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Abstract

This report proposes a concept forSE(3)-equivariant non-linear filters
for multiple purposes, especially in the context of featureand object detec-
tion. The idea of the approach is to compute local descriptors as projections
onto a local harmonic basis. These descriptors are mapped ina non-linear
way onto new local harmonic representations, which then contribute to the
filter output in a linear way. This approach may be interpreted as a kind
of voting procedure in the spirit of the generalized Hough transform, where
the local harmonic representations are interpreted as a voting function. On
the other hand, the filter has similarities with classical low-level feature
detectors (like corner/blob/line detectors), just extended to the generic fea-
ture/object detection problem. The proposed approach fillsthe gap between
low-level feature detectors and high-level object detection systems based on
the generalized Hough transform. As an introductory example we use the
proposed approach for edge preserving denoising. Secondly, we will ap-
ply the proposed filter to a feature detection task on confocal microscopical
images of airborne pollen and compare the results to a 3D-extension of a
popular GHT-based approach and to a classification per voxelsolution.

1 Introduction

The theory of non-linear filters is well developed for image translations. It is
known as Volterra theory. Volterra theory states that any non-linear translation-
invariant system can be modelled as an infinite sum of multidimensional convolu-
tion integrals. More precisely, a filterH is said to be equivariant with respect to
some groupG, if gH{f} = H{gf} holds for all imagesf and allg ∈ G, where
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gf denotes the action of the group to the imagef . For the group of translations
(or the group of time-shifts) such filters are called Volterra series. In this paper we
want to develop non-linear filters that are invariant with respect to Euclidean mo-
tion SE(3), therefore, we need a generalization of Volterra’s principle toSE(3).
In [1] a 2D non-linear filter was proposed that isSE(2)-equivariant. The filter was
derived from the general concept of group integration whichreplaced Volterra’s
principle. In this paper we want to generalize this filter toSE(3). The general-
ization is not straightforward because the two-dimensional rotation groupSO(2)
essentially differs from its three-dimensional counterpart SO(3).

As already mentioned the derivation of the filter in [1] was based on the prin-
ciple of group integration. In this paper we want to follow a more pragmatic way
and directly propose the 3D filter guided by its 2D analogon. Let us recapitulate
the workflow of the holomorphic filter and give a sketch of its 3D counterpart. In
a first step the holomorphic filter computes several convolutions with functions of
the formzje−|z|2 wherez = x + iy is the pixel coordinate in complex notation.
Note, that the monomialzj = rjeijφ is holomorphic. The results of these convo-
lutions show a special rotation behavior, e.g. forj = 1 it behaves like a gradient
field or for j = 2 it behaves like a 2nd rank tensor field. Several products of these
convolution results are computed. These products show again a special rotation
behavior. For example, if we multiply a gradient field (j1 = 1) and a 2-tensor-
field (j2 = 2) we obtain a third-order field withj = j1 + j2 = 3. According to
the transformation behavior of the products they are again convolved with func-
tions of the formzje−|z|2 such that the result of the convolution transforms like a
scalar (j = 0). This is the principle of the holomorphic filter which we want to
generalize to 3D.

The first question is, what are the function corresponding tozje−|z|2 in 3D? We
know that the real and imaginary part of a holomorphic polynomial are harmonic
polynomials. Harmonic polynomials solve the Laplace equation. As zje−|z|2 is
a Gaussian-windowed holomorphic monomial we will use instead a Gaussian-
windowed harmonic polynomial for the 3D filter. The second question is, how
can we form products of convolutions with harmonic polynomials that entail their
transformation behavior? We will find out that the Clebsch-Gordan coefficients
that are known from quantum mechanics provide such products. Given two ten-
sor fields of a certain degree we are able to form a new tensor field of another
degree by a certain multiplication and weighted summation of the input fields.
The weights in the summations are the Clebsch Gordan coefficients. In [1] and
[2] it was shown that the convolutions with the Gaussian-windowed holomorphic
basis can be computed efficiently with complex derivatives.In fact, there is a very
similar approach in 3D by so called spherical derivatives [3].

