
n−times

.

In the Fourier domain these multiple derivatives act by

(∇̃
n

i f̃)(k) = (i)n+i
R
n
i (k)f̃(k). (5)

Using this one can show that∇
n
i = ∇

n−i∆i, where∆ is the Laplace operator.

Proof. Based on the correspondences stated in equations (3) and (4), the basic
reason for equation (5) is thatY

j = Y
j1 •j Y

j2 and its implications forRn
i . To

see the assertion fori = 0 consider the following

(∇̃
n
f̃)(k) = iR

1(k) •n (. . . (iR1(k) •3 (iR1(k) •2 iR
1(k))) . . .)f̃(k).

By successively applyingRn+1 = R
1 •n+1 R

n we get immediately(∇̃
n
f̃)(k) =

i
n
R
n(k)f̃(k). For∇̃

n

i it is just the same reasoning but we have to apply succes-
sively

R
1 •n−i−1 R

n
i = R

n
i+1.

And finally, we prove∇n
i = ∇

n−i∆i in Fourier domain by

∇̃
n

i = i
n+i

R
n
i (k) = kn+i

Y
n−i(k)

= (ik)n−iYn−i(k)(ik)2i = i
n−i

R
n−i(k)(−k2)i

= ∇̃
n−i

∆̃i,

where we used the well known Fourier correspondence of the Laplace operator,
namely∆̃ = −k2.

We want to emphasize that both statements only hold for scalar-valued fields,
generalizations to tensor-valued fields are not straight-forward.
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3.1 Plane Wave Expansion and Shifts

The expansion of a plane wave in spherical harmonics is known(see e.g [10] p.
136) to be

eik
⊤r =

∑

ℓ

(2ℓ+ 1)(i)ℓ jℓ(kr) Pℓ(
k⊤r

kr
)

=
∑

ℓ

(2ℓ+ 1)(i)ℓ jℓ(kr) Y
ℓ(r) •0 Y

ℓ(k)

wherejℓ are the spherical Bessel function of the first kind andPℓ the Legendre
polynomials. We can also write the plane wave expansion in terms of solid har-
monicsRn

i as follows

Proposition 3.4(Plane Wave Expansion). The plane wave expansion can be writ-
ten as

eik
⊤r =

∑

n≥i
i
n+iαn,i R

n
i (r) •0 R

n
i (k).

with

αn,i =
(2(n− i) + 1)

i!2i(2n+ 1)!!
.

Proof. Starting with the usual expression for the plane wave and inserting the
Taylor series expansion of the spherical Bessel function (21) gives

eik
⊤
r =

∑

ℓ

(2ℓ+ 1)(i)ℓ jℓ(kr) Y
ℓ(r) •0 Y

ℓ(k)

=
∑

ℓ,i

i
ℓ (−1)i(2ℓ+ 1)

2ii!(2(i+ ℓ) + 1)!!
(kr)2i+ℓ

Y
ℓ(r) •0 Y

ℓ(k)

Now, reindexing byn = i+ ℓ, i.e. replacing anyℓ by n− i yields

eik
⊤r =

∑

n≥i

i
n−i (−1)i(2(n− i) + 1)

2ii!(2n + 1)!!
(kr)n+i

Y
ℓ(r) •0 Y

ℓ(k).

Further recognizing thatin−i(−1)i = i
n+i proves the assertion.

By (2n + 1)!! we denote the double factorial that is defined as(2n + 1)!! =
(2n + 1)(2n − 1) . . . 1. In Fourier domain the above expression can be used to
model a shift by means of a spherical expansion. Consider a scalar functionf̃(k)
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and multiply it byeik
⊤
t, i.e. shift the function in spatial domain, and then using

(5) gives

eik
⊤tf̃(k) =

∑

n≥i

αn,i R
n
i (t) •0

(
(ik)n+i

Y
n−i(k)f̃(k)

)

=
∑

n≥i

αn,i R
n
i (t) •0 (∇̃

n

i f̃(k)).

