Spherical Tensor Calculus for
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Marco Reisert and Hans Burkhardt

1 Introduction

In 3D image processing tensors play an important role. Wtaitk-1 and rank-2
tensors are well understood and commonly used, higher eargots are rare. This
is probably due to their cumbersome rotation behavior whpigvents a computa-
tionally efficient use. In this chapter we want to introdulce hotion of a spherical
tensor which is based on the irreducible representatiotieedD rotation group. In
fact, any ordinary cartesian tensor can be decomposed sumeof spherical ten-
sors, while each spherical tensor has a quite simple rotagbavior. We introduce
so called tensorial harmonics that provide an orthogonsiklfar spherical tensor
fields of any rank. It is just a generalization of the well kmogpherical harmon-
ics. Additionally we propose a spherical derivative whidmeects spherical tensor
fields of different degree by differentiation.

We will use the proposed theory for local adaptive filteriBy. local adaptive
filtering we mean that during the filtering process the filterrels may change their
shape and orientation depending on other quantities whate werived from the
image. Typically there are two ways to do this which are in date sense dual
to each other. Consider the classical linear filtering psec@here are two inter-
pretation, on the one hand the convolution: each pixel (lsgjun the image is re-
placed by a predefined filter kernel (impulse response) vitnddilter kernel itself is
weighted by the intensity of the observed pixel. The contidn from all pixels are
combined by summation. This is the interpretation we knanfisignal process-
ing, where the filter kernel is known as the impulse respoRee.Gaussian filter
kernels the physical interpretation of this is simple isptc diffusion. The second
interpretation is to compute a kind of correlation or blngiof the image: at each
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pixel we compute an inner product of the filter kernel withlisal neighborhood,
i.e. a kind of correlation. If the filter kernel is positivénen it may be interpreted
as an average of the surrounding pixels while the filter Hetagermines the shape
and size of local window in which the average is taken. In thedr case both in-
terpretation are identical up to a point reflection of thefikernel. But, if the filter
kernel is spatially dependend (or local adaptive) both eaghes are not identical
anymore. Let us formalize this. Lei(r) be the intensity of an image at position
andV"(r) a filter kernel at positiom, where the superscriptis a parameter that
determines the orientation and shape of the kernel. Nowasepfhat we have also
given a parameter fiell(r ), i.e. the appearance of the kernel is spatially dependend.
Then, the 'convolution’ integral looks as

Ucon(r) = /Rsvn(r')(r — I'/) m(r/) dr’.

It formulates the above described intuition. We attach whezositionr’ € R3 the
filter kernel while the filter kernel depends on the kernebpagtem at positionr’.
Then, the filter kernel is weighted by the observed imagensitg m(r’) and the
contributions from all positions’ are superimposed additively by the integral. On
the other hand we can write down the 'correlation’ integsal a

Ucon(r) = /H%svn(r)(r/ —r)ym(r’)dr’,

which again covers the above presented picture. The valtieeaksult at position
r is just the standard innerproduct of the image with filtemletmodified by the
parameten(r).

The 'convolution’-approach is related to the so called ®endbting framework
(TV) [5, 7]. In TV the filter kernel is denoted as the voting @iion and is typically
tensor-valued. For example, rank 2 tensors are use to ealieatre images for
fiber detection. In TV the intensity imaga(r) is interpreted as a probability for
the presence of a fiber, while the kernel paramate) is the orientation of the
fiber at the specific position. On the other hand, the 'coti@i&approach is related
to anisotropic smoothing filters, which are typically usedienoise images while
preserving edges and discontinuities. Here the filter Késrier example a squeezed
Gaussian, tablet like function, which is during the filteopess oriented along the
intensity gradients. In this way the smoothing is not perfed across edges and,
hence, the discontinuities are preserved.

In this Chapter we propose how to use spherical tensor celdol expand the
filter kernel in an advantageous manner, such that the atientl steering of the
filter kernel can be performed efficiently. For scalar filterkels this expansion is
the well-known Spherical Harmonics expansion. To gernegdhis idea to tensor-
valued images we propose the so called tensorial harmdnitisis way arbitrary
filter kernels can be expanded in tensorial harmonics an@¢dhgputation of fil-
ter integral turns out to be a sum of convolutions. Althoulgé tonvolutions can
be computed efficiently by the Fast Fourier Transform, thevotution is still the
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bottleneck in the computation for very large volumes. Arotbroblem of this ap-
proach is the severe memory consumption, because one hasddrse tensorial
harmonic decomposition in a quite wasteful manner to allovefficient computa-
tion. Hence, we introduce so called spherical derivatitias allow to compute the
convolutions with special type of kernels efficiently.