The paper is organized as follows: in the following section we give a small
overview about related work. In Section 2 we introduce the basics in spherical
tensor analysis. We introduce the spherical product which couples spherical ten-
sor fields and introduce basics about spherical harmonics. We also introduce so
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called spherical derivatives that are the counterpart to the usual complex deriva-
tives in 2D. They will help us to compute the occurring convolutions in an efficient
manner. In Section 3 we introduce the Harmonic filter. We showhow the filter
can be generalized to tensor valued inputs and outputs and how its parameters
can be trained to a specific problem. Section 4 shows how the filter can be im-
plemented efficiently and how it can be applied for feature detection in confocal
microscopical images. In Section 5 we conclude and give an outlook for future
work.

1.1 Related Work

We figured out four frameworks that are closely related to ours: Volterra filters,
Steerable filters, Tensor Voting and the generalized Hough transform.

Volterra filters are the canonical generalization of the linear convolution to a
nonlinear mapping. They are widely used in the signal processing community and
also find applications in image processing tasks [4, 5, 6]. The filter proposed in
this work might be interpreted as a kind of ’joint’ Volterra filter for translation and
rotation.

Steerable filters, introduced in [7], are a common tool in early vision and im-
age analysis. A generalization for non-group like deformations was proposed in
[8] using an approximative scheme. Applications of steerable filters are widespread,
an example in 3D is [9]. Our filter computes a certain subset ofgaussian-windowed
spherical moments in a first step which is actually a steerable filter.

The generalized Hough transform (GHT) [10] is a major tool for the detection
of arbitrary shapes. Many modern approaches [11, 12] for object detection and
recognition are based on the idea that local parts of the object cast votes for the
putative center of the object. If the proposed algorithm is used in the context of
object detection, it may be interpreted as some kind of voting procedure for the
object center. This voting interpretation also relates ourapproach to the Tensor
Voting [13] framework (TV). However, in TV the voting function does not de-
pend on the local context. Contrarily the proposed filter is able to cast context
dependend votes. In particular, in [14] the tensor voting process in 2D is formu-
lated with the use of steerable filters. In a similar way our filter can also interpreted
as an implementation of a voting process using steerable filters, but in 3D.

2 Spherical Tensor Analysis

In the following we shortly repeat the basic notions in 3D harmonic analysis as
they were introduced and proved in [3]. For introductory reading we recommend
mostly literature [15, 16] concerning the quantum theory ofthe angular momen-
tum, while our representation tries to avoid terms from quantum theory to also
give the non-physicists a chance to follow. See e.g. [17, 18]for an introduction
from an image processing/engineering viewpoint.
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2.1 Preliminaries

Let Dj
g be the unitary irreducible representation of ag ∈ SO(3) of orderj with

j ∈ N. They are also known as theWigner D-matrices(see e.g. [16]). The
representationDj

g acts on a vector spaceVj which is represented byC2j+1. The
standard basis ofC2j+1 is written asejm. We write the elements ofVj in bold
face, e.g.u ∈ Vj and write the2j + 1 components in unbold faceum ∈ C where
m = −j, . . . j. For the transposition of a vector/matrix we writeuT ; the joint
complex conjugation and transposition is denoted byu⊤ = uT . In this terms the
unitarity ofDj

g is expressed by the formula(Dj
g)

⊤Dj
g = I.

Note, that we treat the spaceVj as a real vector space of dimensions2j + 1,
although the components ofu might be complex. This means that the spaceVj is
only closed under weighted superpositions with real numbers. As a consequence
we observe that the components are interrelated byum = (−1)mu−m. From a
computational point of view this is an important issue. Although the vectors are
elements ofC2j+1 we just have to store just2j + 1 real numbers. So, the standard
coordinate vectorr = (x, y, z)T ∈ R3 has a natural relation to elementsu ∈ V1 in
the form of

u =




w
z

−w


 =




1√
2
(x− iy)

z
− 1√

2
(x+ iy)


 = Sr ∈ V1

Note, thatS is an unitary coordinate transformation. Actually, the representation
D1
g is directly related to the real valued rotation matrixUg ∈ R3×3 by D1

g =
SUgS

⊤

Definition 1. A functionf : R3 7→ Vj is called a spherical tensor field of rankj
if it transforms with respect to rotations as follows

(gf)(r) := Dj
gf(U

T
g r)

for all g ∈ SO(3). The space of all spherical tensor fields of rankj is denoted by
Tj .

2.2 Spherical Tensor Coupling

We define a family of symmetric bilinear forms that connect tensors of different
ranks.

