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Abstract. The quality of a retrieval system relies to major part on the
quality of the used features. The features have to be small and compact,
but also discriminative. Feature selection is one way to achieve both goals.
We present a new feature selection method with the focus on retrieval
purposes. The new method is based on the well known Relief algorithm.
The new algorithm is shown to be superior to state-of-the-art methods
both on toy problems and real-life 3D-Shape and image retrieval tasks.
The algorithm is based on the intuition that distances to false detection
has to be enlarged and distances to non-detected positives has to be
shortened.

1. Introduction

Feature Extraction and Feature Selection are important tasks in many fields of
computer vision. Given a retrieval or classification task, the goal is to find a
transform from a possible high dimensional feature space to a low dimensional
space, which is better suited for retrieval or learning purposes. While in Feature
Extraction the transform may be nearly arbitrarily chosen, in Feature Selection
one restricts to simply selecting a subset of features. In literature two types of
Feature Selection algorithms are distinguished, the so-called wrapper and filter
methods [1]. Wrapper methods estimate the usefulness of a subset of features by
a given predictor or learning machine. Filter or Variable Ranking methods com-
pute relevance scores for each single feature and choose the most relevant ones
according to those scores. A popular example is Pearson’s correlation coefficient
expressing the correlation of a certain feature with the corresponding class labels.
The main drawback of such simple filter methods is that they are not able to
detect inter-feature-dependencies, one important example is the XOR-problem.
Neither the first nor the second dimension alone helps to determine from which
class an example is stemming, only both dimensions together contain enough
information about the class membership. But there are methods, which may be
categorized as variable ranking methods and are also able to reveal such feature
dependencies, e.g. Relief [3] is one of those.

In this paper we present some fundamental modifications of the basic Relief
algorithm, which lead to nice performance improvements and show that also
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filter methods are able to cope with non-linear and multi-modal1 environments.
The paper is organized as follows: in Section 2 we uncover some drawbacks of
the original Relief algorithm and propose the modifications. In Section 3 we
examine various experiments on toy and real-world data, including image and
shape retrieval examples. And finally in Section 4 we give a conclusion and
outlook.

2. The Method

In this section we first give a introduction to Relief and then propose the modi-
fications. Finally we make some short complexity considerations.

2.1. Relief

Our proposed idea has similarity with a popular feature ranking algorithm called
Relief proposed in 1992 by Kira and Rendell [3]. The main idea of Relief is to
compute a ranking score for every feature indicating how well this feature sep-
arates neighboring samples. The algorithm seeks for every training sample its
nearest neighbor from the same class (nearest hit) and from the opposite class
(nearest miss). The Relief score for a single feature is then the difference (or
ratio) between the distance to the nearest miss and the distance to the nearest
hit, projected on the specific feature. Several variants have been proposed. We
give here a generalized and improved version of Relief which makes use of the
k-nearest hits/misses and is based on the ratio:

Start with zero scores h = (0, ..., 0) and m = (0, ..., 0)T .
For every training sample x ∈ X do

Find k-nearest hits H(x) and k-nearest misses M(x) of x.
Update h 7→ h + d(y,x) for all y ∈ H(x).
Update m 7→ m + d(y,x) for all y ∈ M(x).

Compute the ratios wi = mi

hi

.

Here d(·, ·) denotes the feature-wise distances, i.e. the i-th component of d(·, ·)
is the distance between xi and yi with an appropriate metric. The wi determines
the relevance of feature i. If we want to select j features, we take the j fea-
tures with the highest wi-scores. The algorithm has received a high popularity
in the past, in particular due to its easy implementation, its good performance
and the ability to also work in multi-modal environments, where simple rank-
ing criterias like Pearson’s correlation coefficients or Fisher’s criterion fail. But
for retrieval purposes Relief shows some drawbacks. In the following section we
want to reveal under what circumstances Relief has its problems and propose
modifications, which circumvent those problems.