1.1 Related Work

The Tensor Voting (TV) framework was originally proposedMgdioni et al. [5]
and has found several applications in low-level vision in&ial 3D. For example,
it is used for perceptual grouping and extraction of lineves and surfaces [7].
The key idea of TV is to make unreliable measurements mongstddy incorporat-
ing neighborhood information in a consistent and cohereartmer. To compute the
TV-integral in reasonable time the initial measurements\inare typically sparse.
Recently, Franken et al. [2] proposed an efficient way to ase@a dense Tensor
Voting in 2D. The idea makes use of a steerable expansioreafdting field. Steer-
able filters are an efficient architecture to synthesizefilter arbitrary angles from
linear combinations of basis filters [3]. Perona generdlibés concept in [8] and
introduced a methodology to decompose a given filter kerpgihally in a set of
steerable basis filters. The idea of Franken et al. [2] is &the steerable decom-
position of the voting field to compute the voting process bypwolutions in an
efficient way. Complex calculus and 2D harmonic analysiglaenajor mathemat-
ical tools that make this approach possible.

Anisotropic filtering is a low-level image processing teitiue that is used to
denoise and enhance images. The applied algorithms carpheated into itera-
tive and non-iterative methods. Iterative algorithms [403 based on solutions of
partial differential equations. The motivation of the idedounded in the physical
modelling of an anisotropic diffusion process. The equetiare tailored such that
particles tend to diffuse along edges rather than acrossse@@nsequently, the dis-
continuities of the images are preserved while the isotroggions are smoothed.
The second class of algorithms [13, 4] treats the problem@sahadaptive blurring
process. Depending on a local orientation analysis theiblykernels are steered
for each pixels such that the blurring is not performed aemges. In [4] a tech-
nique for fast anisotropic filtering in 2D is proposed, utdoately the idea is not
extendable to 3D.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic oratiof the harmonic
analysis 0fSQ(3). For introductory reading we recommend mostly literatdiz P]
concerning the quantum theory of the angular momentum gvehit representation
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tries to avoid terms from quantum theory to also give the pbysicists a chance
for following. See e.g. [6, 11] for introduction from an engering or mathematical
point of view.

In the following we just repeat the basic notions and inticaaur notations.

2.1 Preliminaries

Let Dé be the unitary irreducible representation ¢fa SQ(3) of orderj with j € N.

They are also known as tiWigner D-matricegsee e.g. [9]). The representatibé
acts on a vector spaadg which is represented bg2i+1. We write the elements of
Vj in bold face, e.gu € V; and write the 2+ 1 components in unbold faeg, € C
wherem= —j,... . For the transposition of a vector/matrix we writ&; the joint
complex conjugation and transposition is denotecuby=T". In this terms the
unitarity of D is expressed by the formu(®) 'D{ = 1.

Note, that we treat the spadg as a real vector space of dimensiorns+21,
although the components afmight be complex. This means that the spsfpes
only closed under weighted superpositions with real nusib&s a consequence of
this we always have that the components are interrelat@ghby (—1)™u_p,. From
a computational point of view this is an important issuehaligh the vectors are
elements ofC2*1 we just have to store justJZ.L 1 real numbers.

We denote the standard basis@# 1 by el, where thenth component oém is
&mn. In contrast, the standard basis\4fis written asch = 4 Hen+ (—1)mHe
We denote the corresponding 'imaginary’ space\y i.e. eIements oiVj can be
written asiv wherev € V. So, elementss € iV; fulfill Wy, = (—1)”‘+1w,m. Hence,
we can write the spacg&?/** as the direct sum of the two spac®¥+! =V, ®iV;.
The standard coordinate vector= (x,y,2)" € R® has a natural relation to elements
u €V by

1 .
ﬁ(X—'y)
u= \/zyC%-‘rZCO—%/Cll— z =SreVv,
— 5 (x+iy)

Note, thatS is an unitary coordinate transformation. The represem‘uzﬁ:@L is di-
rectly related to the real valued rotation mattyc SQ(3) C R3*3 by Dg = SUgS'.

Definition 2.1 A functionf : R® — C2*1is called a spherical tensor field of rank j
if it transforms with respect to rotations as

(gf)(r) == D§f(Ugr)

for all g € SQ(3). The space of all spherical tensor fields of rank j is denoted’p



Spherical Tensor Calculus for Local Adaptive Filtering 5

2.2 Spherical Tensor Coupling

Now, we define a family of bilinear forms that connect tensurdifferent ranks.

Definition 2.2 For every j> 0 we define a family of bilinear forms of type
0j 1 Vi X Vj, = caH

where j, j» € N has to be chosen according to the triangle inequdljfy— j2| <
j < i1+ jo. Itis defined by

(eh) " (vojw)i= S (jm | jimy, jomo)Vim, Wi,
M=y +my

where(jm | j1my, jomp) are the Clebsch-Gordan coefficients.

For references concerning the Clebsch-Gordan coefficketin the appendix. The
characterizing property of these products is that theyeaesihe rotations of the
arguments, namely

Proposition 2.3 Letv € Vj, andw € Vj,, then for any g= SQ(3)

(DJtv) oj (D{2w) = D)j(vojw)

holds.

Proof. The components of the left-hand side look as

(eh) " ((Dfv) oj (DFw))
_ il i i i2
= mgmz (im[jamy, szz>Dmlm(lez%an1Wn{2
o
First, one have to insert the identity by using orthogogaétation (17) with respect

to m; andnt,. Then we can use relation (25) and the definitiorjofo prove the
assertion.