Definition 2. For everyj ≥ 0 we define a family of symmetric bilinear forms of
type

•j : Vj1 × Vj2 7→ Vj

wherej1, j2 ∈ N has to be chosen according to the triangle inequality|j1 − j2| ≤
j ≤ j1 + j2 andj1 + j2 + j has to be even. It is defined by

(ejm)⊤(v •j w) :=
∑

m=m1+m2

〈jm | j1m1, j2m2〉
〈j0 | j10, j20〉

vm1wm2
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where〈jm | j1m1, j2m2〉 are the Clebsch Gordan coefficients (see e.g. [16]).

Up to the factor〈j0 | j10, j20〉 this definition is just the usual spherical tensor
coupling equation which is very well known in quantum mechanics of the angular
momentum. The additional factor is for convenience. It normalizes the product
such that it shows a more gentle behavior with respect to the spherical harmonics
as we will see later.

The characterizing property of these products is that they respect the rotations
of the arguments, namely

Proposition 1. Letv ∈ Vj1 andw ∈ Vj2 , then for anyg ∈ SO(3)

(Dj1
g v) •j (Dj2

g w) = Dj
g(v •j w)

holds.

For the special casej = 0 the arguments have to be of the same rank due to
the triangle inequality. Actually, in this case the new product coincides with the
standard inner productv•0w = w⊤v. Further note, that if one of the arguments of
• is a scalar, then• reduces to the standard scalar multiplication, i.e.v •j w = vw,
wherev ∈ V0 andw ∈ Vj. Another remark is that• is not associative.

The introduced product can also be used to combine tensor fields of different
rank by point-wise multiplication.

Proposition 2. Letv ∈ Tj1 andw ∈ Tj2 andj chosen such that|j1 − j2| ≤ j ≤
j1 + j2, then

f(r) = v(r) •j w(r)

is in Tj , i.e. a tensor field of rankj.

If we consider a translation of the image function, that is

(τ f)(r) := f(r − tτ ).

we can verify that for any two tensor fieldsv andu and anyg ∈ SE(3) we obtain
that (gv) •j (gw) = g(v •j w). Actually, there is another way to combine two
tensor fields: by convolution. For the convolution the evolving product respects
the translation in a different sense.

Proposition 3. Letv ∈ Tj1 andw ∈ Tj2 andj chosen such that|j1 − j2| ≤ j ≤
j1 + j2, then

(v•̃jw)(r) :=

∫

R3

v(r′ − r) •j w(r′) dr′

is in Tj , i.e. a tensor field of rankj.

Now, consider the behavior of•̃j with respect to a translationτ . The following
relation is simple to be verified

v•̃j(τw) = (τv)•̃jw = τ(v•̃jw) (1)

due to properties of the convolution.
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2.3 Spherical and Solid Harmonics

We denote the well-known spherical harmonics byYj : S2 → Vj . We write
Yj(r), wherer may be an element ofR3, butYj(r) is independent of the mag-
nitude ofr. We know that theYj provide an orthogonal basis of scalar functions
on the 2-sphereS2. Thus, any real scalar fieldf ∈ T0 can be expanded in terms
of spherical harmonics in a unique manner. In the following,we use Racah’s
normalization (also known as semi-Schmidt normalization), i.e. 〈Y j

m, Y
j′

m′〉S2 =
1

2j+1
δjj′δmm′ . One important and useful property is thatYj = Yj1 •j Yj2. We

can use this formula to iteratively compute higher orderYj from given lower
order ones. Note thatY0 = 1 andY1 = Sr, wherer ∈ S2. The spherical
harmonics have a variety of nice properties. One of the most important ones is
that eachYj, interpreted as a tensor field of rankj is a fix-point with respect to
rotations, i.e.(gYj)(r) = Yj(r) or in other wordsYj(Ugr) = Dj

gY
j(r). The

spherical harmonics naturally arise from the solutions from the Laplace equa-
tion as the so called solid harmonicsRj(r) := rjYj(r). The generalization
R
j
i (r) := rj+iYj−i(r) is a complete basis of the analytical functions onR

3, i.e.
we can write any analytical function as

f(r) =
∑

j≥i
(aji )

⊤R
j
i (r) (2)

In this way we can project any analytical function on its harmonic part by restrict-
ing on the summands withi = 0. Note that the harmonic part depends on the
choice of the origin. Thus we cannot imagine that there is a unique harmonic part
of an analytical functions, moreover there are many ways to compute this pro-
jection. Further note that theRj

i are homogeneous polynomials of orderj + i,
meaningRj

i (λr) = λj+iRj
i (r) for anyλ ∈ R.

