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1 Introduction

In 3D image processing tensors play an important role. Whilerank-1 and rank-2
tensors are well understood and commonly used, higher rank tensors are rare. This
is probably due to their cumbersome rotation behavior whichprevents a computa-
tionally efficient use. In this chapter we want to introduce the notion of a spherical
tensor which is based on the irreducible representations ofthe 3D rotation group. In
fact, any ordinary cartesian tensor can be decomposed into asum of spherical ten-
sors, while each spherical tensor has a quite simple rotation behavior. We introduce
so called tensorial harmonics that provide an orthogonal basis for spherical tensor
fields of any rank. It is just a generalization of the well known spherical harmon-
ics. Additionally we propose a spherical derivative which connects spherical tensor
fields of different degree by differentiation.

We will use the proposed theory for local adaptive filtering.By local adaptive
filtering we mean that during the filtering process the filter kernels may change their
shape and orientation depending on other quantities which were derived from the
image. Typically there are two ways to do this which are in a certain sense dual
to each other. Consider the classical linear filtering process. There are two inter-
pretation, on the one hand the convolution: each pixel (impulse) in the image is re-
placed by a predefined filter kernel (impulse response) whilethe filter kernel itself is
weighted by the intensity of the observed pixel. The contribution from all pixels are
combined by summation. This is the interpretation we know from signal process-
ing, where the filter kernel is known as the impulse response.For Gaussian filter
kernels the physical interpretation of this is simple isotropic diffusion. The second
interpretation is to compute a kind of correlation or blurring of the image: at each
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pixel we compute an inner product of the filter kernel with itslocal neighborhood,
i.e. a kind of correlation. If the filter kernel is positive, then it may be interpreted
as an average of the surrounding pixels while the filter kernel determines the shape
and size of local window in which the average is taken. In the linear case both in-
terpretation are identical up to a point reflection of the filter kernel. But, if the filter
kernel is spatially dependend (or local adaptive) both approaches are not identical
anymore. Let us formalize this. Letm(r) be the intensity of an image at positionr
andVn(r) a filter kernel at positionr , where the superscriptn is a parameter that
determines the orientation and shape of the kernel. Now suppose that we have also
given a parameter fieldn(r), i.e. the appearance of the kernel is spatially dependend.
Then, the ’convolution’ integral looks as

Uconv(r) =

∫

R3
Vn(r ′)(r − r ′) m(r ′) dr ′.

It formulates the above described intuition. We attach to each positionr ′ ∈ R3 the
filter kernel while the filter kernel depends on the kernel parametern at positionr ′.
Then, the filter kernel is weighted by the observed image intensity m(r ′) and the
contributions from all positionsr ′ are superimposed additively by the integral. On
the other hand we can write down the ’correlation’ integral as

Ucorr(r) =

∫

R3
Vn(r)(r ′− r) m(r ′) dr ′,

which again covers the above presented picture. The value ofthe result at position
r is just the standard innerproduct of the image with filter kernel modified by the
parametern(r).

The ’convolution’-approach is related to the so called Tensor Voting framework
(TV) [5, 7]. In TV the filter kernel is denoted as the voting function and is typically
tensor-valued. For example, rank 2 tensors are use to enhance feature images for
fiber detection. In TV the intensity imagem(r) is interpreted as a probability for
the presence of a fiber, while the kernel parametern(r) is the orientation of the
fiber at the specific position. On the other hand, the ’correlation’-approach is related
to anisotropic smoothing filters, which are typically used to denoise images while
preserving edges and discontinuities. Here the filter kernel is for example a squeezed
Gaussian, tablet like function, which is during the filter process oriented along the
intensity gradients. In this way the smoothing is not performed across edges and,
hence, the discontinuities are preserved.

In this Chapter we propose how to use spherical tensor calculus to expand the
filter kernel in an advantageous manner, such that the orientational steering of the
filter kernel can be performed efficiently. For scalar filter kernels this expansion is
the well-known Spherical Harmonics expansion. To generalize this idea to tensor-
valued images we propose the so called tensorial harmonics.In this way arbitrary
filter kernels can be expanded in tensorial harmonics and thecomputation of fil-
ter integral turns out to be a sum of convolutions. Although the convolutions can
be computed efficiently by the Fast Fourier Transform, the convolution is still the
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bottleneck in the computation for very large volumes. Another problem of this ap-
proach is the severe memory consumption, because one has to store the tensorial
harmonic decomposition in a quite wasteful manner to allow an efficient computa-
tion. Hence, we introduce so called spherical derivatives that allow to compute the
convolutions with special type of kernels efficiently.

1.1 Related Work

The Tensor Voting (TV) framework was originally proposed byMedioni et al. [5]
and has found several applications in low-level vision in 2Dand 3D. For example,
it is used for perceptual grouping and extraction of line, curves and surfaces [7].
The key idea of TV is to make unreliable measurements more robust by incorporat-
ing neighborhood information in a consistent and coherent manner. To compute the
TV-integral in reasonable time the initial measurements inTV are typically sparse.
Recently, Franken et al. [2] proposed an efficient way to compute a dense Tensor
Voting in 2D. The idea makes use of a steerable expansion of the voting field. Steer-
able filters are an efficient architecture to synthesize filters for arbitrary angles from
linear combinations of basis filters [3]. Perona generalized this concept in [8] and
introduced a methodology to decompose a given filter kernel optimally in a set of
steerable basis filters. The idea of Franken et al. [2] is to use the steerable decom-
position of the voting field to compute the voting process by convolutions in an
efficient way. Complex calculus and 2D harmonic analysis arethe major mathemat-
ical tools that make this approach possible.

Anisotropic filtering is a low-level image processing technique that is used to
denoise and enhance images. The applied algorithms can be separated into itera-
tive and non-iterative methods. Iterative algorithms [10]are based on solutions of
partial differential equations. The motivation of the ideais founded in the physical
modelling of an anisotropic diffusion process. The equations are tailored such that
particles tend to diffuse along edges rather than across edges. Consequently, the dis-
continuities of the images are preserved while the isotropic regions are smoothed.
The second class of algorithms [13, 4] treats the problem as alocal adaptive blurring
process. Depending on a local orientation analysis the blurring kernels are steered
for each pixels such that the blurring is not performed across edges. In [4] a tech-
nique for fast anisotropic filtering in 2D is proposed, unfortunately the idea is not
extendable to 3D.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic notions of the harmonic
analysis ofSO(3). For introductory reading we recommend mostly literature [12, 9]
concerning the quantum theory of the angular momentum, while our representation
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tries to avoid terms from quantum theory to also give the non-physicists a chance
for following. See e.g. [6, 11] for introduction from an engineering or mathematical
point of view.