Transferring this equation to spatial domain the shift can be expressed as

(τf)(r) = f(r + t) =
∑

n≥i

αn,i R
n
i (t) •0 (∇n

i f(r)). (6)

which can also be interpreted as a Taylor series written in spherical derivatives.
So, the ordinary differential shift operatorτ = et

T∇ has the spherical analogon

τ =
∑

n≥i

αn,i R
n
i (t) •0 ∇

n
i ,

which is much more convenient when we have to deal with rotations. We further
can find that

(∇n′

i′ R
n
i,m)(0) =

δn,n′δi,i′

αn,i
e
n−i
m

which can be verified by settingf = Rn
i,m in equation (6) and comparing the

coefficients.

4 Harmonic Subspace

In this section we will consider the subspaceH of harmonic polynomials ofT0.
A functionf ∈ T0 is called harmonic if∆f = 0. The harmonic functions play an
important role in the context of spherical derivatives.

In fact, the spaceH together with the inner product introduced below is a re-
producing kernel Hilbert space. First, we will derive the reproducing kernel ofH
with respect to a Gaussian weighted inner product onT0. We follow the approach
given in [13]. Actually, the reproducing kernel provides anorthogonal projection
H. Then, we examine the harmonic projection of a plane wave. This knowledge
will be important to understand the harmonic part of the Gabor filter, which is
much cheaper to compute as we will later see. Then, we show that the spherical
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derivatives∇ℓ of a Gaussian are just Gaussian-windowed solid harmonics, which
are a basis of the harmonic polynomials. This fact will laterenable us to compute
the Gabors in an efficient manner by a superposition of spherical derivatives. We
will also show that the spherical derivative of a Gaussian-smoothed function is
equivalent to a convolution with Gaussian-windowed solid harmonics.

4.1 Reproducing Kernel ofH
First we have to establish an inner product onT0 to enable us to speak of orthog-
onality. We introduce the Gaussian weighted inner product on T0 by

〈f, g〉µ =

∫

R3

f(r)g(r)e−r
2/2dr =

∫

R3

f(r)g(r)dµ(r),

where we normalize the standard measuredr anddµ(r), respectively, such that∫
R3 e

−r2/2dr =
∫

R3 dµ(r) = 1. The solid harmonicsRn := R
n
0 build an orthog-

onal basis (with respect to〈·, ·〉µ) of the spaceH ⊂ T0 of harmonic polynomials
on R3. We want to find an expression for the reproducing kernelK of H and so
an orthogonal projection ontoH. Therefore, we have to find the squared norms of
R
n with respect toµ. If we denote the2n + 1 components ofRn asRn

m then we
can find out that

〈Rn
m, R

n′

m′〉µ =

∫

R3

rn+n′

Y n
m(r)Y n′

m′(r)dµ(r)

=
δn,n′δm,m′

2n+ 1

∫ ∞

0

r2(n+1)e−r
2/2dr

= δn,n′δm,m′

(2n+ 1)!!

(2n+ 1)

The radius integral was computed by partial integration. Toobtain an expression
for the reproducing kernelK of H we follow [13]. We just have to write out the
point evaluation in terms of solid harmonics. Letf ∈ H some harmonic function,
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then

f(r′) =

∞∑

n=0

n∑

m=−n

(2n+ 1)

(2n+ 1)!!
〈Rn

m, f〉µRn
m(r′)

=

∫

R3

∞∑

n=0

R
n(r′) •0 R

n(r)

(2n− 1)!!
︸ ︷︷ ︸

K(r′,r)

f(r) dµ(r)

=

∫

R3

K(r′, r)f(r) dµ(r)

gives an explicit expression forK. Note, that(−1)!! = 1. In fact,K also provides
an orthogonal projection ontoH, i.e. for anyf ∈ T0 we have that

(PHf)(r′) :=

∫

R3

K(r′, r)f(r) dµ(r) ∈ H,

which is clear by the definition ofK. The orthogonality ofPH comes due to the
symmetry ofK. The kernel is related to the so called Bargmann-Fock space [14]
for functions onC. The principle presented here is a certain kind of generalization
from C to R3. The holomorphic functions known from the classical Bargmann-
Fock space are replaced by the harmonic functions onR3 and the reproducing
kernelezz′ in the Bargmann-Fock space is replaced by the above introduced kernel
K.