2.4 Spherical Derivatives

This section proposes the basic tools for dealing with derivatives in the context
of spherical tensor analysis. In [3] the spherical derivatives are introduced. They
connect spherical tensor fields of different ranks by differentiation. Specifically,
we will examine the spherical Gaussian derivatives. They are just the Gaussian-
windowed harmonic polynomials that we have mentioned in theintroduction.

Proposition 4 (Spherical Derivatives). Let f ∈ Tj be a tensor field. The spherical
up-derivative∇

1 : Tj → Tj+1 and the down-derivative∇1 : Tj → Tj−1 are
defined as

∇
1f := ∇ •j+1 f (3)

∇1f := ∇ •j−1 f , (4)

where

∇ = (
1√
2
(∂x − i∂y), ∂z,−

1√
2
(∂x + i∂y))
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is the spherical gradient and∂x, ∂y, ∂z the standard partial derivatives.

Note, that for a scalar function the spherical up-derivative is just the spherical
gradient, i.e.∇f = ∇

1f .
In the Fourier domain the spherical derivatives act by point-wise•-multiplication

with a solid harmonicikY1(k) = iR1(k) = iSk wherek = ||k|| the frequency
magnitude:

Proposition 5 (Multiple Spherical Derivatives). For j ≥ i we define∇j
i : T0 →

Tj−i by

∇
j
i := ∇i∇

j := ∇1 . . .∇1︸ ︷︷ ︸
i−times

∇
1 . . .∇1

︸ ︷︷ ︸
j−times

.

In the Fourier domain these multiple derivatives are given by

(∇̃
j

i f̃)(k) = (i)j+i Rj
i (k)f̃(k), (5)

Using this one can show that∇
j
i = ∇

j−i∆i, where∆ is the Laplace operator.

The above proposition is mainly due to the factYj = Yj1 •j Yj2. The intro-
duced spherical derivatives can be used to compute the expansion coefficients of
the expansion introduced in equation 2. In fact thea

j
i are given by

a
j
i =

(2(j − i) + 1)

i!2i(2j + 1)!!
(∇j

if)(0).

(see [3] for a proof). In this way we obtain the spherical equivalent of the usual
Taylor expansion in cartesian coordinates.

2.5 Spherical Gaussian Derivatives

As a prerequisite to the Harmonic filter we have to show that the Gaussian-windowed
solid harmonics have a very special behavior with respect tothe Fourier transform.
Actually, they are the∇j-derivatives of the Gaussian.

Proposition 6. The Gaussian windowed harmonic of widthσ is defined as

Gj
σ(r) :=

1

(
√

2πσ)3

(−1

σ2

)j

Rj(r)e−
r2

2σ2 ,

then

G̃j
σ(k) = 〈eik⊤r,Gj(r)〉L2 = (i)jRj(k)e−

(σk)2

2 .

is the Fourier transformation ofGj(r).
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In fact, for σ = 1 the Gjs are eigenfunctions of the Fourier transformation
with eigenvalues

√
2π

3
ij . They form a orthogonal basis of the space of Gaussian

windowed harmonic functions (with respect to the standard inner product). Or, in
other words they are a orthogonal basis of the space of harmonic functions with

respect to the Gaussian measuredσx ∝ e−
r2

σ2 dx. Using the above proposition it
is also easy to show that theGj are just thejth order spherical derivatives of a
Gaussian.

Corollary 1 (Spherical Gaussian Derivative). The spherical derivative∇j of a
Gaussian computes to

∇
je−

r2

2σ2 = (
√

2πσ)3Gj
σ(r) =

(
− 1

σ2

)j

Rj(r) e−
r2

2σ2

An implication is that convolutions with theGj
σ are derivatives of Gaussian-

smoothed functions, namely

Gj
σ ∗ f = ∇

j(Gσ ∗ f),

wheref ∈ T0. Note that we use the conventionG0
σ = Gσ = 1

(
√

2πσ)3
e−

r2

2σ2 .

3 Harmonic Filters

Our goal is to build non-linear image filters that are equivariant to Euclidean mo-
tion. AnSE(3)-equivariant image filter is given by the following

Definition 3 (SE(3)-Equivariant Image Filter). An image filterF is a mapping
fromTℓ1 ontoTℓ2 . We call such a mappingSE(3)-equivariant ifF{gf} = gF{f}
for all g ∈ SE(3) andf ∈ Tj1 .