In the following we just repeat the basic notions and introduce our notations.

2.1 Preliminaries

Let D j
g be the unitary irreducible representation of ag∈SO(3) of order j with j ∈N.

They are also known as theWigner D-matrices(see e.g. [9]). The representationD j
g

acts on a vector spaceVj which is represented byC2 j+1. We write the elements of
Vj in bold face, e.g.u ∈ Vj and write the 2j +1 components in unbold faceum ∈ C

wherem= − j, . . . j. For the transposition of a vector/matrix we writeuT ; the joint
complex conjugation and transposition is denoted byu⊤ = uT . In this terms the
unitarity ofD j

g is expressed by the formula(D j
g)

⊤D j
g = I .

Note, that we treat the spaceVj as a real vector space of dimensions 2j + 1,
although the components ofu might be complex. This means that the spaceVj is
only closed under weighted superpositions with real numbers. As a consequence of
this we always have that the components are interrelated byum = (−1)mu−m. From
a computational point of view this is an important issue. Although the vectors are
elements ofC2 j+1 we just have to store just 2j +1 real numbers.

We denote the standard basis ofC2 j+1 by ej
m, where thenth component ofej

m is
δmn. In contrast, the standard basis ofVj is written asc j

m = 1+i
2 ej

m+(−1)m1−i
2 ej

−m.
We denote the corresponding ’imaginary’ space byiVj , i.e. elements ofiVj can be
written asiv wherev ∈ Vj . So, elementsw ∈ iVj fulfill wm = (−1)m+1w−m. Hence,
we can write the spaceC2 j+1 as the direct sum of the two spacesC2 j+1 = Vj ⊕ iVj .
The standard coordinate vectorr = (x,y,z)T ∈ R3 has a natural relation to elements
u ∈V1 by

u =
x−y√

2
c1

1 +zc1
0−

x+y√
2

c1
−1 =




1√
2
(x− iy)

z
− 1√

2
(x+ iy)


 = Sr ∈ V1

Note, thatS is an unitary coordinate transformation. The representation D1
g is di-

rectly related to the real valued rotation matrixUg ∈SO(3)⊂R3×3 by D1
g = SUgS⊤.

Definition 2.1 A functionf : R3 7→ C2 j+1 is called a spherical tensor field of rank j
if it transforms with respect to rotations as

(gf)(r) := D j
gf(UT

g r)

for all g ∈ SO(3). The space of all spherical tensor fields of rank j is denoted by T j .
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2.2 Spherical Tensor Coupling

Now, we define a family of bilinear forms that connect tensorsof different ranks.

Definition 2.2 For every j≥ 0 we define a family of bilinear forms of type

◦j : Vj1 ×Vj2 7→ C2 j+1

where j1, j2 ∈ N has to be chosen according to the triangle inequality| j1 − j2| ≤
j ≤ j1 + j2. It is defined by

(ej
m)⊤(v ◦j w) := ∑

m=m1+m2

〈 jm | j1m1, j2m2〉vm1wm2

where〈 jm | j1m1, j2m2〉 are the Clebsch-Gordan coefficients.

For references concerning the Clebsch-Gordan coefficientssee in the appendix. The
characterizing property of these products is that they respect the rotations of the
arguments, namely

Proposition 2.3 Let v ∈ V j1 andw ∈ V j2, then for any g∈ SO(3)

(D j1
g v)◦j (D j2

g w) = D j
g(v ◦j w)

holds.

Proof. The components of the left-hand side look as

(ej
m)⊤((D j1

g v)◦j (D j2
g w))

= ∑
m=m1+m2

m′
1m′

2

〈 jm| j1m1, j2m2〉D j1
m1m′

1
D j2

m2m′
2
vm′

1
wm′

2

First, one have to insert the identity by using orthogonality relation (17) with respect
to m′

1 andm′
2. Then we can use relation (25) and the definition of◦j to prove the

assertion.

Proposition 2.4 If j1+ j2+ j is even, than◦ is symmetric, otherwise antisymmetric.
The spaces Vj are closed for the symmetric product, for the antisymmetricproduct
this is not the case.

j + j1 + j2 is even⇒ v ◦j w ∈Vj

j + j1 + j2 is odd ⇒ v ◦j w ∈ iVj ,

wherev ∈Vj1 andw ∈Vj2.

Proof. The symmetry and antisymmetry is founded in the symmetry properties of
the Clebsch-Gordan coefficients in equation (23). To show the closure property con-
sider



6 Marco Reisert and Hans Burkhardt

(ej
m)⊤v ◦j w = ∑

m=m1+m2

〈 jm| j1m1, j2m2〉vm1wm2

= ∑
m=m1+m2

(−1)m〈 jm| j1m1, j2m2〉v−m1w−m2

= ∑
m=m1+m2

(−1)m+ j+ j1+ j2〈 j(−m)| j1m1, j2m2〉vm1wm2

= (−1)m+ j+ j1+ j2(ej
−m)⊤v ◦j w,

where we used the symmetry property given in equation (24). Hence, we have for
even j + j1 + j2 the ’realness’ condition complying toVj and for oddj + j1 + j2 the
’imaginaryness’ condition foriVj , which prove the statements.

We will later see that the symmetric product plays an important role, in particular,
because we can normalize it in an special way such that it shows a more gentle
behavior with respect to the spherical harmonics.

Definition 2.5 For every j≥ 0 with | j1− j2| ≤ j ≤ j1 + j2 and even j+ j1 + j2 we
define a family of symmetric bilinear forms by

v •j w :=
1

〈 j0| j10, j20〉v ◦j w

For the special casej = 0 the arguments have to be of the same rank due to the
triangle inequality. Actually in this case the symmetric product coincides with the
standard inner product

v •0 w =
m= j

∑
m=− j

(−1)mvmw−m = w⊤v,

where j is the rank ofv andw.