After some tedious computations one can find that the harmonic projection of
a plane waveeik

⊤
r is just

(PHe
ik

⊤
r)(r) = K(r, ik)e−k

2/2 (7)

which one may also have guessed when looking at the harmonic part of the full
spherical Taylor expansion of the plane wave.

4.2 Spherical Gaussian Derivatives

We have seen in the last section that the Gaussian measure plays an important role.
The especialness of the Gaussian in the context of harmonic analysis comes due to
one important fact: the Gaussian-windowed solid harmonicshave a very special
behavior with respect to the Fourier transform. Actually, they are the derivatives
∇

ℓ of the Gaussian. We will show this in the following.
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Proposition 4.1. The Gaussian windowed harmonic of widthσ is defined as

V
ℓ
σ(r) :=

1

σ3

(−1

σ2

)ℓ

R
ℓ(r)e−

r
2

2σ2 ,

then
Ṽ
ℓ
σ(k) = 〈eik⊤r,Vℓ(r)〉L2 = (i)ℓRℓ(k)e−

(σk)2

2 .

is the Fourier transformation ofVℓ(r).

Proof. We start with the definition of the Fourier transform and plugin the spher-
ical harmonic expansion of the plane wave. Then, we integrate out the angular
dependend part:
∫

R3

V
ℓ
σ(r)e

−ik
⊤
rdr =

∫

R3

V
ℓ
σ(r)

∑

n

(2n+ 1)(−i)n jn(kr) Y
n(r) •0 Y

n(k)

=
(i)ℓ

σ2ℓ+3
Y
ℓ(k)

∫ ∞

0

jℓ(kr)e
− r

2

2σ2 rℓ+2dr

The residual radius dependend part is integrated by using the series expansion of
the spherical Bessel function:

∫ ∞

0

jℓ(kr)e
− r

2

2σ2 r2+ℓdr =

∞∑

n=0

(−1)nk2n+ℓ

2nn!(2(n+ ℓ) + 1))!!

∫ ∞

0

r2n+2ℓ+2e−
r
2

2σ2 dr

︸ ︷︷ ︸
σ2(n+ℓ)+3(2(n+ℓ)+1)!!

=

∞∑

n=0

(−1)nk2n+ℓ

2nn!σ−2(n+ℓ)−3
= σ2ℓ+3kℓe−

(σk)2

2

So we arrive at

Ṽ
ℓ
σ(k) =

∫

R3

V
ℓ
σ(r)e

−ik⊤rdr = (ik)ℓYℓ(k)e−
(σk)2

2

which proves the assertion.

In fact, for σ = 1 the V
ℓs are eigenfunctions of the Fourier transformation

with eigenvalue(−i)ℓ. Using the above proposition it is also easy to show that the
V
ℓ are just theℓth order spherical derivatives of a Gaussian.
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Corollary 4.2 (Spherical Gaussian Derivative). The spherical derivative∇ℓ of a
Gaussian computes to

∇
ℓe−

r
2

2σ2 = σ3
V
ℓ
σ(r) =

(
− 1

σ2

)ℓ

R
ℓ(r) e−

r
2

2σ2

This also implies that for smallσ the inner products with suchVℓ
σ tend towards

the derivative, meaning

(−1)ℓ〈Vℓ
σ, f〉L2

σ→0−→ (∇ℓf
)
|r=0

for somef ∈ T0. Another implication is that convolutions with theVℓ
σ are deriva-

tives of smoothed functions

Corollary 4.3 (Smooth Derivatives). Let f ∈ T0, then we can show that

V
ℓ
σ ∗ f = ∇

ℓfs,

wherefs = 1
σ3 e

− r
2

2σ2 ∗ f .

