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The tremendous growth of 3D data models available on the internet requires more skills for fast retrieval and classification algorithms.
Especially, the problem of finding structural similarities between proteins automatically, in order to predict their functional similarity is a
challenging task. In this paper a new algebraic method for structural comparison between proteins based on invariant features computed
by group integration with spherical harmonics and D-Wigner matrices is proposed. Our goal is to achieve good classification without
alignment by using intrinsic, pose invariant features. We compare our method to DALI, PRIDE and the Gauss Integral-method in a
classification and search task. Additionally we provide a web interface to test the proposed method.
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1. Introduction

Molecular biologists are often interested in getting a survey of the objects in a biomolecular database
making classification one of their basic tasks: To which of the recognized classes in the database does a
new molecule belong? Answering this question is one of the basic problems in structural bioinformatics
(for a review about structural bioinformatics and its impact on biomedical science see e.g. [9, 10]).

Several classification schemata such as SCOP [1], CATH [2] and FSSP [3] are available in the Internet.
When a new object is inserted into the database, the supervision by experts that are very experienced
and have a deep knowledge in the domain of molecular biology is necessary in most cases. An efficient
classification algorithm is desired, that can speed up the classification process by acting as a fast filter for
further investigations.

While SCOP and CATH require classification by human experts, a fully automatic classification is
available from the FSSP database (Families of Structurally Similar Proteins), generated by the DALI
(Distance matrix ALIgnment) system [3]. The evaluation of a pair of proteins is very expensive, since
query processing for a single molecule against the entire FSSP database currently takes an overnight run.

Many efforts have been made to find a suitable algorithm for protein structure comparison. On the one
hand we have alignment based methods such as DALI [3] and the Combinatorical Extension algorithm
(CE) [23], which are powerful but of high time complexity due to their combinatorial nature. On the other
hand we have feature based approaches, which compute representative features and compare the structures
solely by their feature representation. They are fast, but mostly of less discriminative power. For example,
Pride [4] computes the distribution of Cα − Cα distances. In [5] hierarchical clusters based on indirect
coding features from the amino-acid composition sequence are formed with the help of a neural network.
The Gauss integral features [6] based on knot theory are the latest attempt to tackle the protein structure
comparison problem using invariant features. A good overview of protein structure comparison methods
has been given recently by Carugo in [7].
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One of the difficulties of the task is that the results need the approval by the biological community since
the quality of the classification algorithm is very difficult to measure. Most molecular biologists use DALI
for automatic classification. Furthermore, the user is interested in an alignment of the structure, which is a
high time consuming task. In fact, alignment techniques such as contact map overlap [8] are very popular,
although their computation is NP-complete. Our goal is to achieve good classification without alignment.
Our approach should make an overall fast protein search possible in the first step. In a second step one
could think of a refinement by e.g. aligning the remaining structures of high similarity.

In this paper we introduce Group Integration (GI) for structural protein data and apply it to a protein
retrieval and search task. The protein features presented in this paper are inspired by the work given in [21,
22], where similar techniques are used for classification of pollen grains and 3D surface models. In general,
GI stands in contrast to Normalization techniques, which obtain invariance by computing features relative
to a global reference frame. The determination of the reference frame makes Normalization techniques
extremely sensitive to noise. Whereas GI is known to be very robust to many kinds of noise. In [11] a
detailed overview over GI-techniques is given. Haasdonk [12, 13] applied GI to character recognition and
joined the GI-framework with Kernel-techniques. Ronneberger et al [14,15] used GI for the classification of
Pollen grains and segmentation of cell nuclei. In [16–18] GI was successfully applied to texture-classification
and image retrieval. In [19] algebraic invariants are used for character recognition.

This work is organized as follows: Section 2 introduces GI and explains how it can be expanded by
spherical harmonics and D-Wigner matrices. Section 3 discusses the choice of the kernel for GI, while in
section 4 a protein-specific implementation of GI is introduced. In section 5 related work is presented. The
results of experiments conducted on representative datasets from the PDB and their comparison to related
work are discussed in section 6. Finally, in section 7 conclusions and future work is presented.

2. Group Integration Features

Rather than describing two structures relative to each other which is done by alignment, our idea is to
find a way to construct a mathematical fingerprint of each structure automatically. This fingerprint is
a representation of the structure which can be easily used to construct a similarity measure. Describing
three-dimensional structures by feature vectors is a well-known method for three-dimensional structural
retrieval. To get a similarity measure that is independent to the relative pose in space of the compared
objects the feature vector has to be invariant under Euclidean motion. Group Integration is a constructive
way to reach this goal. Starting with a non-invariant simple feature of the structure an averaging over the
whole invariance group results in an invariant feature of the structure.