Proposition 2.6 The products◦ and• are associative in the following manner.

v j1 ◦ℓ (w j2 ◦j2+ j3 y j3) = (v j1 ◦j1+ j2 w j2)◦ℓ y j3 (1)

holds if j1 + j2 + j3 = ℓ. And

v j2 ◦ℓ (w j1 ◦j1+ j3 y j3) = (v j1 ◦j2− j1 w j2)◦ℓ y j3 (2)

holds withℓ = j2− ( j1 + j3) ≥ 0.

Proof. Both statements are proved by using the explicit formulas for the special
cases of the Clebsch-Gordan coefficients as given in equation (20) and (21).

The introduced product can also be used to combine tensor fields of different
rank by point-wise multiplication.

Proposition 2.7 Let v ∈ T j1 andw ∈ T j2 and j chosen such that| j1 − j2| ≤ j ≤
j1 + j2, then
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f(r) = v(r)◦j w(r)

is in T j , i.e. a tensor field of rank j.

In fact, there is another way to combine two tensor fields: by convolution. The evolv-
ing product respects the translation in a different sense.

Proposition 2.8 Let v ∈ T j1 andw ∈ T j2 and j chosen such that| j1 − j2| ≤ j ≤
j1 + j2, then

(v◦̃jw)(r) :=
∫

R3
v(r ′− r)◦j w(r ′) dr ′

is in T j , i.e. a tensor field of rank j.

2.3 Relation to Cartesian Tensors

The correspondence of spherical and cartesian tensors of rank 0 is trivial. For rank 1
it is just the matrixS that connects the real-valued vectorr ∈ R3 with the spherical
coordinate vectoru = Sr ∈ V1. For rank 2 the consideration gets more intricate.
Consider a real-valued cartesian rank-2 tensorT ∈ R3×3 and the following unique
decomposition

T = αI3 +Tanti+Tsym,

whereα ∈ R, Tanti is an antisymmetric matrix andTsym a traceless symmetric ma-
trix. In fact, this decomposition follows the same manner asthe spherical tensor
decomposition. A rank 0 spherical tensor corresponds to theidentity matrix in carte-
sian notation, while the rank 1 spherical tensor to a antisymmetric 3×3 matrix or,
equivalently, to a vector. The rank 2 spherical tensor corresponds to a traceless,
symmetric matrix. Let us consider the spherical decomposition. For convenience let
Ts = STS⊤, then the components of the corresponding spherical tensors b j ∈ V j

with j = 0,1,2 look as

b j
m = ∑

m1+m2=m
〈1m1,1m2| jm〉(−1)m1Ts

(−m1)m2
,

whereb0 corresponds toα, b1 to Tanti andb2 to Tsym. The inverse of this ’cartesian
to spherical’-transformation is

Ts
m1m2

=
2

∑
j=0

m= j

∑
m=− j

〈1(−m1),1m2| jm〉(−1)m1b j
m.

In particular, consider a cartesian symmetric 2-tensor andits eigensystem. In spher-
ical tensor notation the spherical tensorb2 is decomposed into products of three
1-tensorsvk ∈ V1 as

b2 =
1

∑
k=−1

λk vk◦2 vk,
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wherevk are the eigenvectors ofTs andλk the eigenvalues. Note thatb2 is invariant
against a common shift of the eigenvalues by some offsetγ. It is ’traceless’ in sense
that

1

∑
k=−1

vk◦2 vk = 0,

for any set of orthogonal vectorsv−1,v0,v1 ∈V1. This offset, namely the trace ofT
is covered by the zero-rankb0. It corresponds to the ’ballness’ or ’isotropy’ ofT.

2.4 Spherical Harmonics

We denote the well-known spherical harmonics byY j : S2 →Vj (see appendix). We
always, writeY j(r), wherer may be an element ofR3, but Y j(r) is independent
of the magnitude ofr = ||r ||, i.e.Y j(λ r) = Y j(r) for anyλ ∈ R. We know that the
Y j provide an orthogonal basis of scalar function on the 2-sphereS2. Thus, any real
scalar fieldf ∈ T0 can be expanded in terms of spherical harmonics in an unique
manner:

f (r) =
∞

∑
j=0

a j(r)⊤Y j(r),

where thea j(r) are expansion coefficients just depending on the radiusr = ||r ||. In
the following, we always use Racah’s normalization (also known as semi-Schmidt
normalization), i.e.

〈Y j
m,Y j ′

m′〉 =
1

4π

∫

S2
Y j

m(s) Y j ′
m′(s)ds=

1
2 j +1

δ j j ′δmm′

where the integral ranges over the 2-sphere using the standard measure. One im-
portant property of the Racah-normalized spherical harmonics is thatY j⊤Y j = 1.
Another important and useful property is that

Y j = Y j1 •j Y j2 (3)

if j + j1 + j2 is even. We can use this formula to iteratively compute higher order
Y j from given lower order ones. Note thatY0 = 1 andY1 = Sr, wherer ∈ S2.

The spherical harmonics have a variety of nice properties. One of the most im-
portant ones is that eachY j , interpreted as a tensor field of rankj is a fix-point with
respect to rotations, i.e.

(gY j)(r) = D j
gY j(UT

g r) = Y j(r)

or in other wordsY j(Ugr) = D j
gY j(r). A consequence of this is that the expansion

coefficients of the rotated function(g f)(r) = f (UT
g r) just look asD j

ga j(r).
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Note that the spherical harmonics arise as solutions of the Laplace equation∆ f =
0. One set of solutions are the homogeneous polynomials

R j(r) := r jY j(r),

i.e. theR j fulfill R j(λ r) = λ jR j(r) and the components solve the Laplace equation
∆Rj

m = 0. In literature these functions are called the solid harmonics. They will get
important in the context of the spherical tensor derivatives.