Proof. In the Fourier domain this assertion is easy to realize:

Ṽ
ℓ
σ1
f̃ =

(
(ik)ℓYℓ(k)e−

(σk)2

2

)
f̃

= (ik)ℓYℓ(k) •ℓ
(
e−

(σk)2

2 f̃

)

︸ ︷︷ ︸
f̃s

= ∇̃
ℓ
f̃s.

It is just the associativity and commutatitivity of convolutions.

5 Gabor-like Filters

The above introduced theory about spherical derivatives enables us to compute
steerable Gabor filters by repeated applications of differentiation in an efficient
manner. We will show that an application of an imaginary shift onto an ordi-
nary Gaussian function results in a Gabor like function, i.e. a Gaussian windowed
plane wave. Due to the associativity of differentiation andconvolution it is pos-
sible to perform a convolution with a Gabor equivalently by aconvolution with a
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Gaussian followed by the imaginary shift, which can be achieved by the proposed
differential operator.

To reduce the computational load we further show that harmonic projections
of these Gabor filters are much less expensive to compute. We will show that the
reproducing kernel ofH coincides with this harmonic projection of the Gabor.

5.1 Complex Arguments

Any analytical functionR3 → R can be easily augmented to complex arguments
in C3 by formally substituting the real variables in the Taylor series with complex
ones. In spherical coordinates it is very much the same but not so obvious. Recall,
the spherical shift formula (6). The formal replacement which is equivalent to the
cartesian case is to assume the following identity

R
n
i (ik) = (i)n+i

R
n
i (k)

for any k ∈ R3. One may wonder that we can ’assume’ this identity. Realize,
that we can construct anyRn

i (k) by repeated•-products withSk. So, it is no
problem to replaceSk by S(ik) = iSk in a formal manner and obtain the above
formula. Actually, be doing so we went outV1 which is a real vector space. and
alsoR

n
i (ik) is not element ofVn−i anymore.

Note, that the formal substitution is only compliant with our formulas from
before when the squared magnitude of the vectorik is computed by−k2 =
(S(ik)) •0 (S(ik)) or in other words−k2 = (ik)T (ik). This means that although
we augmented theR3 to C3 we still have to use the standard Euclidean inner
productkTk rather than the Hermitiank⊤

k. This is essential for the further con-
siderations.

Now, using the above relation we can evaluate any analytic function at com-
plex arguments via the formula:

f(r + ik) =
∑

n≥i

(i)n+iαn,i R
n
i (k) •0 ∇

n
i f(r).

wherek ∈ R3. We will now use this formula to generate a Gabor filter.

5.2 Gabor filter

We can use a pure imaginary shift to generate a Gabor functionout of a Gaussian.
Let us say thatτik shifts byik and letg(r) := e−r

T
r/2 be a Gaussian, then we have
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that

Gk(r) = (τikg)(r) = e−(r+ik)T (r+ik)/2

= g(r) e−ik
T
rek

T
k/2

= g(r) e−ikT r g(ik) (8)

which means thatGk is a spherical Gabor function with frequency−k centered at
the origin. Note, that we actually used the fact that the inner productkTk in the
argument of the exponential is the Euclidean one. As a remark, we do not have to
bother aboutg(ik), it is just depending onk.

To compute a convolution of an arbitrary functionf with a GaborGk we can
use that convolutions and differentiation are associative

Gk ∗ f = (τikg) ∗ f = τik(g ∗ f) = τikfs.

Thus, a convolution with a Gabor is equivalent to a convolution with an ordinary
Gaussian and then performing a complex shiftτik. This shift can written as the
already proposed differential operator

(τikfs)(r) =
∑

n≥i

(i)n+iαn,i R
n
i (k) •0 ∇

n
i fs(r).