In this work we apply this idea to search and retrieve proteins by their three-dimensional structural
properties. Protein structure can be viewed at four hierarchical levels. First, the protein can be seen as
a one-dimensional sequence of amino acids. After the protein folding, the one-dimensional sequence folds
into a three-dimensional structure. This folded structure is composed of smaller three-dimensional units
called secondary structure. The folded structure or simply fold is also called tertiary structure. A protein
usually consists of several amino acid chains, thus a fourth level of structure, the quaternary structure
exists. Figure 1 displays a protein structure in different visualization modes. Instead of concentrating
on one specific hierarchy level, our work tries to incorporate and handle all views in a uniform manner.
Thus, the approach has to cope with the sequence and structural information and their interplay in an
appropriate way. In this work we show how the GI framework can be used to achieve this goal.

2.1. Definition

First we describe the theory for three-dimensional objects in general. In order to represent these objects, we
use a kind of intensity function x : R

3 7→ R indicating the presence of the object. Since we are dealing with
proteins, we will later define a special ’protein-function’ that represents the protein. For this, imagine that
each protein can be represented by a superposition of blob like functions centered at the atoms’ positions.
Thus the ’protein-function’ can be visualized as a three-dimensional structure constructed of overlapping
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Figure 1. Example of the three dimensional model for the protein structure with pdbid 1CIS. All images are produced
using RasMol http://www.umass.edu/microbio/rasmol/. On the left: cartoon display, one can easily recognize the second-order

structure. In the middle: the Cα-backbone of the protein. On the right: All atoms are displayed using small spheres.

normal distributions. We will explain the protein structure model in more detail in section 4. However, for
a better understanding of the invariant feature construction, we will think of x as the intensity function
for a three dimensional object at first.

An element g of the Euclidean group E acts on x by gx(r) 7→ x(Rr + t), where r, t ∈ R
3 and R ∈ R

3×3

is a orthogonal matrix, i.e. a three-dimensional rotation and/or a reflection. A group integration feature
Ik is obtained by integrating a kernel function k over the Euclidean motion

Ik(x) =

∫

E
k(gx) dg. (1)

Typically, choices of k are e.g. k(x) = x(0)x(d) or k(x) = h(x(0)) h′(x(d)), where h and h′ may be some
arbitrary nonlinear functions.

2.2. Including directional information

To include directional information, instead of only the values of x as was mostly done before, one should
also consider a local quantity that describes the neighborhood of some point. The gradient ∇x is the first
choice to capture the configuration of the neighborhood of some point. For computing the group integral,
we can use kernels like k(x,∇x) = h1(∇x(0))h2(∇x(d)) or further extension, which combine the gradient
values with the values of x. Of course, besides the gradient one can also use other local neighborhood
operators like the Hessian, or even higher derivatives.

2.3. Spherical Harmonics

To give our features more expressiveness we will later combine it with the Spherical Harmonic functions.
But first a small review on Spherical Harmonics is given. Any function f(s) defined on the two-sphere S2

can be orthogonally expanded in terms of the so called Spherical Harmonics (SH).

f(s) =

∞
∑

l=0

l
∑

m=−l

al
mY l

m(s), (2)

where s is a unit vector and the al
m the expansion coefficients, that are computed by projections

al
m =

∫

S2

f(s)Y l
m(s)ds on the basis functions. In practice, the infinite sum is truncated at some finite

cutoff parameter lmax. The Spherical Harmonic Transformation (SHT) is the analogue to the Fourier
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transform for the rotation group, i.e. the SHT provides a representation that is invariant to rotations.
There are subspaces, which preserve their energy while rotating the function. Moreover, the al

m show a
nice transformation behavior. Suppose f(s) is rotated by some rotation g, then the al

m are transformed by

the so-called D-Wigner matrices Dl(g), i.e. al
m 7→ ∑l

m=−l D
l
m(g)al

m. Since an integration over the rotation
group can always be separated into an integration over a sphere and a circle, we are able to use the SHT
to retain more information. Instead of just integrating the sphere integration out we expand the remaining
function in terms of spherical harmonics.

2.4. D-Wigner expansion

As the D-Wigner matrices are the irreducible representations of the three-dimensional rotation group, they
have another important property. A real function f(g) : SO3 7→ R defined on the rotation group itself can
be orthogonally expanded in terms of D-Wigner matrices:

f(g) =
∞

∑

l=0

tr(Dl(g) Bl), (3)

where the Bl are some kind ’expansion matrices’. The Bl are obtained by projections of the function
f(g) on the D-Wigner matrices Bl =

∫

SO3

f(g)Dl(g)T dR. Hence we are able to use the projections to
retain even more information in our group integration framework. Instead of a simple integration over the
rotation group we compute projections on the D-Wigner matrices. Since the D-Wigner matrices are unitary
representations of the rotation group one can show that the norms of the columns of the Bl are invariant
to right multiplications f(g) 7→ f(gg′) and similar the norms of the rows of the Bl are invariant to left
multiplications. Hence we can obtain invariance against rotations by taking the norms of the columns or
rows of the ’expansion matrices’, respectively. The D-Wigner matrices were already used in [21] to obtain
more discriminative features for the retrieval of 3D surface models. This work also proposes an algorithm
for the computation of the Dl(g) given the corresponding rotation matrix. This method works linear in
the number of coefficients that has to be computed.