1 In the following we call a single feature unimodal if its within-class-distribution is
nearly Gaussian and form a cluster. Otherwise, if the distribution consists of two or
more clusters the feature is called multi-modal.
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Fig. 1. a) Two class problem, where both dimensions are able to separate the classes,
but the x-axis is better suited for retrieval purposes. b) The XOR problem. Only both
dimensions together separate the classes.

2.2. The Method

To show this let us consider the two classes in figure 1a). Class A has two centers
located at (1, 2) and (1, 0) and class B is located at (0, 1) in the Euclidean plane.
Obviously, the first dimension (or feature) easily separates the two classes. And,
if we restrict to the first feature, a query for (1, 2) actually gives a result from
cluster (1, 2) or cluster (1, 0) of class A, this is the desired result. Though the
second feature is also able to separate A and B (of course not linearly), a query
for (1, 2) retrieves members of B much earlier than objects around the second
cluster (1, 0) of class A. Such a behavior is clearly not desired for retrieval pur-
poses. Although both features keep information about the class membership,
one would favor the first dimension. But which dimension does Relief predict as
more relevant? Since Relief only considers nearest hits, the algorithm is not able
to establish the connection between the two clusters of class A, because cluster
(1, 0) is farther to cluster (1, 2) than to the center of class B. In this case Relief
selects the second dimension as more relevant. Hence we have to modify the
algorithm such that also objects far away (in terms of the original distance mea-
sure) belonging to the query’s class are taken into account. Instead of taking the
nearest hits we should take the “farthest” hits, meaning those results belonging
to the same class as the query but not found by the search, i.e. the false negative
answers. We define N(x) by the set of all objects, which are in the same class
as x but are not found under the first c objects in the results list for query x,
where c denotes the number of class members in the queryclass. Similar we can
define the set of all false positives P (x) by all those objects, which do not belong
to the same class as x but are found under the first c search results. We modify
the original algorithm by using the sets M(x) by P (x) instead of H(x) by N(x):

Start with zero scores n = (0, ..., 0) and p = (0, ..., 0)T .
For every training sample x ∈ X do

Find false negatives N(x) and false positives P (x) for query x.
Update n 7→ n + d(y,x)/||d(y,x)|| for all y ∈ N(x).
Update p 7→ p + d(y,x)/||d(y,x)|| for all y ∈ P (x).

Compute the ratios wi = pi

α+ni

.
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In contrast to the original Relief algorithm we introduced a normalizing step
in order to not overweight the distances to the false negatives N(x), whose dis-
tances are naturally larger than the distances to the false positives. We also
introduce a balancing parameter α to adapt the influence of the false negatives
N.

Considering the XOR problem from figure 1b, we have a closer look at the
interplay of the counterparts n and p. Suppose a feature vector with plenty of
dimensions where the information containing features are feature one and two
and the other features contain uncorrelated noise. One can imagine that both
score vectors are of the same form p ≈ (1, 1, ...) and n ≈ (1, 1, ...), where the
additional dimension contain mainly small noisy values. If we pay more attention
to the false positive vector p, i.e. we suppose large α, the relevance scores w1 and
w2 are lifted and one can determine the first two features as the relevant ones.
In the opposite case for small α we have a problem. Since n stands somehow
for the non-relevance of the particular feature, the first two weight scores are
damped and the algorithm has difficulties to determine the first two dimensions
as the most relevant. We have to make a tradeoff between two demands. The
false negatives scores n help us to merge different clusters like in the case in figure
1a. In other words, it detects the unimodal distributed features like Fisher’s or
Pearson’s ranking criterias. But it also hinders the algorithm to find the relevant
features in the XOR problem.