Our goal is to compute convolutions with Gabors with fixed frequency magnitude
k, while the orientational part should be steerable. From a computational perspec-
tive we have to do the following: compute the smooth derivative images∇n

i fs
and collect those with the same tensor rank in one sum

A
ℓ =

∑

n−i=ℓ

(−1)iαn,i k
n+i

∇
n
i fs. (9)

Now, to compute the response of the Gabor filter in a specific directionn = k/k,
or directions that depend on the positionn(r), we just have to compute

∑

ℓ

(i)ℓ Y
ℓ(n(r))︸ ︷︷ ︸
Eℓ(r)

•0 A
ℓ(r), (10)

whereE
ℓ(r) is a sort of ’direction’-field. The question of how to determinen(r)

or E
ℓ(r), respectively, depends on the application. Kovacs et al [15] have shown

that it is possible to perform a steering, e.g. with respect to the maximal response,
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efficiently by a FFT. In our case we need a 2D FFT due to the rotation symmetry
of the template.

We already mentioned that the imaginary shift leads out of the real vector
spacesVℓ. From a computational point of view this is very disadvantageous be-
cause we cannot handleVℓ as a space of2ℓ + 1 real numbers anymore but have
to store2(2ℓ + 1) numbers which doubles the memory consumption. But in the
above formulation the tensor fieldsAℓ andE

ℓ are still elements ofVℓ. We were
able to carry out the complex superposition to the final summation in equation
(10), so we can still work with tensors of real dimension2ℓ+ 1.

5.3 Harmonic Projection

In order to compute the steerable Gabor responses the computational most expen-
sive part is the computation of the derivatives∇

n
i in the sum forAℓ. It would

be grateful if one can restrict the computation to a certain subset, e.g leti = 0.
In fact, just considering∇n is equivalent to projecting onto the subspace of har-
monic functionsH. Actually, the resulting convolution kernel is just an imaginary
evaluation of the harmonic reproducing kernelK.

In other words, the restriction on the coefficients withi = 0 in equation (9) is
equivalent to a convolution of the functionf with the kernel

Hk(r) := g(r)K(r,−ik)

Note the similarity of this expression to equation (8). We just exchanged the
Gaussian windowed plane wavee−ik⊤rg(ik) by its projection on the harmonic
subspace, namelyK(r,−ik) (compare to equation (7)). To see the equivalence
consider the following computation

(Hk ∗ f)(r) = (g(r)K(r,−ik)) ∗ f(r)

=
∑

ℓ

(i)ℓ
R
ℓ(k) •0 (∇ℓfs)(r)

(2ℓ− 1)!!

=
∑

ℓ

(i)ℓ Yℓ(k) •0 A
ℓ(r),

with

A
ℓ =

kℓ

(2ℓ− 1)!!
∇

ℓfs and fs = g ∗ f

for some fixed width parameterk. To get from the first to the second line we need
Corollary 4.3 and the definition ofK. Comparing this result to equation (9) and
(10) it is just the restriction on the beforementioned coefficients.
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f g

fs (∇1fs)0

(∇1fs)1

(∇2fs)0

(∇2fs)1

(∇2fs)2

(∇3fs)0

(∇3fs)1

(∇3fs)2

(∇3fs)3

Figure 1: Computation of the spherical derivatives. The arrow indicate the depen-
dencies. For example, to compute(∇3fs)1 one have to compute finite differences
of (∇2fs)0, (∇

2fs)1, (∇
2fs)2 and make an appropriate superposition of them.

Figure 2: On the top the real part of a Gabor in surface representation (left), a slice
through thex-plane of the real part (middle), and imaginary part (right). On the
bottom the same for the imaginary part of the harmonic projection of the Gabor.
Both were computed with the proposed scheme with an expansion degree up to
ℓmax = 10 on a643-grid.
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6 Implementation

We already explained the workflow of the algorithm roughly. One question re-
main: How we practically compute the spherical derivatives?