3. The Kernel Choice

It is not a simple question which kernel function one should choose and which non-linearities should be
incorporated. The choices are typically guided by the application’s demands and complexity considerations.
The surface and the outer atoms of the protein play an important role for the biochemical and functional
behavior. These regions are of high entropy and contain most of the information about the protein. In
fact, these atoms have also the highest temperature within the protein. It is important to emphasize these
regions. The magnitude of the gradient ∇x of the protein’s intensity function gives high responses exactly
in this regions. So we choose a kernel of the form

kd(x) = h(∇x(0)) h′(∇x(d)) (4)

as the basis of our kernel function with width parameter d. But how to choose h and h′? One demand
is that both functions should give strong feedback if the gradient is large. The function should also be
direction specific to keep the relative directions of the gradients. The simplest idea fulfilling this demands
is hn(v) = |vT n|, where n is some fixed unit vector. We use the absolute value of the dot-product, because
experiments have shown that whether the edge is falling or growing is not of the same importance as the
actual direction. A disadvantage of the function above is that it is not able to decide whether it has to
deal with large, disoriented or a small, oriented gradients v. A more rational choice is

hn(v) = |v|δ1

( |vT n|
|v|

)

, (5)
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where δ1 is the Delta-Distribution1 giving contribution if its argument is nearby 1 and otherwise zero.
The function hn(v) is unequal to zero whenever n ‖ v, i.e. n and v are parallel or antiparallel. Our
kernel-function is

kd,n,n′(x) = hn(∇x(0)) hn′(∇x(d)), (6)

3.1. Parameter Reduction

The basis kernel (6) contains the three vector-valued parameters d, n, n′. Of course, after integration of
the kernel

Id,n,n′(x) =

∫

E
kd,n,n′(gx) dg (7)

the feature Id,n,n′ does not depend on the overall seven (the parameters n and n′ are unit vectors) real
parameters anymore, there are redundancies. Due to the rotation invariance, the feature obviously fulfills
the relation Id,n,n′ = IRd,Rn,Rn′ for arbitrary orthogonal matrices R ∈ R

3×3. The relative directions of three
vectors up to orthogonal transformations are determined by the three pair-wise dot products of those. So
the parameters α = nTd/|d|, β = n′Td/|d| and γ = nTn′ uniquely determine the configuration. Using a
fourth parameter ∆ = |d| uniquely describes the whole parameter set.

Due to the absolute value in the definition of the hn, the symmetry hn = h−n is fulfilled and hence Id,n,n′

is also invariant to sign changes of n and n′. Thus, only absolute values of the dot products from above
are needed for description.

However, we have still another symmetry. Due to the integration over the rotation and translation group,
the feature is also invariant to exchanges of n and n′, i.e. Id,n,n′ = Id,n′,n. This fact can be seen easily by
reparametrising the integration. Changing the rotation integration by R 7→ −R and shifting the translation
integration by t 7→ t + d exchanges the kernel-factors and hence n and n′. For further consideration we
ignore this last symmetry, which just causes additional memory consumption.

Finally, we can reduce the parameter set to four positive real parameters: Three parameters describing
the relative configuration of d, n, n′ and ∆ ∈ [0,∞) giving the norm of the distance vector d.

4. Implementation for Proteins

Typical protein chains do not contain more than 1000 amino acids. For complexity reasons we represent
each amino acid just by the location of its Cα-atom. The Cα-atoms represent the backbone of the amino
acid chain. Most approaches for comparing and aligning proteins make the same restriction and only
consider the backbone. In the beginning we gave an intuition how to understand the ’protein-function’ x.
As already depicted we interpret the protein function as a superimposition of Gaussians. Each centered at
the Cα-locations. Thus, we have

∇x(r) =
2

σ2

∑

i

(ui − r)e−(
ui−r

σ
)2 (8)

where ui are the Cα-atom coordinates and the index i ranges over the whole point set and are chosen
according to the sequence numbers of the amino acids. In Figure 2, the gradient at each Cα-atom is
displayed for the protein with the PDB identity 1DLR.

But how to implement the feature computation in practice? In [14] a convolution with a rotation sym-
metric kernel is used for a fast evaluation of the integral. In our case this is not possible, because our

1we write δy(x) for the usual δ(x − y) of the Delta-Distribution due to space considerations
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Figure 2. Protein structure model. For the protein with the PDB identity 1DLR, the Cα atoms are visualized. The surface defined
by the Cα atoms is indicated.

kernel depends on local directional quantities. We want to pursue an alternative direction. We rewrite the
integral for the basis kernel

IΠ =

∫

R3

∫

O3

hn(R∇x(u))hn′(R∇x(u + RT d)) du dR, (9)

where Π denotes the parameter set d, n, n′. We use the relation f(u) =
∫

R3

f(u′)δu′(u) du′ for second kernel

factor and get

IΠ =

∫

R6

∫

O3

hn(R∇x(u))hn′(R∇x(u′))δu′(u + RT d)du du′ dR. (10)