3. Experiments

In this section we present various experiments on toy and real-world data. For
comparison we use three other ranking methods. The most simple method is
Pearson’s correlation coefficient2, which is a very simple idea. We also used
Fisher’s coefficient, but due to the very similar behavior of both we restricted
to Pearson’s. As a second method we choose feature selection by Maximum
Marginal Diversity (MMD) introduced by Vasconcelos [9]. The MMD idea is
closely related to the infomax principle, which maximizes the mutual information
between features and class labels. It was shown by Vasconcelos that for a special
class of classification problems both principles are identical and in [10] he showed
that it seems that vision related problems are actually a instance of those. Since
the proposed feature selection method is based on Relief , of course, we also
compare our experimental results to that. We use the version of Relief proposed
above, where we adapted k, the number of neighbors, to the training set size.
As Relief is not straightforward adaptable to multi-class problems, we used a
version proposed by Kononenko. In [4] he compared two versions and showed
that the so called Relief-F algorithm is superior. Instead of finding the k-nearest
misses from the opposite classes, the algorithm finds the k-nearest misses for
each different class and averages their contribution.
2 Pearson’s correlation coefficient for a feature x is given by PCC =

P

(xi−x̄)(ci−c̄)
√

P

(xi−x̄)2
P

(ci−c̄)2
, where the index i ranges over the whole training set and ci

are the class labels.
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Fig. 2. Evaluation Plots for 2-class problem from figure 1a and the XOR problem from
figure 1b. On the x-axis the number of training samples per class is given. The y-axis
gives the percentage of correct detected features.

3.1. Toy Data

For the following three experiments we always use the Euclidean distance as
the distance metric. First we consider the problem from figure 1a. Both classes
occur with same probability. The feature vectors have length 20, where the first
2 features contain the information and the other 18 features are Gaussian noise
with σ = 1.0. The clusters are also Gaussian distributed with the same standard
deviation. We did three runs. For increasing number of training samples, we
measured the percentage how often the algorithms detect the unimodal feature
(x-axis in figure 1a) as most important or the multimodal feature (y-axis in
figure 1a). Finally we measure how often both together are reported as the two
most relevant features. To estimate the percentage each experiment is performed
two hundred times. For the Relief algorithm and our new algorithm we choose
α = 0. But we also examined our algorithm with α = c2, where c is the number
of training samples per class. It is obvious that the scaling behavior of α with
respect to the number of training samples is quadratic. As already mentioned
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Fig. 3. Evaluation Plots for the problem introduced by Trunk. On the logarithmic x-
axis the number of training samples per class is given. The y-axis gives the quality of
the feature subset.

large α-values lead to a down weighting of false negatives. The results are given
in figure 2. Pearson’s correlation coefficient easily detects the unimodal feature
and outperforms all other methods in this case. MMD performs very similar to
the new method with α = 0. Like expected for α = c2 our method is not able to
detect the unimodal feature with the same reliability as for α = 0. But for α = 0
it slightly outperforms the Relief algorithm, which approves our modifications.
For the multimodal feature the situation is inverted. Pearson’s coefficient and
our method for α = 0 are totally unable to find the feature. Also MMD does not
perform very well. Our method for α = c2 beats Relief and all other methods. In
the last graph we see that its overall performance is also the best. Our method
actually finds both features most. Only MMD can compete a little bit, further
below Relief is still not too bad, but our method for α = 0 and Pearson’s totally
fail.

As a second experiment we consider the XOR problem. The training data is
created like above by a Gaussian distributed process with means (0,1), (1,0) for
class A and (1,1), (0,0) for class B and with standard deviation σ = 1. Again
we measure the percentage that both features are detected as most relevant. In
figure 2 the results are presented. Only Relief and our method can cope with
this difficult case, but our method is much more reliable in detecting the relevant
features. Only 50 training samples per class are enough to get 100% detection
ratio.

As a last experiment we adopt a evaluation method introduced by Trunk [8]
which was also used by Jain and Zonkger [2] and Vasconcelos [9]. To evaluate
the reliability of feature selection methods a 20 dimensional feature vector is
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created, every feature is Gaussian distributed with σ = 1 and means µi = 1
√

i
for

class A and µi = − 1
√

i
for class B, where the i stands for the i-th feature. The

optimal j-subset is obviously the set of the first j features. The quality of the
feature subset is computed by taking the number of commonalities in the optimal
feature subset with the subset generated by the feature selection algorithm. This
number is divided by the number of dimensions and averaged over the subset size
j from 1 to 19. In figure 3 the results are given. Pearson’s coefficient and MMD
outperform the three other methods, both methods have also the highest slope,
followed by our methods, which have both nearly the same slope. Relief seems to
have the lowest slope, but for very small training set sizes it can compete with
the others.