6.1 Spherical Derivatives

For a fast computation of the higher order derivatives we canuse finite differences
in a repeated manner. In [3] this issue was already discussedfor 2D. Alternating
forward backward differences seem to be good choice. But central differences
are already sufficient for low orders. Of course, the accuracy always depends on
the size of the Gaussian smooth which is applied beforehand.In Figure 1 the
workflow of the computation of the homogenous derivatives∇

ℓfs is depicted.
The round brackets with the subscript indicate the component of the vector, i.e.
(∇ℓfs)m = (∇ℓf)⊤e

ℓ
m. As already mentioned we can restrict the computations

on the components withm ≥ 0 due to the real nature ofVℓ. The computation of a
(∇ℓ+1fs)m only involves derivatives of(∇ℓfs)m−1, (∇

ℓfs)m, (∇
ℓfs)m+1 due to

the selection rules of the Clebsch Gordan coefficients〈(ℓ + 1)m|ℓn, 1(m − n)〉.
So, the computation is rather fast and only linear in the number of coefficients.

To compute the derivatives∇n
i fs in general there are two ways: we can apply

the spherical down-derivative in the same manner as the up-derivative by finite
differences; or, we can use the Proposition 3.3 and carry outthe convolution with
multiple Laplacians of Gaussians as a preprocessing step, i.e. we computef is =
f∗(∆ig) in an appropriate way and then apply the∇

ℓ as above and obtain∇n
i fs =

∇
n−if is. This way is more accurate than the first one but also more expensive due

to the explicit convolution with the∆ig.
Using the first, more rough approach, we have a complexity ofO(N · ℓ3max)

whereN is the number of voxels. One have to computeℓ2max derivative images,
where each derivative has components of orderℓmax, thus the complexity is of
order ℓ3max. Compare this to the direct approach using convolutions. One have
to computeℓ2max convolutions which is usually accomplished by a FFT. So, we
have a complexity ofO(N log(N) · ℓ2max) for the classical approach. Note, that
for the harmonic projection of the Gabor our approach has complexity of order
O(N · ℓ2max) while the classical approach cannot benefit.

In Figure 2 we give two examples: the Gabor and its harmonic projection.
For the computation of the derivatives we used central differences and the more
rough approximation of the down-derivative by finite differences. An example
concerning the running times: computing the full steerableexpansion of a Gabor
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with ℓmax = 5 on a2563 grid takes on anIntel Xeon X5365 / 3Ghz(4MB Cache,
single threaded) about25s, where everything was implemented inC++ without
any optimizations like SSE. Using the direct convolution approach with a SSE
optimizedFFTW(”patient”) this takes about30s.

6.2 Fast Steering

Finally, we address the task of computing the sumc(n) =
∑

ℓ(i)
ℓ
A
ℓ •0 Y

ℓ(n)
for different n ∈ S2 in an efficient way. Note, that we leave out the posi-
tion dependency comparing to equation (10). Practically wehave to apply the
following procedure to each voxel (or an appropriate chosensubset). Actually,
we can use a 2D FFT to accomplish the task. By parameterizingr by angles
θ ∈ [0, π) andφ ∈ [0, 2π) we can write a spherical harmonic byY ℓ

n(θ, φ) =∑ℓ
h=−ℓ i

n+2hdℓnhd
ℓ
h0e

i(nφ+hθ), wheredℓnh is the Wigner D-matrix corresponding to
a rotation aroundy-axis by 90 degrees. This decomposition is due to Kovacs
et al [15]. Using this, it is easy to find an expression forc(θ, φ) of the form
c(θ, φ) =

∑
h,n cnhe

i(nφ+hθ) that allows the use of a 2D FFT for a fast computa-
tion.