First, consider a scalar filterH : T0 → T0 that takes a scalar fieldf as input
and also gives a scalar-valued output.

Our approach may be interpreted as a kind of context-dependend voting scheme.
The intuitive idea is as follows: Compute for each position in the 3D space the
projection onto the Gaussian windowed harmonic basisGj

σ for j = 0, . . . , n. You
can do this by a simple convolution of the imagef with the basis, i.e.

pj := Gj
σ ∗ f.

Imagine this set of projectionspj as some local descriptor images, where the
set of [p0(r),p1(r), . . . ,pn(r)] of coefficients describe the harmonic part of the
neighborhood of the voxelr. Then, for each voxel map these projections on some
new harmonic descriptorsVj(r) = Vj[p0(r),p1(r), . . . ,pn(r)] which can be
interpreted as a local expansion of a kind of voting functionthat contributes into
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the neighborhood ofr. The contribution stemming from the voter at voxelr′ at
positionr is

Vr′(r) = Gη(r − r′)

∞∑

j=0

Vj(r′) •0 Rj(r − r′), (6)

i.e. the voting function is just a Gaussian-windowed harmonic function. The final
step is to render the contribution from all pixelsr in an additive way together by
integration to arrive at

H{f}(r) :=

∫

R3

Vr′(r)dr
′ =

n∑

j=0

Gj
η •̃0 Vj.

To ensure rotation-equivariance theVj[·] has to obey the following equivariance
constraint:

Definition 4. We call a mappingVj of type

Vj : V0 × . . .× Vn → Vj,

equivariant if it behaves as

Vj[D0
gp

0, . . . ,Dn
gp

n] = Dj
gV

j[p0, . . . ,pn].

We will use the spherical product• as the basic building block for the equiv-
ariant non-linearitiesVj. There are many possibility to combine several spherical
tensors by the products• in an equivariant way. Later we will discuss this in detail.

Finally, we want to verify theSE(3)-equivariance of the filter. We can con-
sider translation and rotation separately. First, examinethe translation: if the
imagef is shifted, also the descriptor imagespj are shifted by the same amount,
which comes due to the properties of the convolution. AsVj is working in a
pointwise manner it is also obvious thatVj[τp0, . . . , τpn] = τVj[p0, . . . ,pn].
And finally, due to equation (1) we also have thatGj

η•̃0(τVj) = τ(Gj
η •̃0Vj)

which shows the translation-equivariance. Now, consider the rotation: we know
that theGj

σ are fix points with respect to rotations, i.e.gGj
σ = Gj

σ for any rotation
g. And so, due to Proposition 3 the descriptor fieldspj are spherical tensor fields,
becauseGj

σ ∗ (gf) = g(Gj
σ ∗ f). Hence, alsoVj[p0, . . . ,pn] is a spherical tensor

field of orderj. And again, due to the fix point property ofGj
η and Proposition 3

we know thatH{f} ∈ T0 which proves the rotation-equivariance.

3.1 Differential Formulation

A computational expensive part of the filter are the convolutions. On the one hand,
the projection onto the harmonic basis of the input and, secondly, the rendering
of the output, also by convolution. Equation (6) shows that there is another way
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to compute such projections: by the use of the spherical derivative. So, we can
reformulate the filter as follows:

H{f} := Gη ∗
n∑

j=0

∇jV
j[∇0fs, . . . ,∇

nfs] (7)

with fs = Gσ ∗ f . In Algorithm 1 we depict the computation of the filter. Note,
that we just have to computen spherical derivatives∇1 if we implement them by
repeated applications. And actually the same holds for the down-derivative∇1 if
we follow Algorithm 1. In Figure 1 we illustrate the workflow of the filter.