Proposition 2.4 If j1+ jo+ ] is even, tham is symmetric, otherwise antisymmetric.
The spaces Vare closed for the symmetric product, for the antisymmegriciuct
this is not the case.

j+ i1+ jz2iseven=vojw eV,
j+ij1+j2isodd = vojwe€iVj,
wherev €V, andw € V.

Proof. The symmetry and antisymmetry is founded in the symmetrpgnies of
the Clebsch-Gordan coefficients in equation (23). To shextbsure property con-
sider
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(eh)'vorw =y (imljimy, jomp) Vi Wrr,
M=y +Np
= z (=1)™(jm|j1my, jamp) V- m W m,
M=y +Np
= Y (=DM (—m)|j1my, j2me) Vi W,
M=y +np

= (—p™itittiz(el Tye oW,

where we used the symmetry property given in equation (2éhdd, we have for
evenj + j1+ jo the realness’ condition complying ¥ and for oddj + j1 + j the
‘imaginaryness’ condition foiVj, which prove the statements.

We will later see that the symmetric product plays an impuntale, in particular,
because we can normalize it in an special way such that it steomore gentle
behavior with respect to the spherical harmonics.

Definition 2.5 For every j> 0 with [j1 — j2| < j < ji+ jz and even j+ ji + j2 we
define a family of symmetric bilinear forms by
Vejw = éw-w
P (j0]j10, j20)

For the special casp= 0 the arguments have to be of the same rank due to the
triangle inequality. Actually in this case the symmetrioghuct coincides with the
standard inner product

m=j
vew=Y _(—1)mvmw,m =w'v,
m==]
wherej is the rank ofv andw.
Proposition 2.6 The product® ande are associative in the following manner.
Vito, (W2 oj, 1, %) = (VT o), 4, wi2) opylo 1)
holds if j + jo+ j3=¢. And
VizZop (Wit o) 4, y13) = (Vi op, j, wi2) oy i3 2)
holds with¢ = j, — (j1+ j3) > 0.

Proof. Both statements are proved by using the explicit formulagtie special
cases of the Clebsch-Gordan coefficients as given in equg®) and (21).

The introduced product can also be used to combine tensds fi#l different
rank by point-wise multiplication.

Proposition 2.7 Letv € .7}, andw € .7, and j chosen such thaf; — jo| < j <
j1+ j2, then
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f(r)=v(r)ojw(r)
isin .7j, i.e. atensor field of rank j.

In fact, there is another way to combine two tensor fields:dswolution. The evolv-
ing product respects the translation in a different sense.

Proposition 2.8 Letv € .7}, andw € .7}, and j chosen such thaf; — jo| < j <
ji+j2, then

(Vojw)(r) == /ﬂésv(r’— r)ojw(r’) dr’

is in .7, i.e. a tensor field of rank j.

2.3 Relation to Cartesian Tensors

The correspondence of spherical and cartesian tensomslo®ria trivial. For rank 1
it is just the matrixS that connects the real-valued vector R® with the spherical
coordinate vectou = Sr € Vj. For rank 2 the consideration gets more intricate.
Consider a real-valued cartesian rank-2 tesa@rR3*2 and the following unique
decomposition

T =al3+ Tanti+ Tsym,

wherea € R, Tanii is an antisymmetric matrix antlsym a traceless symmetric ma-
trix. In fact, this decomposition follows the same mannettes spherical tensor
decomposition. A rank O spherical tensor corresponds tm#gity matrix in carte-
sian notation, while the rank 1 spherical tensor to a antisginc 3x 3 matrix or,
equivalently, to a vector. The rank 2 spherical tensor cpoads to a traceless,
symmetric matrix. Let us consider the spherical decomjoosiEor convenience let
TS = STS', then the components of the corresponding spherical temdaz V;j
with j =0,1,2 look as

b, = z <1m1,1ﬁb|1m>(—1)m1T(im1>mz’
my+Mp=m

whereb® corresponds tar, bt to T ani andb? to Tsym. The inverse of this 'cartesian
to spherical’-transformation is

2 m=j

Tmm = 2 3 (1(—my), 1mp| jm)(—1)™ b,
j=om==]

In particular, consider a cartesian symmetric 2-tensoligrelgensystem. In spher-
ical tensor notation the spherical tendsris decomposed into products of three
1-tensors € V; as

1

2

b =% AxVkoaVk,
K1
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wherevy are the eigenvectors @ andAy the eigenvalues. Note thiaf is invariant
against a common shift of the eigenvalues by some offdéis 'traceless’ in sense

that
1

> VkoaVk=0,
k=—1
for any set of orthogonal vectovs 1,vg,Vv1 € V1. This offset, namely the trace of
is covered by the zero-rari. It corresponds to the *ballness’ or ’isotropy’ f

2.4 Spherical Harmonics

We denote the well-known spherical harmonicsy: & — V;j (see appendix). We
always, writeYI(r), wherer may be an element &2, but YI(r) is independent

of the magnitude of = |r|, i.e. Y)(Ar) = YI(r) for anyA € R. We know that the

Y1 provide an orthogonal basis of scalar function on the 2-sp®e Thus, any real
scalar fieldf € Jp can be expanded in terms of spherical harmonics in an unique
manner:

[ee]

f(ry="S a() v,
r J_;)ar r

where theal (r) are expansion coefficients just depending on the radiagr|. In
the following, we always use Racah’s normalization (alsovikm as semi-Schmidt
normalization), i.e.