3 Tensorial Harmonic Expansion

We propose to expand a tensor fieldf ∈ Tℓ of rankℓ as follows

f(r) =
∞

∑
j=0

k=ℓ

∑
k=−ℓ

a j
k(r)◦ℓ Y j(r),

wherea j
k(r) ∈ T j+k are expansion coefficients. Note, that forℓ = 0 the expansion

coincides with the ordinary scalar expansion from above. Wecan further observe
that

(gf)(r) = Dℓ
gf(U⊤

g r)

=
∞

∑
j=0

k=ℓ

∑
k=−ℓ

(D j+k
g a j

k(r))◦ℓ Y j(r) (4)

i.e. a rotation of the tensor field affects the expansion coefficientsa j
k to be trans-

formed byD j+k
g .

By settinga j
k(r) = ∑m= j+k

m=−( j+k) a j
km(r)ej+k

m we can identify the functional basisZ j
km

as

f(r) =
∞

∑
j=0

k=ℓ

∑
k=−ℓ

m= j+k

∑
m=−( j+k)

a j
km(r)ej+k

m ◦ℓ Y j(r)︸ ︷︷ ︸
Z j

km

,

Proposition 3.1 (Tensorial Harmonics) The functionsZ j
km : S2 7→ Vℓ provide an

complete and orthogonal basis of the angular part ofTℓ, i.e.

∫

S2
(Z j

km(s))⊤Z j ′
k′m′(s)ds=

4π
Nj ,k

δ j , j ′δk,k′δm,m′ ,

where

Nj ,k =
1

2ℓ+1
(2 j +1)(2( j +k)+1).
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The functionsZ j
km are called the tensorial harmonics.

Proof. We first show the orthogonality by elementary calculations:

1
4π

∫

S2
(Z j

km(s))⊤Z j ′
k′m′(s)ds

=
ℓ

∑
M=−ℓ

〈ℓM|( j+k)m, j(M−m)〉〈ℓM|( j ′+k′)m′, j ′(M−m′)〉 1
4π

∫
S2 Y j

M−mY j ′
M−m′︸ ︷︷ ︸

δ j, j′ δm,m′
2 j+1

=
δ j , j ′δm,m′

2 j +1

ℓ

∑
M=−ℓ

〈ℓM|( j+k)m, j(M−m)〉〈ℓM|( j+k′)m, j(M−m)〉

︸ ︷︷ ︸
2ℓ+1

2( j+k)+1 δ( j+k),( j+k′ )

= δ j , j ′δk,k′δm,m′
1

2( j +k)+1
2ℓ+1
2 j +1

In line 2 we use the orthogonality of the Racah-normalized spherical harmonics. In
the third line we use the orthogonality relation for the Clebsch-Gordan coefficients
given in (19).

Secondly, we want to show that the expansion of a spherical tensor fieldf ∈ Tℓ

in terms of tensorial harmonics is unique and complete. Everybody agrees that the
expansion of the individual components(eℓ

M)⊤f in spherical harmonics is complete.
That is, we can write the expansion as

(eℓ
M)⊤f(r) =

∞

∑
j=0

j

∑
n=− j

b j
M(r)⊤Y j(r),

whereb j
M(r) ∈ V j are the expansion coefficients for theMth component. We show

the completeness of the tensorial harmonics by connecting them in an one-to-one
manner with this ordinary spherical harmonic expansion of the spherical tensor field.
For convenience we just consider thejth term in the expansion, i.e. the homoge-
neous part off of order j that we denote byf j . We start with the expansion in terms
of tensorial harmonics and rewrite them to identify the elements ofb j

M(r) written as
b j

M,n(r) in terms of thea j
km(r). And so,
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(eℓ
M)⊤f j(r) =

ℓ

∑
k=−ℓ

∑
m+n=M

a j
km(r)〈ℓM|( j +k)m, jn〉Y j

n (r)

=
j

∑
n=− j

Y j
n (r)

ℓ

∑
k=−ℓ

∑
m

a j
km(r)〈ℓM|( j +k)m, jn〉

︸ ︷︷ ︸
b j

M,n(r)

=
j

∑
n=− j

b j
M,n(r)Y

j
n (r).

Now, we just have to give the inverse relation that computes thea j
km out of theb j

Mn.
This can be accomplished by

∑
M,n

b j
M,n(r)〈ℓM|( j +k′)m′, jn〉

= ∑
M,n

ℓ

∑
k=−ℓ

∑
m

a j
km(r)〈ℓM|( j +k)m, jn〉〈ℓM|( j +k′)m′, jn〉

=
ℓ

∑
k=−ℓ

∑
m

a j
km(r) ∑

M,n
〈ℓM|( j +k)m, jn〉〈ℓM|( j +k′)m′, jn〉

︸ ︷︷ ︸
δk,k′δm,m′ 2ℓ+1

2( j+k′)+1

=
2ℓ+1

2( j +k′)+1
a j

k′m′(r),

where we used again the orthogonality relation for the Clebsch-Gordan coefficients
given in (19). This provides the one-to-one relation between the tensorial harmonic
expansion with the component-wise spherical harmonic expansion and proves the
statement.

3.1 Symmetric Tensor Fields

Typical filter kernels show certain symmetry properties. Wefigured out three sym-
metries that let vanish specific terms in the tensorial expansion: the rotationally
symmetry with respect to a certain axis, the absence of torsion and reflection sym-
metry.

The rotation symmetry of a spherical tensor fieldf ∈ Tℓ about thez-axis is ex-
pressed algebraically by the fact thatgφ f = f for all rotationgφ around thez-axis.
Such fields can easily be obtained by averaging a general tensor field f over all these
rotations

fs =
1

2π

∫ 2π

0
gφ f dφ .
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It is well known that the representationD j
gφ of such a rotation is diagonal, namely

D j
gφ ,mm′ = δmm′eimφ . Hence, the expansion coefficientsa j

km of fs vanish for allm 6= 0.

Thus, we can write any rotation symmetric tensor field as

fs(r) =
∞

∑
j=0

k=ℓ

∑
k=−ℓ

a j
k(r) ej+k

0 ◦ℓ Y j(r). (5)

We call such a rotation symmetric field torsion-free ifgyzfs = fs, wheregyz∈O(3)
is a reflection with respect to theyz-plane (orxz-plane). In Figure 1 we give an
example of such a field. The action of such a reflection on spherical tensors is given
by D j

gyz,mm′ = (−1)mδm(−m′). Similar to the rotational symmetry we can obtain such
fields by averaging over the symmetry operation

fstf =
1
2
(fs+gyzfs).