As in the actual form of our kernel function the integral over the rotation group contributes a non-zero
value whenever n ‖ R∇x(u), n′ ‖ R∇x(u′), d ‖ R(u − u′) and |d| = |u − u′|. The first 3 conditions are
fulfilled if n, n′ and d have the same configuration up to rotation as ∇x(u), ∇x(u′) and u − u′. So we
rewrite

IΠ =

∫

R6

θd,n,n′|∇x(u)||∇x(u′)|δ∆(|u − u′|)du du′, (11)

where θd,n,n′ denotes the orientation specific part. It has a non-zero value whenever n, n′ and d have the
same configuration up to rotation as ∇x(u), ∇x(u′) and u − u′. As already mentioned, this is the case,
when the pair-wise dot-products α = dT n/|d|, β = dT n′/|d|and γ = nT n′ are the same as for the observed
gradients and difference. So we parameterize the parameter space by solely the dot-products α, β, γ and
∆ = |d|. To make the computation of the integral feasible we make now a strong simplification. Instead
of integrating over the whole continuous domain R

6, we let vanish the gradient function for all points that
are not a position of a Cα atom. That is

(∇x)approx(r) =
∑

j

δ(uj − r)∇x(r) (12)

One might argue that this approximation is very crude, which is actually true if the width of the gaussian
is large. But actally we are not really interested in a very good approximation, as long as the invariance



March 13, 2007 16:5 International Journal of Computer Mathematics ProteinRetrieval

Group Integration Features for Protein Fold Classification 7

is not violated, which is actually the case. And the approximation of the gradient still carries information
about the neighborhood of a Cα atom, which was the initial motivation. If we now replace the gradient
function in (11) with this approximation we get a double sum

IΠ =
∑

i,j

θd,n,n′δ∆(|ui − uj |)|∇x(ui)||∇x(uj)|. (13)

where the indices i and j are both ranging over the whole set of Cα atoms. Let us try to interpret this
equation. As already mentioned we can determine the parameter set Π to be the relative cosines α, β, γ
and the distance ∆, because the value of the integral only depends on the relative configuration due to
the invariance obtained by the group integration. Now we fix all this parameters Π = {α, β, γ,∆}. We
have to consider all pairs ui, uj of Cα positions and check whether they have a certain distance ∆ up to
some tolerance. This corresponds to the integrand δ∆(|ui −uj|). Further we have to check whether the two
gradients at position ui and uj and the connecting vector ui−uj have a relative configuration corresponding
to α, β, γ. This corresponds to the orientation specific part θd,n,n′. If both conditions are fulfilled we can add
the contribution |∇x(ui)||∇x(uj)| to the integral and proceed to the next pair of atoms. It would be quite
time consuming to consider for each parameter configuration the set of all possible atom pairs. Thus, the
actual implementation is a kind of upside down. Instead of fixing a parameter configuration beforehand,
we only run just once over all pairs of atoms. For each pair we compute the parameter values Π for which
this pair would give a contribution and accumulate the integral for the appropriate parameters. Algorithm
1 shows this in pseudo code.

Algorithm 1 GI Algorithm

1: Initialize IΠ = 0 for all parameter configurations Π.
2: for i = 1 to N do

3: for j = 1 to N do

4: Compute

5: α = ∇x(ui)
|∇x(ui)|

T (ui−uj)
|(ui−uj)|

, β = ∇x(uj)
|∇x(uj)|

T (ui−uj)
|(ui−uj)|

, γ = ∇x(ui)
|∇x(ui)|

T ∇x(uj)
|∇x(uj)|

, ∆ = |ui − uj |
6: Let Π = {α, β, γ,∆}
7: Update IΠ → IΠ + |∇x(ui)||∇x(uj)|
8: end for

9: end for

Here N is the number of residues in the protein. Of course, the parameter space has to be discretized
in a certain way. Later, in the experimental section, we give details how this was actually done. Actually,
we compute some kind of four dimensional histogram. We compute the frequency of occurrence of two
gradients in a specific distance with a particular relative configuration. This issue is very interesting since
it shows a very close connection of GI-features with invariant histograms. In fact the so called Shape
Distributions proposed in [20], a kind of distance histogram, may be seen as a GI-feature.

4.1. Using the SHT

As already mentioned we want to use the SHT to retain more information about the structure. Rewriting
(11) by evaluating δ∆(|u − u′|) leads to the sphere integral

IΠ =

∫

R3,S2

θd,n,n′ |∇x(u)||∇x(u + ∆s)| du ds, (14)
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where s ranges over the unit-sphere S2. Instead of simply integrating the expression above we now compute
the projection of it on Y l

m(s), i.e.

I lm
Π =

∫

R3,S2

θd,n,n′|∇x(u)||∇x(u + ∆s)|Y l
m(s) du ds. (15)

For l = 0 the integral is exactly the same as (11). For l > 0 the implementation of the above integral is
very similar to the computation of (11). Instead of a simple accumulation, the contributions are weighted
by the complex factor Y l

m( u−u′

|u−u′|). So, the update rule in line 9 of Algorithm 1 translates to I lm
Π → I lm

Π +

Y l
m( u−u′

|u−u′|)|∇x(u)||∇x(u′)|, where the result array gets two additional indices l and m. After computation,

the results are made invariant by computing the bandwise energy
√

∑l
m=−l |I lm

Π |2.