1
i’
) = g YO Y99 55

where the integral ranges over the 2-sphere using the stang@zasure. One im-

portant property of the Racah-normalized spherical haiosas thaty! Yl = 1.
Another important and useful property is that

Yj:le.ijz (3)

if j+ )1+ J2 is even. We can use this formula to iteratively compute higinder
Y1 from given lower order ones. Note théf = 1 andY?® = Sr, wherer € .

The spherical harmonics have a variety of nice propertieg & the most im-
portant ones is that eadh, interpreted as a tensor field of rajiks a fix-point with
respect to rotations, i.e.

(gY!)(r) =DgY (Ugr) = YI(r)

or in other wordsy | (Ugr) = DéYj(r). A consequence of this is that the expansion
coefficients of the rotated functiig f)(r) = f(U{r) just look asDgal (r).



Spherical Tensor Calculus for Local Adaptive Filtering 9

Note that the spherical harmonics arise as solutions oféipdelce equatioA f =
0. One set of solutions are the homogeneous polynomials

RI(r):=rlyi(r),

i.e. theR! fulfill R¥(Ar)=AIRI(r) and the components solve the Laplace equation
ARl = 0. In literature these functions are called the solid haricohey will get
important in the context of the spherical tensor derivative

3 Tensorial Harmonic Expansion

We propose to expand a tensor fiéld .7, of rank/ as follows

i:_f Yo Yi(r),

whereaij((r) € Jj,« are expansion coefficients. Note, that for 0 the expansion
coincides with the ordinary scalar expansion from above.céfe further observe
that

(gf)(r) = Dgf(Ugr)
o k= f

Z) D} ™8l (1)) o, YI(1) 4)
k——E

i.e. a rotation of the tensor field affects the expansionfi:nelhtsa‘j( to be trans-
formed byD§ ™. _ _

By settingal(r) = S akn(r)eht “ we canidentify the functional basky,,
as

o k=¢ m=j+k j " )
f(r) = (r) g o Y!(r),
JZOKZim j+k)akm —

j
ka

Proposition 3.1 (Tensorial Harmonics) The functionlej(m : & — V, provide an
complete and orthogonal basis of the angular part’%fi.e.

S il am
o Bl 2y (S195= {78, BB

where

Njk = 2[1 1(2]+1)( (j+K +1).
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The functionsZﬂ;m are called the tensorial harmonics.
Proof. We first show the orthogonality by elementary calculations:
1 i (@ T7i
an Sg(ka(s)) Zm(S)ds

‘ .,
=3 (MU (M-m) MO (M=) g 2 Y- m Yoy
| S —

M=—/¢
6j,j’6m,m'
2j+1
3 i"Omm <
_ bl ) : SOM P kYML (M —
=21 M;wwmk)m,nm m)) (M| (j+K)m,j (M—m)
2l 5. o
2(J+K)+1 = (j+k),(J+K)
1 20+1
= 5 Hi 4 T A
11/ Ock Omat S T 21

In line 2 we use the orthogonality of the Racah-normalizétesigal harmonics. In
the third line we use the orthogonality relation for the GlelirGordan coefficients
givenin (19).

Secondly, we want to show that the expansion of a spherinabtdieldf € .7,
in terms of tensorial harmonics is unique and complete. yhaty agrees that the
expansion of the individual componer@éﬂ)Tf in spherical harmonics is complete.
That is, we can write the expansion as

A
() () = bl (1) Y (1),
2,2 Bu

n==j

whereb}, (r) € V; are the expansion coefficients for thh component. We show
the completeness of the tensorial harmonics by connediienm in an one-to-one
manner with this ordinary spherical harmonic expansiohespherical tensor field.
For convenience we just consider tfth term in the expansion, i.e. the homoge-
neous part of of order| that we denote bfi. We start with the expansion in terms
of tensorial harmonics and rewrite them to identify the edats ofb}, (r) written as

b{,,,n(r) in terms of theaf(m(r). And so,
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14

€= 3 aln0EmIG+kminyi)

k=—¢m+n=M

J .
= Z Y (r) Z Zakm (EM|(j +k)ym, jn)

n=—j k=—¢ m

bly n(r)

Il
o
=
]
—
=
~—
<
—
—
~

Now, we just have to give the inverse relation that Compl]'te% out of theb,jvIn
This can be accomplished by

’;b )M (j +K)m, jn)

NZ Z > (1) (M m ) (M + K)r, )

k=—/¢

= z zakm ’; EMI(j+K)m, jn) (IM](j +K)m', jn)

k=—¢m

B¢ St TP
2041 j
= (k) + 1ok (r),
where we used again the orthogonality relation for the @eHSordan coefficients
given in (19). This provides the one-to-one relation betwtbe tensorial harmonic
expansion with the component-wise spherical harmonic resipa and proves the
statement.

3.1 Symmetric Tensor Fields

Typical filter kernels show certain symmetry properties.fijared out three sym-
metries that let vanish specific terms in the tensorial egjgen the rotationally
symmetry with respect to a certain axis, the absence oftomsnd reflection sym-
metry.