Note, that the mirroring operation for a spherical harmonicis just a complex conju-
gation, that isY j(UT

gyz
r) = Y j(r). The consequence for equation (5) is that all terms

where thek+ℓ are odd vanish. The reason for that is mainly Proposition 2.4because
with its help we can show that

Dℓ
gyz

(ej+k
0 ◦ℓ Y j(UT

gyz
r)) = (−1)(k+ℓ)(ej+k

0 ◦ℓ Y j(r))

holds.
Finally, consider the reflection symmetry with respect to thexy-plane. This sym-

metry is particularly important for rank 2 spherical tensorfields. In TV such fields
are typically aligned or ’steered’ with quantities of the same, even rank. For even
rank tensors the parity of the underlying quantity is getting lost, so the voting field
has to invariant under such parity changes. This symmetry isalgebraically expressed
by gxyfs = fs wheregxy ∈ O(3) is a reflection with respect to thexy-plane, whose
action on spherical tensors is given byD j

gyz,mm′ = (−1) jδmm′ . Averaging over this
symmetry operation has the consequence that expansion terms with odd j are van-
ishing. For odd rank tensor fields the reflection symmetry is not imperative. But
there is typically an antisymmetry of the formgxyfs = −fs. This antisymmetry let
vanish the expansion terms with even indexj.

3.2 Expanding Rotation-Symmetric Fields in Polar Representation

We write the spherical tensor field in polar representationf(r,θ ,φ), where cos(θ ) =
z/r and φ = arg(x+ iy). Consider a field of rankℓ. In polar representation the
rotation symmetry with respect to thez-axis is expressed by the fact that for all
m= −ℓ, . . . , ℓ the componentsfm(r,θ ,φ) of the fieldf can be written as
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Fig. 1 Rotation symmetric vector fields. Left: torsion-free. Right: with torsion.

fm(r,θ ,φ) = αm(r,θ )eimφ ,

whereαm(r,θ ) ∈ C is the colatitudinal/radial dependency of the field. This rotation
symmetry is easy to verify becausefm(r,θ ,φ − φ ′)eimφ ′

= fm(r,θ ,φ). For torsion-
free tensor fields we additionally know thatαm(r,θ ) ∈ R. To project such a sym-
metric kind of field on the tensorial harmonics consider themth component of the
tensorial harmonicZ j

k0:

(eℓ
m)⊤Z j

k0(θ ,φ) = (eℓ
m)⊤(ej+k

0 ◦ℓ Y j(θ ,φ))

= 〈ℓm | ( j +k)0, jm〉Y j
m(θ ,φ)

= 〈ℓm | ( j +k)0, jm〉eimφ

√
( j −m)!
( j +m)!

P j
m(cos(θ ))

= Cℓ jmeimφ P j
m(cos(θ ))

Now, using this expression the projection onZ j
k0 yields

〈Z j
k0, f〉S2 =

π/2∫

−π/2

2π∫

0

Z j
k0(θ ,φ)⊤f(r,θ ,φ)sin(θ ) dφdθ

= 2π
ℓ

∑
m=−ℓ

Cℓ jm

π/2∫

−π/2

αm(r,θ )P j
m(cos(θ ))sin(θ )dθ

The residue integral may be computed numerically or analytically.
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3.3 Rotational Steering

By equation (4) the tensorial harmonics are very well suitedto rotate the expanded
spherical tensor field. We want to show how to steer a rotationsymmetric field
efficiently in a certain direction.

Consider a general rotationgn ∈ SO(3) that rotates thez-axis r z = (0,0,1)⊤ to
some given orientationn ∈ R3, i.e.Rgn r z = n. Of course, there are several rotations
that can accomplish this. But, if we apply such a rotation on arotational symmetric
field fs this additional freedom does not have an influence on the result. Starting
from the general rotation behavior of the tensorial harmonic expansion in eq. (4)
one can derive that the symmetric tensor fieldfs rotates as

(gnfs)(r) =
∞

∑
j=0

k=ℓ

∑
k=−ℓ

a j
k(r) Y j+k(n)◦ℓ Y j(r) (6)

This expression is the basis for the algorithm proposed in the next section. To prove
equation (6) one needs to know thatY j(r z) = ej

0.

4 Local Adaptive Filtering with Tensorial Harmonics

We already described the two dual ideas of local adaptive filtering in the introduc-
tion. In this Section we describe how tensorial harmonics can be used to compute the
filter integrals efficiently. For both cased we assume that the filter kernel is tensor-
valued of rankℓ, i.e. a functionVn : R3 →Vℓ. The intensity image is still represented
by the functionm: R3 →R and an orientation imagen : R3 →V1 of normalized vec-
tors is given. We also assume a rotation symmetric filter kernel as given in equation
(6). The expansion coefficientsa j

k(r) can be obtained by a projection of the filter
kernel on the tensorial harmonics

a j
k(r) = Nj ,k〈Z j

k0,V
rz〉S2

r
(7)

due to the symmetry onlyZ j
k0 are involved. For the numerical integration scheme

Section 3.2.

4.1 The Convolution Integral

The key expression that has to be computed is

Uconv(r) =

∫

R3
Vn(r ′)(r − r ′) m(r ′) dr ′, (8)
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Following the last section we set the voting field toVn(r) = (gnfs)(r), wherefs

is the rotational symmetric field. Inserting this expression in (8) and using eq. (6)
yields

Uconv(r) =

∫

R3
Vn(r ′)(r − r ′) m(r ′) dr ′ =

∫

R3
(gn(r ′)fs)(r − r ′) m(r ′) dr ′

=
∫

R3

∞

∑
j=0

k=ℓ

∑
k=−ℓ

a j
k(|r − r ′|) Y j+k(n(r ′))◦ℓ Y j(r − r ′) m(r ′) dr ′

=
∞

∑
j=0

k=ℓ

∑
k=−ℓ

∫

R3
m(r ′)Y j+k(n(r ′))︸ ︷︷ ︸

E j+k(r ′)

◦ℓ a j
k(|r − r ′|)Y j (r − r ′)︸ ︷︷ ︸

A j
k(r−r ′))

dr ′

=
∞

∑
j=0

k=ℓ

∑
k=−ℓ

E j+k◦̃ℓA j
k

whereE j (r) := m(r)Y j(n(r)) are combined tensor-valued evidence images and
A j

k(r) := a j
k(r)Y

j (r) is the harmonic expansion of the voting field. In Algorithm
1 we give pseudo-code for implementation.