4.2. Using the D-Wigner expansion

For the SHT transform we had to reduce the integral over the rotation group to an integral over a sphere.
For the D-Wigner matrices we can directly apply the idea to the group integral. Let us denote the integrand
of (10) by K(R,u, u′), then we have to compute the projections of K on the Dl matrices as follows

∫

R6

∫

O3

K(R,u, u′)DT
l (R) dR du du′. (16)

Here the weighting of the integrand directly depends on the rotation, which turns the configuration of the
gradients ∇x(u),∇x(u′) and the difference vector u − u′ into the parameter-configuration d, n, n′. Until
now the actual parameters d, n, n′ were not of interest; we only used angles within them. Now we need
an actual coordinate representation. To get a non-redundant representation we have to use a standard
representation of the three parameters such that no configuration appears twice.

We use a modified γ parameter γ′, which is computed from the angle of the projections of n and n′ on
the plane with normal vector d,

γ′ =
Pdn

|Pdn|
T Pdn

′

|Pdn′| , (17)

where Pd is the orthogonal projection on the d-plane. This has the advantage of a compact configuration
representation:

d =





1
0
0



 , n =





α√
1 − α2

0



 , n′ =





β
√

1 − β2γ′
√

1 − β2
√

1 − γ′2



 ,

which is consistent to the already given parameter reduction with (α, β, γ′).
Let us denote the matrix composed of the three column vectors from above by Vα,β,γ′ = [d n n′].

So, for any observed ∇x(u),∇x(u′) and (u′ − u) we have to compute the configuration (α, β, γ′) and
determine the rotation R which turns the standard representation Vα,β,γ′ into the observed matrix M =

[ ∇x(u)
|∇x(u)| ,

∇x(u′)
|∇x(u′)| ,

(u′−u)
|u′−u)| ], i.e. we have to solve R Vα,β,γ′ = M for R, which is not difficult since Vα,β,γ′ is

upper triangular. In Algorithm 2 we outline the modified algorithm.
Now, the result array I l

Π is matrix valued, where each I l
Π ∈ C

(2l+1)×(2l+1) is a complex-valued matrix.
The result array is made invariant by taking norms columnwise. Hence, for each l we obtain 2l+1 invariant
features, instead of one feature as for the SHT-based algorithm.
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Algorithm 2 D-Wigner Algorithm

Initialize I l
Π = 0

for i = 1 to N do

for j = 1 to N do

Compute Π = {α, β, γ′,∆}
Determine R = MV −1

α,β,γ′

where M = [ ∇x(ui)
|∇x(ui)|

, ∇x(uj)
|∇x(uj)|

, (uj−ui)
|uj−ui)|

]

Update I l
Π → I l

Π + |∇x(ui)||∇x(uj)| Dl(R)
end for

end for

4.3. Incorporating sequential distances

As already mentioned, we also want to include the sequential information of the amino acid chain. Proteins
are more than point clouds of atoms. They contain sequential information, which should not be neglected.
Choosing two Cα-atoms we can assign them a sequential distance. Since the support of our object function
is restricted to the atom positions, we are able to give a mapping I : R

3 7→ R which assigns the appropriate
sequence indices to the spatial positions of the atoms. Hence, we extend kernel (6) by

k
(P )
d,n,n′,µ(x) = kd,n,n′(x) δµ(|I(0) − I(d)|), (18)

to also incorporate the sequential distance.
After computing one feature vector for each protein domain, the feature vectors are compared using

some kind of metric. We tried several L-norm based metrics and some χ2 based metrics. For our purpose
the L1 norm yielded the best results.

5. Related work

We compared our results to DALI/FSSP, PRIDE and the Gauss Integral methods. DALI and the authors
of the Gauss Integral method provide the software to compute their features. The PRIDE method was
implemented by the authors according to the description in [4].

5.1. DALI/FSSP

The DALI algorithm trys to align distance matrices that are composed of the pairwise distances of Cα

atoms dij = |ui − uj |. Usually, the distance matrices are depicted using gray scale images, where black
indicates the distance zero and is only present at the diagonal.

How should one compare two distance matrices? The simple idea is to slide one (transparent) matrix
over the other and detect similar submatrices. This idea implies a combinatorial optimization problem
of merging corresponding similar submatrices to larger blocks of agreement by removing redundant rows
and columns. The solution of this optimization problem is computed with the Monte Carlo method. In
the trial-and-error method the structurally similar regions are found by defining a cutoff function on
the intramolecular distances between two detected submatrices. The result of the alignment is typically
reported as an equivalent set of amino acids and visualized as a 3D superposition.