The rotation symmetry of a spherical tensor field .7; about thez-axis is ex-
pressed algebraically by the fact tiggff = f for all rotationg, around thez-axis.
Such fields can easily be obtained by averaging a generairtéels f over all these

rotations
1 27T



12 Marco Reisert and Hans Burkhardt

It is well known that the representati(ﬁ]i;,w of such a rotation is diagonal, namely
nggq,,mm = dmm€™. Hence, the expansion coefficieafs, of fs vanish for allm 0.
Thus, we can write any rotation symmetric tensor field as

o k=(

fo(r) = J(r) el o, Yi(r). (5)
JZOZ a(r) & o

k=—¢

We call such a rotation symmetric field torsion-fregyiffs = fs, wheregy, € O(3)
is a reflection with respect to thgzplane (orxzplane). In Figure 1 we give an
example of such a field. The action of such a reflection on $gddeensors is given
by Dé;yz,mm = (—=1)"Om_ny)- Similar to the rotational symmetry we can obtain such

fields by averaging over the symmetry operation

1
fstt = > (fs+ gyAs).

Note, that the mirroring operation for a spherical harmamjast a complex conju-
gation, that isy/ (Ug r) =YI(r). The consequence for equation (5) is that all terms
where thek+ ¢ are odd vanish. The reason for that is mainly Propositiol&chuse
with its help we can show that

D

Oyz

(e YIUE,N) = (~1)“(eh o Yi(r))

holds.

Finally, consider the reflection symmetry with respect sxtjxplane. This sym-
metry is particularly important for rank 2 spherical tenfelds. In TV such fields
are typically aligned or 'steered’ with quantities of thersg even rank. For even
rank tensors the parity of the underlying quantity is gettimst, so the voting field
has to invariant under such parity changes. This symme#dgéebraically expressed
by gxfs = fs wheregyy € O(3) is a reflection with respect to therplane, whose
action on spherical tensors is given %Z,mm = (—1))8ni. Averaging over this
symmetry operation has the consequence that expansios t@tmodd|j are van-
ishing. For odd rank tensor fields the reflection symmetryasimperative. But
there is typically an antisymmetry of the forga,fs = —fs. This antisymmetry let
vanish the expansion terms with even ingex

3.2 Expanding Rotation-Symmetric Fields in Polar Represation

We write the spherical tensor field in polar representédtio, ), where co8) =
z/r and @ = arg(x+iy). Consider a field of ranK. In polar representation the
rotation symmetry with respect to ttmeaxis is expressed by the fact that for all
m= —/(,...,¢ the component§u(r, 8, ) of the fieldf can be written as
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A r < Vo
L Ve ~ |
s YgEo# RN };!,
N %% - .::‘;ry;,
;: oy = '-“' Prr s
> - i &
N 5 < .&,
“ mE X o 15 -5
7P =
11t M 12N
LA FEERR
4 AR AR
14 ] 1 A

Fig. 1 Rotation symmetric vector fields. Left: torsion-free. Righith torsion.

fm(r7 9, (p) = am(ra e)eim(pa

wheream(r, 0) € C is the colatitudinal/radial dependency of the field. Thistion

symmetry is easy to verify becausg(r, 6, — @ )€™ = fu(r, 6, ). For torsion-
free tensor fields we additionally know tha(r,6) € R. To project such a sym-
metric kind of field on the tensorial harmonics consideriile component of the

tensorial harmonia ) :

() ' Zlo(6.9) = (&) (5™ <1 Y (6.9)
= {tm] (j+K)0.im)¥(6. )
| ( )! j
= (tm] (490, jm)e™, [T TPl (c0s0))
= Cyjm€™PJ(cog6))

Now, using this expression the projectionb&b yields

/2 21
Zio B / /z (r,6, )sin(6) dgdo
—m/2 0
¢ /2
—21'S Cijm / am(r, 8)Pl(cog(0)) sin(0)d6
m=—/ _n/2

The residue integral may be computed numerically or arcaii.
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3.3 Rotational Steering

By equation (4) the tensorial harmonics are very well suitedbtate the expanded
spherical tensor field. We want to show how to steer a rotationmetric field
efficiently in a certain direction.

Consider a general rotatiggy € SQ(3) that rotates the-axisr; = (0,0,1) " to
some given orientation € R3, i.e. Rg.rz=n. Of course, there are several rotations
that can accomplish this. But, if we apply such a rotation ootational symmetric
field fs this additional freedom does not have an influence on thdtre&arting
from the general rotation behavior of the tensorial harrm@xpansion in eq. (4)
one can derive that the symmetric tensor figltbtates as

oo k=/¢

nfs)(r) = (1) YitK(n) o, Y] 6
(anfs)(r) g{)k;ak(r) (n)o, Y(r) (6)

This expression is the basis for the algorithm proposedaémgxt section. To prove
equation (6) one needs to know thél(r,) = €.