Algorithm 1 Convolution Algorithm

Input: m∈ T0, n(r) ∈ T1, A j
k ∈ T j

Output: U ∈ Tℓ

1: Let E0 := m
2: for j = 1 : ( jmax+ ℓ) do
3: E j := (E j−1 ◦j n)/〈 j0|10, ( j −1)0〉
4: end for
5: for j = 0 : jmax do
6: for k = −ℓ : 2 : ℓ do
7: ComputeU := U+E j+k ◦̃ℓ A j

k
8: end for
9: end for

4.2 The Correlation Integral

Let us now consider the correlation integral

Ucorr(r) =

∫

R3
Vn(r)(r ′− r) m(r ′) dr ′. (9)

Following the same approach as in the previous section we canwrite
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Algorithm 2 Correlation Algorithm

Input: m∈ T0, n(r) ∈ T1, A j
k ∈ T j

Output: U ∈ Tℓ

1: Let N0 := 1
2: for j = 1 : ( jmax+ ℓ) do
3: N j := (N j−1 ◦j n)/〈 j0|10, ( j −1)0〉
4: end for
5: for j = 0 : jmax do
6: for k = −ℓ : 2 : ℓ do
7: ComputeU := U+N j+k ◦ℓ (m∗A j

k)
8: end for
9: end for

Ucorr(r) =

∫

R3

∞

∑
j=0

k=ℓ

∑
k=−ℓ

a j
k(|r ′− r |) Y j+k(n(r))◦ℓ Y j(r ′− r) m(r ′) dr ′

=
∞

∑
j=0

k=ℓ

∑
k=−ℓ

Y j+k(n(r))︸ ︷︷ ︸
N j+k(r)

∫

R3
m(r ′)◦ℓ a j

k(|r ′− r |)Y j(r ′− r)︸ ︷︷ ︸
A j

k(r
′−r))

dr ′

=
∞

∑
j=0

k=ℓ

∑
k=−ℓ

N j+k◦ℓ (m∗A j
k)

The final expression enables us to give an efficient computation scheme as depicted
in Algorithm 2.

5 Spherical Tensor Derivatives

In this Section we propose derivative operators that connects spherical tensor fields
of different ranks. We call them spherical tensor derivatives (STD). They can be used
to compute local adaptive filters for special types of filter kernels more efficiently.
The explicit convolutions are replaced by finite differenceoperations.

They idea is to represent the filter kernel by superpositionsof STDs of radial
symmetric functions. Due to the commuting property of convolution and differenti-
ation the computation of the filter response will just involve one explicit convolution
with the radial symmetric functions, the rest of the computations consists of repeated
applications of STDs.

In particular we will consider spherical derivatives of theGaussian. We will see
that the resulting polynomials are just solid harmonics (see Section 2.4). Based on
this we will present a special type of filter kernel which can be defined for arbitrary
tensor ranks and has a very simple parameter dependency controlling its shape and
orientation.
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Proposition 5.1 (Spherical Tensor Derivatives)Let f ∈ Tℓ be a tensor field. The
spherical up-derivative∇1 : Tℓ → Tℓ+1 and the down-derivative∇1 : Tℓ → Tℓ−1

are defined as

∇1f := ∇•ℓ+1 f (10)

∇1f := ∇•ℓ−1 f, (11)

where

∇ = (
1√
2
(∂x− i∂y),∂z,−

1√
2
(∂x + i∂y))

is the spherical gradient and∂x,∂y,∂z the standard partial derivatives.

Proof. We have to show that∇1f ∈ Tℓ+1, i.e.

∇1(Dℓ
gf(UT

g r)) = Dℓ+1
g (∇1f)(UT

g r)

and∇1f ∈ Tℓ−1

∇1(Dℓ
gf(UT

g r)) = Dℓ−1
g (∇1f)(UT

g r)

Both statements are proved just by using the properties of•.
Note, that for a scalar function the spherical up-derivative is just the spherical gra-
dient, i.e.∇ f = ∇1 f .

In the Fourier domain the spherical derivatives act by point-wise•-multiplications
with a solid harmonicikY1(k) = iR1(k) = iSk wherek = ||k|| the frequency mag-
nitude:

Proposition 5.2 (Fourier Representation)Let f̃(k) be the Fourier transformation
of somef ∈ Tℓ and ∇̃ representations of the spherical derivative in the Fourier

domain that are implicitly defined bỹ(∇f) = ∇̃̃f, then

∇̃
1
f̃(k) = R1(ik)•ℓ+1 f̃(k) (12)

∇̃1̃f(k) = R1(ik)•ℓ−1 f̃(k). (13)

Proof. By the ordinary Fourier correspondence for the partial derivative, namely
∂̃xf = ikx̃f, we can verify for the spherical gradient∇ that

∇̃ = iSk = R1(ik)

and hence
∇̃1f = ˜(∇•ℓ+1 f) = ∇̃•ℓ+1 f̃ = R1(ik)•ℓ+1 f̃

which was to show. Proceed similar for the down-derivative.

In the following we want to use as a short-hand notation for multiple STDs

∇ℓ
i := ∇i∇ℓ := ∇1 . . .∇1︸ ︷︷ ︸

i−times

∇1 . . .∇1
︸ ︷︷ ︸

ℓ−times

.
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which we immediately use in this

Proposition 5.3 (Commuting Property for Convolutions) Let A ∈ Tk and B ∈
T j be arbitrary spherical tensor fields then

(∇ℓA) •̃J B = A •̃J(∇ℓB) (14)

(∇ℓA) •̃L B = A •̃L(∇ℓB) (15)

where J= j − (ℓ+k) and L= j + ℓ+k.