Algorithm 1 Filter Algorithmy = H{f}
Input: scalar volume imagef
Output: scalar volume imagy

1: Initialize yn := 0 ∈ Tn
2: Convolvep0 := Gσ ∗ f
3: for j = 1 : n do
4: pj = ∇

1pj−1

5: end for
6: for j = n : −1 : 1 do
7: yj−1 := ∇1(y

j + Vj[p0, . . . ,pn])
8: end for
9: Let y := y0 + V0[p0, . . . ,pn])

10: Convolvey := Gη ∗ y

3.2 Generalization to Tensor Fields

The generalization of the filter to tensor-valued input and output is simple. In
fact, there are many possibilities to do this. We want to point out one alternative.
Assume, we want to construct a filter of typeH : Tℓ1 → Tℓ2. Starting with the
differential formulation we can compute the descriptor images as beforepj =
∇

j(Gσ ∗ f), where nowpj ∈ Tj+ℓ1. And now, we have to design local non-
linearitiesVj of type T0+ℓ1 × . . . × Tn+ℓ1 → Tj+ℓ2 and can use just the same
formula in eqn. (7) as before for an assembly of the output.

3.3 The Harmonic Subspace

We proposed to consider just the harmonic part to compute thelocal descriptor
imagespj. One should ask what advantages and disadvantages follow from this
restriction. Of course, the complexity of the algorithm is reduced if we just con-
sider the harmonic part which is an advantage, but what kind of properties of the
local neighborhood are neglected? Or, what subspace of functions is described
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α0
0,0

α1
1,0

α2
1,1

α2
2,0

α3
2,1

α3
3,0

∇
1

∇
1

∇
1

∇1

∇1

∇1

f y

GηGσ

p0

p1

p2

p3

•0

•1

•2

•2

•3

•3

y = H{f}

Figure 1: The workflow of a second order-filter (N = 2). The harmonic function
is expanded up to a degree ofn = 3. The star ’*’ in the circle is indicating a
convolution of the two incoming images. The plus ’+’ indicate a addition of the
incoming images, and the•j a spherical multiplication of incoming channels. The
labels at the arrows indicate a multiplication or sphericaldifferentiation, respec-
tively.

completely by its harmonic part. Of course, the harmonic functions are such a
class. But there are also analytical functions which can form such a subspace,
namely, those functions whose analytical part has a deterministic dependency on
the harmonic part.

Let us be more precise. We denote the analytical local descriptor images by
p
j
i = ∇

j
ifs and bypj0 = pj the harmonic ones. As we are considering rotation-

invariant problems the subspace of functions should be closed under rotations, i.e.
the functional dependency has to be equivariant with respect to rotations. Let us
consider a linear functional dependency between the harmonic and disharmonic
part. One can imagine that the only rotation-equivariant linear dependency is
described by

p
j
i = αjip

j−i with i > 0,

whereαji are some fixed real coefficients. We know that the spherical derivative
∇

j
i can be written as∇j−i∆i and hencepji = ∇

n−i∆ifs = ∆i
∇

n−ifs = ∆ip
j−i
0 .

So, a simple guess for a function class which fulfills the above linear constraint
are those functions which are eigenfunctions of the Laplaceoperator with respect
to the same eigenvalue. The plane waveseik

⊤r with fixed frequency magnitude
k = ||k|| are these functions, that isαji = k2i. These subspaces are known to
be the irreducible subspaces of the motion groupSE(3), that is, there are no
smaller subspaces that are closed under the action of the Euclidean motion. More
practically, functions that have locally a dominating wavelength in its Fourier
domain are well described by the harmonic part. The functions look like a sea of
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Figure 2: Isosurface Plots of the harmonic kernel in z-direction rz. Left: f(r) =
K(r, rz). Middle: f(r) = ℜ(K(r, irz)). Right: f(r) = ℑ(K(r, irz)).

bubbles of approximately the same size. The size is determined by the magnitude
k of the wave number. For physicists: they are the steady statesolutions of the
Schrödinger equation of the free particle.

On the other hand we suggested to use harmonic functions to model locally
the output, i.e. the voting function. Here also the questionarises how limiting this
fact is. To understand this more deeply we want consider a different basis. Recall
the expansion as given in eq. (6). What kind of function we canmodel with this
type of basis? From kernel theory we know that the reproducing kernel is a kind
of basic building block, in our case, for the harmonic function space. Following
Burbea [19] the reproducing kernel can be easily computed interms of an orthog-
onal basis. Given the square norm〈Gj

σ,m, G
j
σ,m〉 = (2j−1)!!