4 Local Adaptive Filtering with Tensorial Harmonics

We already described the two dual ideas of local adaptiwifilty in the introduc-
tion. In this Section we describe how tensorial harmoniedmmaused to compute the
filter integrals efficiently. For both cased we assume thaffitter kernel is tensor-
valued of rank/, i.e. a functionV" : R® — V,. The intensity image is still represented
by the functiorm: R® — R and an orientation image: R® — V; of normalized vec-
tors is given. We also assume a rotation symmetric filterédeas given in equation
(6). The expansion coeﬁicien@(r) can be obtained by a projection of the filter
kernel on the tensorial harmonics

a)(r) = Nji(Zho V)@ (7)

due to the symmetry onlzlj(0 are involved. For the numerical integration scheme
Section 3.2.
4.1 The Convolution Integral

The key expression that has to be computed is

Uconu(r) = /ﬂ%svn(r')(r —r'y m(r’) dr’, (8)
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Following the last section we set the voting field\d(r) = (gnfs)(r), wherefs
is the rotational symmetric field. Inserting this expregssio (8) and using eq. (6)
yields

Uondr) = [ VY =1y mir') o' = [ (gogfs)(r —1') m(r') o
JR:
o k={

/Iégzo Z al(Ir —r')) YI(n(r') o, Yi(r — 'y m(r') dr’
. k—

/Rg )Y I()) opal(r =Y (r =) dr’

EI(r) A=)

o k={
% Z EJ+k AJ
j=0k=—¢

whereEJ(r) := m(r)Y!(n(r)) are combined tensor-valued evidence images and
AL(r) == a(r)YJ(r) is the harmonic expansion of the voting field. In Algorithm
1 we give pseudo-code for implementation.

Algorithm 1 Convolution Algorithm

Input: me J, n(r) € A, AL € J

Output: U € 7

LetE%:=m

for j=1:(jmax+¢) do
El:=(E/"1ojn)/(j0O]10,(j — 1)0)

end for

for j=0:jmax do
fork=—¢:2:/¢ do

ComputeU := U+ Eitk5, A}

end for

end for

4.2 The Correlation Integral

Let us now consider the correlation integral

Ucor(r /V” (r'—r)ym(r’) dr’. 9)

Following the same approach as in the previous section wevdéa
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Algorithm 2 Correlation Algorithm

Input: me J, n(r) € A, AL € J
Output: U € 7
D LetNO:=1
cfor j=1:(jmax+¢) do
NI := (NJ=%o;n)/(j0[10, (j — 1)0)
end for
s for j=0: jmax do
fork=—¢:2:¢ do )
Computel := U+ NI*K o (m«A})
end for
end for

CoNORWONE

o k=(

Ucorr(r) = /R3 %szaf(ﬂr’—d) Y K (r)) oy YI(r' —r) m(r’) dr’
=ok=—¢

o k=/ . .
- YHk(n(r))/ m(r) o @l (F —rYi(r 1) dr’
j;k:sz%’_/' R3 a‘k
NI+k(r) AL(r'=1))

o k=/¢

- ZOKZENHkoZ(m*AH()
L

The final expression enables us to give an efficient commutattheme as depicted
in Algorithm 2.

5 Spherical Tensor Derivatives

In this Section we propose derivative operators that casrsgherical tensor fields
of different ranks. We call them spherical tensor derivegi{STD). They can be used
to compute local adaptive filters for special types of filterriels more efficiently.
The explicit convolutions are replaced by finite differenperations.

They idea is to represent the filter kernel by superposit@STDs of radial
symmetric functions. Due to the commuting property of cdation and differenti-
ation the computation of the filter response will just inv@bne explicit convolution
with the radial symmetric functions, the rest of the comfiates consists of repeated
applications of STDs.

In particular we will consider spherical derivatives of Baussian. We will see
that the resulting polynomials are just solid harmonice Section 2.4). Based on
this we will present a special type of filter kernel which candefined for arbitrary
tensor ranks and has a very simple parameter dependencgltingtits shape and
orientation.
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Proposition 5.1 (Spherical Tensor Derivatives)Letf € .7; be a tensor field. The
spherical up-derivativel'ﬂ1 : 9 — .1 and the down-derivativél; : 9 — 7 1
are defined as

O := Doy f (10)
O4f := Oeyp_1f, (11)
where 1 1
U= (72(‘9x —idy), 0z, —ﬁ(ax‘F idy))

is the spherical gradient and,, dy, J; the standard partial derivatives.
Proof. We have to show thaff Ti1, 1.e.
0Y(Dgf(Ugr)) = Dy (M) (Ugr)
andif € 75 1
O1(Dgf(Ugr)) = Dy *(Oaf) (Ugr)
Both statements are proved just by using the properties of

Note, that for a scalar function the spherical up-derietbvjust the spherical gra-
dient, i.e.0f = O'f.