Proof. Both assertions are founded by the associativity of the spherical product.
Consider the first statement in the Fourier domain by using equation (12) and then
apply the associativity given in equation (2):

(∇̃ℓÃ)•J B̃ = (R1•k+ℓ (˜∇ℓ−1Ã))•J B̃

= (˜∇ℓ−1Ã)•J (R1•j−1 B̃) = (˜∇ℓ−1Ã)•j (∇̃1B̃)

where we abbreviatedR1 = R1(ik). A repeated application of this proves the first
assertion. For the second statement it is similar but using the associativity as given
in equation (1) .

5.1 Spherical Gaussian Derivatives

Our goal is to represent filter kernels as linear combinations of STDs of radial sym-
metric functions. Suppose thatg is an arbitrary radial functions, i.e.g(r) = g(||r ||).
In fact, it holds in general that the angular part of STDs of the form∇n

i g are spher-
ical harmonics of degreen− i. In particular we are interested in a very important
radial function, the Gaussian function. In this section we show that the STDs of a
Gaussian are just the Gaussian-windowed solid harmonics.

Proposition 5.4 The Gaussian windowed harmonic of widthσ is defined as

Vℓ
σ (r) :=

1
σ3

(−r
σ2

)ℓ

Yℓ(r)e−
r2

2σ2 ,

then, the Fourier transformation ofVℓ(r) is given by

Ṽℓ
σ (k) = 〈eik⊤r ,Vℓ(r)〉L2 = (ik)ℓYℓ(k)e−

(σk)2

2 .

Proof. We start with the definition of the Fourier transform and plugin the spherical
harmonic expansion of the plane wave in terms of spherical Bessel functionjn (see
e.g [9], p. 136). Then, we integrate out the angular dependend part:
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∫

R3
Vℓ

σ (r)e−ik⊤r dr =

∫

R3
Vℓ

σ (r)∑
n

(2n+1)(−i)n jn(kr) Yn(r)•0 Yn(k)

=
(i)ℓ

σ2ℓ+3Yℓ(k)

∫ ∞

0
jℓ(kr)e

− r2

2σ2 rℓ+2dr

The residual radius dependend part is integrated by using the series expansion of the
spherical Bessel function:

∫ ∞

0
jℓ(kr)e

− r2

2σ2 r2+ℓdr =
∞

∑
n=0

(−1)nk2n+ℓ

2nn!(2(n+ ℓ)+1))!!

∫ ∞

0
r2n+2ℓ+2e

− r2

2σ2 dr
︸ ︷︷ ︸

σ2(n+ℓ)+3(2(n+ℓ)+1)!!

=
∞

∑
n=0

(−1)nk2n+ℓ

2nn!σ−2(n+ℓ)−3
= σ2ℓ+3kℓe−

(σk)2

2

So we arrive at

Ṽℓ
σ (k) =

∫

R3
Vℓ

σ (r)e−ik⊤r dr = (ik)ℓYℓ(k)e−
(σk)2

2

which proves the assertion.

In fact, for σ = 1 the Vℓs are eigenfunctions of the Fourier transformation with
eigenvalue(−i)ℓ. Using the above proposition it is also easy to show that theVℓ are
just theℓth order spherical derivatives of a Gaussian.

Proposition 5.5 (Spherical Gaussian Derivative)The homogeneous spherical deriva-
tive ∇ℓ of a Gaussian computes to

∇ℓe
− r2

2σ2 = σ3Vℓ
σ (r) =

(
− 1

σ2

)ℓ

Rℓ(r) e
− r2

2σ2

Proof. An immediate consequence of the fact that∇̃ℓg̃(k) = Rℓ(ik)g̃(k) and Propo-
sition 5.4.

6 Local Adaptive Filtering with STDs

The basic idea of the following approach is to represent the filter kernel by a lin-
ear superposition of spherical Gaussian derivatives. Thiswill enable us to formulate
the filtering process by repeated applications of sphericalderivatives which is much
more efficient than the explicit convolutions used in the previous section. We have
seen that the Gaussian derivatives are just Gaussian-windowed harmonic polynomi-
als, so the resulting kernels will be also Gaussian windowedharmonics. There are
many possibilities to construct such filter kernels. We present a kernel which can be
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imagined as a squeezed or stretched Gaussian. But actually,we restrict the expan-
sion to derivatives of the form∇ jg. Due to the symmetry properties of the Gaussian
the expansion will only contain even degree derivatives∇2 jg. We propose to use the
following filter kernel

Vn(r) =
∞

∑
j=0

λ j

(2 j −1)!!
R2 j+ℓ(n)•ℓ ∇2 jg(r) (16)

wheren is the squeezing/stretching direction. The expression(2 j −1)!! denotes the
double factorial given by(2n− 1)(2n− 3) . . .3. The parameterℓ ≥ 0 determines
the rank of the filter kernel. The parameterλ controls the shape. Forλ < 0 the
function has a tablet-like shape, forλ > 0 the shape is stick-like. Note that, the if
the orientation parametern is not normalized the magnitude||n|| has the same effect
on the shape of the filter kernel like the magnitude ofλ . So, we can control the
orientation as well as the shape of the filter kernel by the single parametern. In
Figure 2 we show surface plots of the filter kernel forℓ = 0 for differentλ .

Fig. 2 Surface-Plots forℓ = 0 with λ = −0.2,0,0.2

6.1 The Convolution Integral

Again we have to compute the convolution integral as given inequation (8). Insert-
ing the filter kernel as given in equation (16) into (8) yields

Uconv(r) =
∫

R3

∞

∑
j=0

λ j

(2 j −1)!!
m(r ′)R2 j+ℓ(n(r ′))︸ ︷︷ ︸

E j (r ′)

•ℓ(∇2 jg)(r − r ′)dr ′

=
∞

∑
j=0

λ j

(2 j −1)!!
(∇2 jg)•̃ℓE j

= g∗
∞

∑
j=0

λ j

(2 j −1)!!
∇2 jE j
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where we used equation (14) to get from the second to the thirdline. The resulting
approach is similar to the algorithm using the tensorial harmonics, but the convolu-
tions with the basis functions are replaced by repeated differentiations.