Since algorithms of the alignment of two structures have been known for a long time, the main contri-
bution of DALI was to apply alignment on large data sets in order to compute automatically a complete
map of the protein universe. Hence the alignment algorithm should not only compare two structures but
induce a global similarity measure between the two. This similarity measure is defined by:
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S(A,B) =
∑

i

∑

j



0.2 −

∣

∣

∣dA
ij − dB

ij

∣

∣

∣

d∗ij



 e−(d∗

ij/20A◦)2 , (19)

where the summation is over all amino acids of the common core, d∗ij denotes the arithmetic mean of

the Cα − Cα distances dA
ij and dB

ij of the proteins A and B, a relative deviation of 0.2 is the threshold of
similarity and the exponential factor downweighs contribution from parts at longer distances. The optimal
structural alignment is that set of equivalences (iA, iB) that maximizes S.

The DALI algorithm performs two steps for searching in large databases. In the first step a fast algorithm
is used to compute a group of potential similarity candidates. In the second step a refinement is performed
on the set of the previous step using slow but more sophisticated algorithms.

Since the protein structures are too large, they are cut into domains. In the ”Dali domain dictionary”
each domain is assigned a domain classification number DC l m n p representing:

(i) a fold space attractor region (l),
(ii) a globular folding topology (m),
(iii) a functional family (n) and
(iv) a sequence family (p).

The finest level of classification is level p and the highest level of the fold classification corresponds to
level l. The most evolutionary interesting part of the DALI classification hierarchy is level m. The globular
folding topology defines the fold type. Fold types are defined as clusters of structural neighbors in fold space
with average pairwise Z-scores above 2. The Z-score is a statistical measure computed on the similarity
value S of eq. 19. The Z-score associated with the ith observation of a random variable x is given by:

Zi =
xi − x

σ
, (20)

where xi is the mean and σ the standard deviation of all observations x1, ..., xn.

5.2. PRIDE

In this approach by Carugo and Pongor the distribution of the Cα(i) − Cα(i + n) distances in the range
of n = 3, ..., 30 chain distance is used to describe the protein structure. For each protein the distance
distribution is computed for Cα − Cα pairs with a distance of n on the chain.

Hence we get 28 distance histograms associated with one protein structure. These distance histograms are
then compared pairwise for two protein structure using contingency table analysis. This analysis answers
the question: Is their a dependency between Structure 1 and Structure 2? This PRIDE score of the relative
distances ranges between 0 and 1, where 1 implies the maximum dependency between the two structures.

5.3. Gauss Integrals

Rogen et al compute a set of 29 writhe-based features associated with the protein backbone structure. The
backbone can be parametrized by a polygonal curve µ.

The writhe of a closed space curve γ can be computed by using the Gauss Integral:

Wr(γ) =
1

4π

∫ ∫

γ×γ\D
ω(t1, t2)dt1dt2, (21)
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where

ω(t1, t2) =
[γ′(t1), γ(t1) − γ(t2), γ

′(t2)]

|γ(t1) − γ(t2)|3
dt1dt2, (22)

D is the Diagonal of γ × γ and [γ′(t1), γ(t1) − γ(t2), γ
′(t2)] is the triple scalar product. The writhe can

be described as the average signed number of crossings seen when averaged over all directions in 3D-space.
For a polygonal curve µ, the integral is reduced to a sum:

Wr(µ) = I(1,2)(µ) =
∑

1<i1<i2<N

W (i1, i2), (23)

where W (i1, i2) is the contribution to the writhe coming from the i1th and i2th line segment.
28 more writhe-based descriptors are constructed by taking absolute values and looking only at certain

interesting configurations. The number of structural descriptors is 30 since the number of Cα atoms is also
one of the descriptors.

6. Experiments

6.1. Datasets

The Protein Data Bank (PDB) [25] offers a large pool of protein structures. These structures can be
classified using several different classification schemes. We decided to use the so called SCOP release
1.67 database [1], a hand-labeled protein archive with nearly 26000 entries. We used a subset of proteins
to compute the evaluation within a reasonable amount of time. The SCOP-database is classified in a
hierarchical manner by class/fold/superfamily/family. For the first experiment we took one rather large
family from each class, resulting in a dataset of 2648 proteins divided in 10 classes, which are all very
different (’all-classes’). To evaluate how the features can discriminate between more similar proteins, we
created a second dataset with families belonging all to the class ’all-alpha’, resulting in a set of 3656
proteins divided in 172 folds. The third dataset in our experiments was chosen as in [5]. It contains 687
proteins from 4 SCOP classes and 27 SCOP folds and is quite difficult to classify automatically, since the
data set have less than 40% of the sequence identity for the aligned subsequences longer than 80 residues.
The fourth data set ’cath’ consists of the connected CATH 2.4 domains selected in reference [6]. The classes
are defined as by the CATH 2.4 homology classes.

The number of entries and the classification used for the four data sets is represented in Table 1.