Inthe Fourier domain the spherical derivatives act by puiisee-multiplications
with a solid harmonidkY*(k) = iR(k) = iSk wherek = | k|| the frequency mag-
nitude:

Proposition 5.2 (Fourier Representation) Let?(k) be the Fourier transformation
of somef € .7, and [J representations of the spherical derivative in the Fourier
domain that are implicitly defined kyJf) = Of, then

(k) = RY(ik) eg411(K) (12)

O
O:f(k) = RY(ik) oy_1 f(K). (13)
Proof. By the ordinary Fourier correspondence for the partialvégirie, namely
okf = ikyf, we can verify for the spherical gradientthat
0 = iSk = RY(ik)
and hence - o
O' = (Deyaf) = Deppa f = RY(ik) opy1 f
which was to show. Proceed similar for the down-derivative.
In the following we want to use as a short-hand notation foltiple STDs
0f =00 = 0.0, 0% 0
———

i—times  (—times
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which we immediately use in this

Proposition 5.3 (Commuting Property for Convolutions) Let A € . and B €
7} be arbitrary spherical tensor fields then

(O°A) o5 B = A o5(00,B) (14)
(O°A) e B =A e (0B) (15)

where J=j— ({+k)and L= j+(+k.

Proof. Both assertions are founded by the associativity of the rigddeproduct.
Consider the first statement in the Fourier domain by usingggn (12) and then
apply the associativity given in equation (2):

(0'A) 03B = (RLeg., (O0' 1A)) 03B
— (O A) o (RYe;_1B) = (O A) e (T1B)

where we abbreviateB® = R(ik). A repeated application of this proves the first
assertion. For the second statement it is similar but usiag@ssociativity as given
in equation (1) .

5.1 Spherical Gaussian Derivatives

Our goal is to represent filter kernels as linear combinatafrSTDs of radial sym-
metric functions. Suppose thais an arbitrary radial functions, i.g(r) = g(||r||).

In fact, it holds in general that the angular part of STDs effiborm (J'g are spher-
ical harmonics of degree—i. In particular we are interested in a very important
radial function, the Gaussian function. In this section Wwevs that the STDs of a
Gaussian are just the Gaussian-windowed solid harmonics.

Proposition 5.4 The Gaussian windowed harmonic of widths defined as
1 /-r\’ 1?2
Vi) = = <?) Y(r)e 22,
then, the Fourier transformation &f(r) is given by

_ (oK?

VG(k) = (€T V() = (iKY (ke 7.

Proof. We start with the definition of the Fourier transform and gluthe spherical
harmonic expansion of the plane wave in terms of sphericas@dunctionj, (see
e.g [9], p. 136). Then, we integrate out the angular depethgdart:
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Ve (e K Tdr — H'@vﬁ,(r) 3 (20 1) ()" jn(ke) Y"(r) s Y"(K)

Jr3 . n

(i)f ! " *riz 42
- 022+3Y (k)/o je(kr)e 202rt+2dr

The residual radius dependend part is integrated by usegdhies expansion of the
spherical Bessel function:

o P . (="K " ont2ri2,
. 7_0_2 — . 7_0-2
/0 e(krje 22 r=Tidr nZOZ”n!(Z(n—i-@-l-l))”-/O r °

o2n+0+3(2(n0)+ 1!

0 -1 nk2n+€ (ak)2
_ Z) ( ) _ O'2€+3k6877
n=

2nnl g—2(n+£)—-3

So we arrive at

~ : . ak)2
Vo(k) = [ Ve rdr = (iKY (ke 2

which proves the assertion.

In fact, for o = 1 the Vs are eigenfunctions of the Fourier transformation with
eigenvalug —i)‘. Using the above proposition it is also easy to show thavthare
just thelth order spherical derivatives of a Gaussian.

Proposition 5.5 (Spherical Gaussian Derivative)The homogeneous spherical deriva-
tive O of a Gaussian computes to

Proof. Animmediate consequence of the fact té@(k) = R!(ik)g(k) and Propo-
sition 5.4.

6 Local Adaptive Filtering with STDs

The basic idea of the following approach is to represent ttex fkernel by a lin-

ear superposition of spherical Gaussian derivatives. Witlignable us to formulate
the filtering process by repeated applications of sphediedVatives which is much
more efficient than the explicit convolutions used in thevimes section. We have
seen that the Gaussian derivatives are just Gaussian-wéathlearmonic polynomi-
als, so the resulting kernels will be also Gaussian windoladonics. There are
many possibilities to construct such filter kernels. We pn¢a kernel which can be
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imagined as a squeezed or stretched Gaussian. But actuallgstrict the expan-
sion to derivatives of the fora'g. Due to the symmetry properties of the Gaussian
the expansion will only contain even degree derivatiésy. We propose to use the
following filter kernel

N © Al " .
Vi(r) = gom R (n) e, 0?g(r) (16)

wheren is the squeezing/stretching direction. The expresg2gn- 1)!! denotes the
double factorial given by2n—1)(2n— 3)...3. The parametef > 0 determines
the rank of the filter kernel. The parametercontrols the shape. Far < 0 the
function has a tablet-like shape, fdr> 0 the shape is stick-like. Note that, the if
the orientation parametaris not normalized the magnitudja|| has the same effect
on the shape of the filter kernel like the magnitudeAofSo, we can control the
orientation as well as the shape of the filter kernel by thglsiparameten. In
Figure 2 we show surface plots of the filter kernel fet O for differentA.