Algorithm 3 Convolution Algorithm with STDs
Input: m∈ T0, n(r) ∈ T1

Output: U ∈ Tℓ

1: Let E0 := m•ℓ Rℓ(n)
2: for j = 1 : jmax do
3: E j := E j−1 •2 j+ℓ R2(n)
4: end for
5: Let U := 0
6: for j = jmax : −1 : 1 do
7: U := λ j

(2 j−1)!! ∇2(U+E j)

8: end for
9: U := U+E0

10: U := g∗U

6.2 The Correlation Integral

On the other hand consider the correlation integral. Starting with equation (9) and
inserting expression (16) yields:

Ucorr(r) =
∫

R3

∞

∑
j=0

λ j

(2 j −1)!!
R2 j+ℓ(n(r))︸ ︷︷ ︸

N j (r)

•ℓ(∇2 jg)(r ′− r)m(r ′) dr ′

=
∞

∑
j=0

λ j

(2 j −1)!!
N j(r)•ℓ ∇2 j(m∗g)

where we used equation (15) to pull the differentiation outward. In Algorithm 4 we
depict the computation process. Comparing to the convolution integral everything
can be computed in place. We just need one loop for the whole process, hence, the
memory consumption is much lower as for the convolution algorithm.

6.3 Application to Anisotropic Blurring

Finally we want to use the algorithm proposed in the last section to denoise scalar
MRI data while preserving edges and surfaces, that is, we apply Algorithm 4 with
ℓ = 0. The idea is to perform a blurring operation isotropicallyin isotropic regions
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Algorithm 4 Correlation Algorithm with STDs
Input: m∈ T0, n(r) ∈ T1
Output: U ∈ Tℓ

1: Let N := Rℓ(n)
2: Let M := m∗g
3: Let U := N•ℓ M
4: for j = 1 : jmax do
5: N := N•2 j+ℓ R2(n)

6: M := ∇2M
7: U := U+ λ j

(2 j−1)!! N•ℓ M
8: end for

and anisotropically in anisotropic regions. As a measure anisotropy we use the gra-
dient normalized with the local standard deviation. We chooseλ < 0 such that the
filter kernel has a tablet-like shape. This tablet-shape is for each voxel oriented or-
thogonal to the observed gradient such that the smoothing isnot performed across
the edges. In conclusion we choose the orientation/shape parametern as

n =
∇1(m∗g)

ε +
√

m2∗g− (m∗g)2

whereε > 0 is a small regularization parameter avoiding zero divisions. In Figure 3
we show an example applied on MRI-data of a human head of size 2563. Obviously,
the algorithm works, the isotropic regions are smoothed well and the edges are kept.
The running time is on a standard PC (Intel Pentium 2.2 Ghz) isabout 15 seconds.

Fig. 3 Example of anisotropic blurring filter on MRI-data
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Appendix

Spherical Harmonics

We always use Racah-normalized spherical harmonics. In terms of Legendre poly-
nomials they are written as

Yℓ
m(φ ,θ ) =

√
(l −m)!
(l +m)!

Pℓ
m(cos(θ ))eiφ

We always writer ∈ S2 instead of(φ ,θ ). The Racah-normalized solid harmonics
can be written as

Rℓ
m(r) =

√
(ℓ+m)!(ℓ−m)! ∑

i, j ,k

δi+ j+k,ℓδi− j ,m

i! j!k!2i2 j (x− iy) j(−x− iy)izk,

wherer = (x,y,z). They are related to spherical harmonics byRℓ
m(r)/rℓ = Yℓ

m(r)

Clebsch-Gordan Coefficients

For the computation of the Clebsch-Gordan (CG) coefficientsrecursive formulas are
applied (see e.g. [1]). The important orthogonality-relations of the CG-coefficients
are

∑
j ,m
〈 jm| j1m1, j2m2〉〈 jm| j1m′

1, j2m′
2〉 = δm1,m

′
1
δm2,m

′
2

(17)

∑
m=m1+m2

〈 jm| j1m1, j2m2〉〈 j ′m′| j1m1, j2m2〉 = δ j , j ′δm,m′ (18)

∑
m1,m

〈 jm| j1m1, j2m2〉〈 jm| j1m1, j ′2m′
2〉 =

2 j +1
2 j ′2 +1

δ j2, j ′2
δm2,m′

2
(19)

For two special cases there are explicit formulas:

〈ℓm|(ℓ−λ )(m− µ),λ µ〉=

(
ℓ+m
λ + µ

)1/2(
ℓ−m
λ − µ

)1/2(
2ℓ
2λ

)−1/2

(20)

〈ℓm|(ℓ+ λ )(m− µ),λ µ〉= (−1)λ+µ
(

ℓ+ λ −m+ µ
λ + µ

)1/2

(
ℓ+ λ +m− µ

λ − µ

)1/2(
2ℓ+2λ +1

2λ

)−1/2
(21)
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The CG-coefficients fulfill certain symmetry relations

〈 jm| j1m1, j2m2〉 = 〈 j1m1, j2m2| jm〉 (22)

〈 jm| j1m1, j2m2〉 = (−1) j+ j1+ j2〈 jm| j2m2, j1m1〉 (23)

〈 jm| j1m1, j2m2〉 = (−1) j+ j1+ j2〈 j(−m)| j1(−m1), j2(−m2)〉 (24)

Wigner D-Matrix

The components ofDℓ
g are writtenDℓ

mn. In Euler anglesφ ,θ ,ψ in ZYZ-convention
we have

Dℓ
mn(φ ,θ ,ψ) = eimφ dℓ

mn(θ )einψ ,

wheredℓ
mn(θ ) is the Wigner d-matrix which is real-valued. Explicit formulas for the

dℓ
mn(θ ) involve the Jacobi-polynomials (see e.g. [9]) The important relations to the

Clebsch-Gordan coefficients are:

Dℓ
mn = ∑

m1+m2=m
n1+n2=n

Dℓ1
m1n1

Dℓ2
m2n2

〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (25)

and

Dℓ1
m1n1

Dℓ2
m2n2

= ∑
l ,m,n

Dℓ
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉. (26)
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