3.2. Image and Shape Retrieval

We consider three databases, two image databases and one 3D-Shape database.
All three are divided in a test and training set. For Relief and our method we
optimize the parameter K, and the parameter α by computing both, the ranking
criteria and the performance results, on the training set. The feature rankings
obtained with optimal parameters are then used for evaluation on the test set. As
a performance measure we mainly use the First-Tier (1T) measure introduced in
[7], since this measure focuses on the demands a user has on a retrieval system.
The 1T-rate measures the percentage of objects in the query’s class that appear
within the top C matches, where C is the number of members in the query’s
class minus one. These statistics is similar to the “Bulls Eye Percentage Score”.

ETH 80 database The database was introduced by Leibe and Schiele in [5].
It consists of eight categories of high resolution color images. Each object is rep-
resented by 41 images from viewpoints spaced equally over the upper viewing
hemisphere. We decided to consider the four most difficult categories, namely
dogs, horses, cows and cars. The training set is of size 660, the test set is of size
1010. Sometimes it is even difficult for a human to discriminate if the viewpoint
is unfortunately chosen. Since we want to evaluate feature selection algorithms,
a large set of features is computed for each image. Each feature set is a four di-
mensional histogram of the distance between two randomly chosen points in the
image, the relative orientation of the gradients at those points (the normalized
dot-product, i.e. the cosine), the relative orientation between the gradient and
the vector connecting both points and the absolute difference of the intensity
values at the chosen points. The random points are chosen by the probability
proportional to the gradient magnitude. As we deal with color images we apply
this procedure for every color channel (RGB) and also crosswise, meaning that
one random point is chosen from e.g. the R-channel and one from the G-channel.
This results in 6 histograms for every combination (RR,GG,BB,RG,RB,GB).
The overall feature size is then #f = #bins ∗ 6, where in the experiments we
chose #bins = 8 ∗ 4 ∗ 4 ∗ 4 = 512, resulting in #f = 3072 features. The result-
ing histograms are all invariant to rotation and translation of the image plane
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Fig. 4. Parameter Dependency on the ETH80 database with invariant features. On the
x-axis the parameter α is drawn in logarithmic scale. On y-axis left the 1T-measure is
given and on the right the Nearest-Neighbor Classification Accuracy (NN). The plot is
evaluated for several fixed feature subset sizes given in percentage of the original size.

and illumination changes. Since rotation invariance is not really necessary, we
additionally computed two histograms, where the drawn samples are weighted
by the cosine/sine of the absolute angle of the vector connecting the randomly
chosen points, resulting in a feature size of 9216. We always compare the his-
tograms using the L1-norm. The L1-norm is closely related to the Histogram-
Intersection-Kernel which predestines it for our purposes. To gain an intuition
how the parameter α of our method has to be chosen, we recorded the 1T-rate for
different fixed feature sizes. Additionally we also consider the Nearest-Neighbor
Classification Accuracy (NN), meaning the rate that an object of the query’s
class appears as first. In figure 4 the corresponding plots are shown. The 1T-
and NN-measure evolve in a opposite manner. While 1T has a diffuse maximum
for small α and decrease with growing α, NN shows higher values for large α, i.e.
for large α the precision of detecting first an object from the same class rises, but
there are still lots of objects which cannot be found. We know that for large α
the algorithm only considers negative samples nearby the query, positive samples
far away are not considered which explains that in this case the algorithm is not
able to merge different clusters belonging to the same class and hence shows a
bad 1T-rate. We have to find a tradeoff between merging the intra-class clusters
and obtaining a high NN-rate.

In the experiments we focus on the 1T measure and tune α to get a high
1T-rate, but still keep α as large as possible to obtain a high NN-rate as well. In
other words we try to find the turning point of the 1T-rate for increasing α. All
the pre-tuning is done manually for a fixed feature size of 5% from the original
size.