Fig. 2 Surface-Plots fof =0 withA = —0.2,0,0.2

6.1 The Convolution Integral

Again we have to compute the convolution integral as givegguation (8). Insert-
ing the filter kernel as given in equation (16) into (8) yields

Ucon(r) = /]1.{3 i)(zl/\fjl)” m(r’)RZHZ(n(r’)).K(Dzjg)(r i
1= Il ‘
El(r)
) %W(DZJQMEJ

=g% § ————pE!
JZo(zj—l)!! 2l
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where we used equation (14) to get from the second to thelthedThe resulting
approach is similar to the algorithm using the tensoriairt@rics, but the convolu-
tions with the basis functions are replaced by repeatedréifitiations.

Algorithm 3 Convolution Algorithm with STDs

Input: me J,n(r) € A1
Output: U € .7

1: LetE®:=me,R‘(n)

2. for j=1: jmax do

3 El:=El"ley,(R%n)
4: end for

5. LetU:=0

6: fOI’j—jmaX —1:1do
7 U= glorDa(U+E))
8: end for

9: U:=U+E°

10: U:=gxU

6.2 The Correlation Integral

On the other hand consider the correlation integral. Sigmiith equation (9) and
inserting expression (16) yields:

Ucorr(r /]1{3 20 2] — RZH[( n(r))e (DZJg)( )m(l’/) dr’
(")

= Z) 21_ J(r) o 0% (M g)

where we used equation (15) to pull the differentiation artvIn Algorithm 4 we
depict the computation process. Comparing to the conwsiltitegral everything
can be computed in place. We just need one loop for the wholeegs, hence, the
memory consumption is much lower as for the convolution @ligm.

6.3 Application to Anisotropic Blurring

Finally we want to use the algorithm proposed in the lastisedb denoise scalar
MRI data while preserving edges and surfaces, that is, why @gorithm 4 with
¢ = 0. The idea is to perform a blurring operation isotropicallysotropic regions
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Algorithm 4 Correlation Algorithm with STDs

Input: me J,n(r) € A1
Output: U € 7

. LetN:=R‘(n)

2: LetM :=mxg

3. LetU:=NeoM

4: for j=1:jmax do
5: N:= N02j+g Rz(n)
6

7

8

[Eny

M = °M J
Ui=U+ zigrNeM
: end for

and anisotropically in anisotropic regions. As a measuisoampy we use the gra-
dient normalized with the local standard deviation. We cf®do< 0 such that the
filter kernel has a tablet-like shape. This tablet-shaperigéch voxel oriented or-
thogonal to the observed gradient such that the smoothingtiperformed across
the edges. In conclusion we choose the orientation/shapengéem as

B Dl(m*g)
g4 /MPrg— (mxg)2

wheree > 0 is a small regularization parameter avoiding zero division Figure 3
we show an example applied on MRI-data of a human head of §&& @bviously,
the algorithm works, the isotropic regions are smoothedliavel the edges are kept.
The running time is on a standard PC (Intel Pentium 2.2 Ghabdt 15 seconds.

Fig. 3 Example of anisotropic blurring filter on MRI-data
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Appendix
Spherical Harmonics

We always use Racah-normalized spherical harmonics. tmstef Legendre poly-
nomials they are written as

Yi(0.0) = {15 Ph(cos6))d°

We always writer € S instead of(¢, 8). The Racah-normalized solid harmonics
can be written as

Ro(r) m;ﬁﬁﬁj I g i)

wherer = (x,y,2). They are related to spherical harmonicsRiy(r)/r’ = Y4 (r)

Clebsch-Gordan Coefficients

For the computation of the Clebsch-Gordan (CG) coefficierdarsive formulas are
applied (see e.g. [1]). The important orthogonality-rielas of the CG-coefficients
are

> (imljamy, j2me) (jm|jamd, jomb) = O, g Oy, (17)
J,m
> (imljamy, jome) (' ml] jamy, jame) = & G (18)
m=rhrrm,
2j+1
> (imljamy, j2me) (jm|jamy, jomp) = ZJJ T 1%0mm (19
m,m

For two special cases there are explicit formulas:

amenmowan= (MM (E) T e

1/2
(ml(C+A) (M= p), Ap) = (~ )A+u<£+/)\1ﬁ+u)

Cir+m—p\Y2 (20422 1)\ V2
A—U 2A

(21)
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The CG-coefficients fulfill certain symmetry relations

(Jm[jamy, jomp) = <j1m1.,j.2ml2|jm> (22)
(Jm[jomy, jomp) = (_1)J_+J_1+J_2<jm|j2m27jlml> (23)
(imljamy, jomg) = (=112 (j(—m)[j1(—my), jo(—mp)) (24)

Wigner D-Matrix

The components d])é are writtenD,,. In Euler anglesp, 8, ¢/ in ZYZ-convention
we have _ .
Dﬁnn(‘ﬂa 0, ‘-I-’) = elm(pdﬁnn(e)emwa

whered},,(0) is the Wigner d-matrix which is real-valued. Explicit fortaa for the
df,n(8) involve the Jacobi-polynomials (see e.g. [9]) The impdrtatations to the
Clebsch-Gordan coefficients are:

D=5 Dffin,Didn, (IMllzmy, lom) Inflang, onz) (25)
my+My=m
iy -a—n
and
Dfin, Difon, = > Dfnn(Im[lsmy, l2mg) (Inflang, Iong). (26)
I,mn
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