7 Conclusion

In this work we proposed the theoretical foundations of spherical differential cal-
culus which allows us to compute derivatives that are compliant with rotation
behavior of the usual spherical harmonic representation. We derived analytical
formulas for the Gabor filter and a certain harmonic projection of the Gabor in
terms of spherical derivatives. They enable us to compute steerable Gabors in an
efficient way.

A Spherical Harmonics

We always use Racah-normalized spherical harmonics. In terms of Legendre
polynomials they are written as

Y ℓ
m(φ, θ) =

√
(l −m)!

(l +m)!
P ℓ
m(cos(θ))eiφ
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Mostly we writer/r ∈ S2 instead of(φ, θ). The Racah-normalized solid harmon-
ics can be written as

Rℓ
m(r) =

√
(ℓ+m)!(ℓ−m)!

∑

i,j,k

δi+j+k,ℓδi−j,m
i!j!k!2i2j

(x− iy)j(−x− iy)izk,

wherer = (x, y, z). They are related to spherical harmonics byRℓ
m(r)/rℓ =

Y ℓ
m(r/r)

B Clebsch Gordan Coefficients

Orthogonality

∑

j,m

〈jm|j1m1, j2m2〉〈jm|j1m′
1, j2m

′
2〉 = δm1,m′

1
δm2,m′

2
(11)

∑

m=m1+m2

〈jm|j1m1, j2m2〉〈j′m′|j1m1, j2m2〉 = δj,j′δm,m′ (12)

∑

m1,m

〈jm|j1m1, j2m2〉〈jm|j1m1, j
′
2m

′
2〉 =

2j + 1

2j′2 + 1
δj2,j′2δm2,m′

2
(13)

Special Values

〈ℓm|(ℓ− λ)(m− µ), λµ〉 =

(
ℓ+m
λ+ µ

)1/2 (
ℓ−m
λ− µ

)1/2 (
2ℓ
2λ

)−1/2

(14)

〈ℓm|(ℓ+ λ)(m− µ), λµ〉 = (−1)λ+µ

(
ℓ+ λ−m+ µ

λ+ µ

)1/2

(
ℓ+ λ+m− µ

λ− µ

)1/2 (
2ℓ+ 2λ+ 1

2λ

)−1/2
(15)

Symmetry

〈jm|j1m1, j2m2〉 = 〈j1m1, j2m2|jm〉 (16)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈jm|j2m2, j1m1〉 (17)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈j(−m)|j1(−m1), j2(−m2)〉 (18)
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C Wigner D-Matrix

The components ofDℓ
g are writtenDℓ

mn. They are called the Wigner D-matrix. In
Euler anglesφ, θ, ψ in ZYZ-convention we have

Dℓ
mn(φ, θ, ψ) = eimφdℓmn(θ)e

inψ,

wheredℓmn(θ) are the Wigner d-matrix which is real-valued. Relation to the Cleb-
sch Gordan coefficients:

Dℓ
mn =

∑

m1+m2=m

n1+n2=n

Dℓ1
m1n1

Dℓ2
m2n2

〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (19)

Dℓ1
m1n1

Dℓ2
m2n2

=
∑

l,m,n

Dℓ
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (20)

D Spherical Bessel Functions

As Taylor series withα ∈ R,

Jα(x) =
∞∑

n=0

(−1)n

n!Γ(n + α + 1)

(x
2

)2n+α

The spherical Bessel function withm ∈ N is given by

jm(x) =

√
π

2x
Jm+1/2(x)

as series expansion

jm(x) =

√
π

4

(x
2

)m ∞∑

n=0

(−1)n

n!Γ(n +m+ 3/2)

(x
2

)2n

. (21)

or

jm(x) =

∞∑

n=0

(−1)n

2nn!(2(n +m) + 1)!!
x2n+m. (22)
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D.1 Double Factorial

(2ℓ+ 1)!! = Γ(ℓ+ 3/2)
2l√
π/4

= (2ℓ+ 1)(2ℓ− 1)(2ℓ− 3) . . .
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