In figure 5 the results for the invariant and variant features are shown. For
the NN-rate our new algorithm is able to beat all the other three methods. For
the 1T-measure our method obtains the highest scores for very small feature
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Fig. 5. Results for the ETH80 database. On the x-axis the feature size is given (in
percentage of the original size). On the y-axis the 1T-rate and NN-rate respectively.

sizes (the first plot point is at 0.5%) and also the highest overall 1T-rates. But
for growing feature sizes the other methods, in particular MMD outperforms our
algorithm with respect to the 1T-rate. It is astonishing that very small feature
sizes (15 invariant features, 45 invariant features) lead to the highest 1T-rates. It
seems that there is only a very small set of features which show a low intra-class
variability. One can also notice that for both measures it is always worse to use
all features instead of a cleverly selected subset.

Caltech database As a second problem we consider a 2-class problem. Caltech
(http://www.robots.ox.ac.uk/ vgg/data3.html) provides several image databases.
In our experiments we tried to discriminate between a set of airplanes and back-
ground (training set 687, testing set 987), and secondly between a set motorbikes
and background (training set 750, testing set 1005). We used the same variant
features as above. One may argue that it is a little bit naive to use such global
features for a dataset with a complex background, but since we are interested in
examination of feature selection algorithms the use of such ’dirty’ features is jus-
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Fig. 6. Results for the Caltech database. On the x-axis the feature size is given (in
percentage of the original size), on the y-axis the 1T-rate.

tified. Since the provided background image set is only in gray-value format, we
only used the luminance information and neglected color. In figure 6 the results
are presented. This time we only present the results for the 1T-measure. For the
airplanes our method again outperforms the others. But for the motorbikes our
method shows a little strange behavior. For the very small sizes the performance
is very bad, for 2% it shows a very high peak and then again falls down to very
low performance. Relief also performs very bad on this dataset.

Princeton Shape Benchmark (PSB) Finally we deal with the Princeton
Shape Benchmark provided in [7]. The PSB consists of 1814 triangulated 3D-
surface models. The database is divided into a test and training set, both of size
907. The authors also provide a hierarchical classification. We work with the
three finest granularities, level 0: about 90 classes, level 1: about 40 classes, level
2: 7 classes. The used features are proposed in [6]. This time three dimensional
histograms are used: the joint distribution of the distance between two equidis-
tributed random points on the surface of the object, the relative orientation of
the surface normals at those points and the relative orientation of one normal
with the vector connecting both points. To keep more information we compute
for each bin the angular distribution of the connecting vector falling into this bin.
Since invariance to 3D-rotation is necessary a Spherical Harmonic Transform of
the angular distribution is computed and the norms of the coefficient vectors are
stored, which are known to be invariant to rotation. The resulting feature (SD)
is of size 768. But it is also possible to preserve much more information. Instead
of taking the norm for each SH-coefficient vector alone, crosswise dot-products
of coefficient vectors from different bins are also invariant to rotation. Apply-
ing this procedure the feature size grows quadratically in the number of bins of
the underlying histogram. The examined features (SDF) are in this case of size
6240. Again the same optimization procedure was applied like in the image re-
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trieval case. The results for the 1T-rate are given in figure 7. Again our proposed
method shows very nice results and seems to be superior in nearly all situations.
Only for very small feature sizes the MMD method sometimes outperforms our
algorithm, but in all cases our method achieves the highest overall 1T-rate.

4. Conclusion and Future Work

We have introduced a new feature selection algorithm, which is based on the well
known Relief algorithm and is very well suited for retrieval purposes. We well
motivated our modification and demonstrated that on both toy and real-world
data our algorithm shows a good performance in comparison to other methods.
It works quite well on a great diversity of databases.

A nice property of our algorithm is a parameter which helps us to find a
tradeoff between the accuracy finding nearest neighbors from the query’s class
and the amount of false negatives within the first few result objects. But this
parameter is also the main drawback of our algorithm, an automated estimation
of this parameter with respect to the user’s demands would be very helpful.
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Fig. 7. Results for the Princeton Shape Benchmark. On the x-axis the feature size is
given (in percentage of the original size), on the y-axis the 1T-rate.