Table 1. Testing datasets. Number of domains for the classification of the four testing sets: ’all-classes’,

’all-alpha’, ’27fold’ and ’cath’. The ’?’ in the scopid indicates that all possibilities for this position in the

scopid were included in the dataset.

dataset # of domains classification level # of classification classes

all-classes (scopid ?.1.1.1) 2,650 SCOP-class 7
all-alpha (scopid a.?.?.?) 3,680 SCOP-fold 172

27fold 685 SCOP-fold 27
cath 20,937 CATH-homology 2147

6.2. Implementation details

Since our basic feature is a five dimensional histogram we need to choose a quantization for the bins. We
have to find a trade off between the size of the features and accuracy of the representation. But, in fact,
coarser discretization can sometimes also give better results due to the induced robustness achieved by the
more tolerant bin assignments. For the cosines α, β and γ we just used two bins for each. We found that
this very coarse quantization gives slightly better results. The distance between the two atoms is quantized
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into 16 bins and the sequential distance µ is quantized into 8 bins. Thus, the multidimensional histogram
contains 23 · 16 · 8 = 1024 bins. For the Spherical Harmonic and D-Wigner case we have a collection of
histograms parametrized over the frequency number l.

The width σ in equation (8) was chosen by 20Å. The sequence-distance µ is recorded in the interval from

0 to 40 and the distance ∆ is measured in the interval from 0Å to 50Å. Both ranges are chosen very close
to those used by the PRIDE features. For the SH-features we used lmax = 2. For the D-Wigner features
we considered only D0(R) = 1 and D1(R) = U+RU .

6.3. Evaluation tools

The evaluation tools from the Princeton Shape Benchmark (PSB) [24] were used for evaluation of the
performance. The PSB provides a suite of tools for comparing shape matching and classification algorithms.
The evaluation is based on five statistical measures: Nearest Neighbor (NN), First-Tier, Second-Tier, E-
Measure and the Discounted Cumulative Gain (DCG). The same procedure starts the computation for all
five measures: Each object of the database is taken as a query object and the distances to all other query
objects are computed and stored in a distance matrix. The five statistical measures are computed based
on the distance and the class label.

The Nearest Neighbor measures the percentage of the closest matches that belong to the same class as
the query. This provides an intuition on how well a nearest neighbor classifier would perform. The desired
value for this measure is of course 100%.

The First- and the Second-Tier measure the percentage of models in the query’s class that appear within
the top K matches, where K depends on the size of the query’s class. Specifically, for a class with |C|
members, K = |C| − 1 for the first tier, and K = 2(|C| − 1) for the second tier. The optimal result has
the value 100%.

The E-Measure is a composite measure of the precision P and recall R for a fixed number of retrieved
results, where P and R are defined by:

P =
|{relevant structures}| ∩ |{found structures}|

|{found structures}| (24)

R =
|{relevant structures}| ∩ |{found structures}|

|{relevant structures}| (25)

Since the user is more interested in the query results with a high similarity to the input query, only the
first 32 most similar retrieved results are considered. After computing the precision and recall for those
results, the E-Measure is obtained by:

E =
2

1
P + 1

R

.

The higher the E-Measure value the better the result, with the perfect score being 100%.
The DCG weighs the results near the front of the list more than correct results later in the ranked list.

For details on the computation of DCG see [24]. The best value for the DCG is 1.0.

6.4. Results

In Table 2 the results for the ’all-classes’ dataset are presented. As expected, the classification rate is very
high since division into SCOP classes is quite an easy task. The SH did not improve the already very good
classification results. The D-Wigner results are worse than SH, although we would expect them to give
better results.

In Table 3, the search is performed on the ’all-alpha’ dataset. The results are not as good as on the
’all-classes’-dataset since the classification into folds is a more difficult task. However, 97.8% is a quite
high classification rate and the SH improve the GI features.
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Table 2. Results ’all-classes’. Results on the ’all-classes’-

dataset with GI, SH and D-Wigner features.

Feature 1NN 1T 2T EM DCG

GI 99.8 86.8 91.4 13.4 96.7
GI with SH 99.8 87.6 92.5 13.4 97.2

GI with D-Wigner 99.5 86.1 89.9 13.3 96.3

Table 3. Results ’all-alpha’. Results on the ’all-alpha’-dataset

with GI, SH and D-Wigner features.

Feature 1NN 1T 2T EM DCG

GI 97.4 84.8 88.6 35.6 94.4
GI with SH 97.8 89.3 92.2 37.4 96.0

GI with D-Wigner 97.4 87.5 90.4 36.8 95.2

In Table 4, the results for the ’27-folds’-dataset are presented. They are much worse than the previous
two testing sets since the domains of the ’27fold’ have less than 40% sequential similarity and are thus
hard to classify. Also, the number of samples per class is far less than in the previous two sets. The number
of samples per class is important, since it increases the probability to find a similar structure in one class.

Table 4. Results ’27fold’. Results on the ’27fold’-dataset with

GI, SH and D-Wigner features.

Feature 1NN 1T 2T EM DCG

GI 77.3 31.0 41.2 27.2 67.9
GI with SH 78.8 32.4 44.7 28.7 69.3

GI with Dwigner 77.8 29.5 39.1 26.2 66.8

In Table 5, the results for the ’cath’ - dataset are presented. They are very good since the homologous are
very well populated and therefore one similar structure to the query structure could be always retrieved.

Table 5. Results ’cath’. Results on the ’cath’-dataset with SH

and D-Wigner features.

Feature 1NN 1T 2T EM DCG

GI with SH 98.9 72.6 77.7 41.2 91.1
GI with Dwigner 98.8 71.0 75.2 41.0 89.9

The DALI server 1 provides a standalone application called DaliLite. This program was used to compute
the alignments and the pairwise Z-scores of the ’27fold’ resulting in 235,641 alignments. The results of the
evaluation are presented in Table 6. DALI performs better by 6.3% than the proposed method. However,
the classification time is one week by DALI as opposed to 2 minutes by the proposed method.

Table 6. Comparison of results with DALI. Compar-

ison of the results on the ’27fold’-dataset computed by

DALI and by the new method.

Feature 1NN 1T 2T EM DCG

GI with SH 78.8 32.4 44.7 28.7 69.3
DALI 85.1 59.1 67.8 45.0 82.8

In Table 7, the results of the proposed method are compared to the results obtained by PRIDE and the
Gauss Integrals. The implementation of the PRIDE features was performed as in [4]. However, the bins
of the histogram were not combined to contain a certain number of samples. Thus, the PRIDE score was
not evaluated by contingency table analysis, but just simply using the L1 norm. The results obtained by
the new method are better, especially for the ’27fold’ dataset.

For the computation of the Gauss Integral features we used the program 2 provided by the authors
of [6]. In fact, the SH features perform better than Gauss integrals. For the difficult ’27fold’ dataset, SH
outperform Gauss features by 8.1%.

1http://www.ebi.ac.uk/dali/
2http://www2.mat.dtu.dk/people/Peter.Roegen/Gauss Integrals.html
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Table 7. Comparison with PRIDE and Gauss Integral features.

dataset Feature 1NN 1T 2T EM DCG

all-classes GI with SH 99.8 87.6 92.5 13.4 97.2
PRIDE 99,7 84.8 88.2 13.3 96
Gauss 99.2 73.3 81.2 12.1 93.6

all-alpha GI with SH 97.8 89.3 92.2 37.4 96.0
PRIDE 96.8 80.7 85 34.3 92.7
Gauss 94.2 63.8 72.9 29.5 87.0

27fold GI with SH 78.8 32.4 44.7 28.7 69.3
PRIDE 70.7 29.4 38.9 25.9 65.1
Gauss 67.6 26.1 35.5 23.2 63.3

cath GI with SH 98.9 72.6 77.7 41.2 91.1
PRIDE 98.8 66.8 73.2 39.1 88.8
Gauss 98.4 69.8 76.4 40.2 90.0

Figure 3. Screenshots from the Web interface. http://lmb.informatik.uni-freiburg.de/cgi-bin/reisert/PSF2Search.cgi On the right the
Search Form which helps you to make query, on the left, an example for the resultpage.

7. A Web Interface

We also provide a web interface to test the proposed method. It is located under http://lmb.informatik.uni-
freiburg.de/cgi-bin/reisert/PSF2Search.cgi. The underlying features are a more compact version of those
used in this paper. We used histograms over α, γ,∆, µ with discretization 2, 2, 8, 8. This results in a feature
histogram of size 256. The search is performed on the whole PDB consisting of approx. 30000 proteins
(last update 6.06.05). In Figure 3 we show some screen shots from the interface. One is able to choose
different kind of parameters and subsets of the database. It is also possible to upload structures in ordinary
pdb format and search for it. For each structure it is possible to visualize the features via the Show Info
button. Each structure is additionally subdivided into domains, so different kind of search types are
possible, protein search, chain search or domain search. To compute a distance between two structures
consisting of several domains, all possible pairwise distances are computed. The pair with the smallest
distance serve as the distance measure between the two structures. Besides, the ordinary search by query
it is also possible to compute distance matrices for a set of structures. This helps to get more intuition
about the feature-induced metric. To get a more detailed help and description of the web interface we refer
to the help page on the web.

8. Conclusion

We introduced a new method for protein classification based on group integration using spherical har-
monics. Our method works very fast while at the same time achieving very good results. Only structural
and sequential information is used for the comparison of proteins. No other properties like hydrophobic-
ity, temperature or amino acid class are used. Classification precision is over 99% for discriminating on all
SCOP classes and over 97% for discrimating SCOP folds in one SCOP class. Even on the difficult ’27 folds’
dataset we achive 78, 8%. The group integration results could be significantly improved using SH-features.
However, the high time consuming D-Wigner matrices did not improve the results. SH-features are better
than PRIDE and the Gauss integral features and almost as good as DALI. Unfortunately, we could not



March 13, 2007 16:5 International Journal of Computer Mathematics ProteinRetrieval

Group Integration Features for Protein Fold Classification 15

test DALI on a larger dataset because of its tremendous time requirements. Our goal is to achieve same
accuracy as DALI while at the same time keeping the computational cost low.

For future work, we suggest to add more information to the kernel. For this, the chemical properties of
the amino acids can be considered. The hydrophobicity of one amino acid plays an important role for the
protein folding and hence for its shape. And finally we would like to explore feature selection techniques
on the SH-features.
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