(
√

2πσ)3
the reproducing kernel

of the harmonic subspace is

Kσ(r, r
′) =

∞∑

j=0

(
√

2πσ)3

(2j − 1)!!
Gj
σ(r)

⊤Gj
σ(r

′). (8)

It fulfills the reproducing propertyf(r) =
∫
K(r, r′)f(r′)dr′ for any functionf

within the harmonics and hence provides an orthogonal projection onto this space.
In Figure 2 we show a surface plot of the harmonic kernel for fixed evaluation in
z-direction. One can see that the real harmonic kernel as given in eq. (8) is a bulb
like structure oriented in z-direction. The bulb gets more elongated and moves
away from the origin if the magnitude ofrz is increased. With linear combinations
of this bulb-like functions one can model any harmonic function. As mentioned
above (Proposition 6) the Gaussian-windowed harmonics areeigenfunctions of
the Fourier transform forσ = 1, hence it is easy to compute the projection of the
plane wave onto the harmonics, namely,

K1(r, ik) =
√

2π
3
∫

R3

K1(r, r
′)eik

⊤r′dr′,

i.e. the harmonic projection of a Gaussian-windowed plane wave is just the imag-
inary evaluationK(r, ik) of the reproducing kernel. In Figure 2 we also show the
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real and imaginary part of this complex kernel. It gives a kind of wave of just one
period evolving in z-direction. The magnitude ofrz determines the wavelength.

4 An Introductory Example

We already explained the workflow of the algorithm roughly. The question of
how to compute the spherical derivatives was already answered in [3] by a finite
difference scheme. In the following introductory experiment we use a central
difference scheme. The implementation of the spherical product is straightforward
and follows strictly definition 2. Note, that we just have to store 2j + 1 real
numbers for spherical tensors of degreej and use the relationv−m = (−1)mvm to
compute the product. The Clebsch-Gordan coefficients can beprecomputed and
do not cost any computation time. The pre- and post-smoothing with the Gaussian
is performed with the aid of an FFT. We implemented our experiments inC++ and
used themex-interface ofMATLABas a frontend.

To get a first understanding how the filter actually works we consider two
simple examples. First we start with a linear one. Suppose the voting functionV
is linear in its arguments, i.e.Vj[p0, . . . ,pn] = αjpj with someαj ∈ R. This is
the only rotation-equivariant linearity. Then we can compute

H{f} = Gη ∗
n∑

j=0

αj∇j∇
j(Gσ ∗ f)

=
n∑

j=0

αj∆j(Gσ′ ∗ f)

with σ′ =
√
σ2 + η2. This means that the harmonic filter can model any linear

filter with a spectrum of the form

n∑

j=0

αjk2je−
(σ′k)2

2 ,

wherek = ||k|| is the frequency magnitude. In fact, any rotationally symmet-
ric spectrum can be modelled with such a kind of filter. Or moregenerally, any
rotation-equivariant linear filter is a Harmonic filter. On the one hand we can be
really happy with this fact, we know that in the linear case itdoes not harm the
expressivity of the filter if we just consider the harmonic part. But the practical
benefit of this fact is limited. Computations of such filters via FFT convolutions
are in most cases more practically. But at least the parametric form of the Har-
monic filter offers a simple way to adapt the filter coefficientsαj via regression to
a specific problem.

Secondly, we consider an image reconstruction problem, edge preserving de-
noising. The idea is as follows: First, we take the original image and apply a
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Original Gaussian Smooth Harmonic Filter Anisotropic Diffusion

Figure 3: Results for edge preserving smoothing.

classical isotropic smoothing with a Gaussian. Then, basedon this image we
compute a kind of edge indicator image, providing information about intensity
and orientation of the edges in the volume, e.g. just the gradient image. This
image is then used for edge enhancement as follows: if an edgeis indicated the
imaginary part of the harmonic kernel (shown in Figure 2) is superimposed to
the local neighborhood, where the harmonic kernel is steered along the indicated
edge direction. This approach enhances the edge like classical edge enhancement
techniques known from 1D, but here, extended to 3D, the orientation of the kernel
is locally adapted (steered) depending on an edge indicatorimage.

Now, let us translate this approach into terms of the harmonic filter and its vot-
ing function. The imaginary part of the harmonic kernel has only odd summands,
so theVj give only contribution for oddj. The amplitude of the harmonic kernel
should be proportional to the edge strength which is encodedby ||p1||. For j = 0
we just transfer the original blurred image encoded inp0. Thus, we have for the
voting function,

V0 = p0

Vj = 0 for evenj > 0

Vj = α||p1|| (−1)⌊j/2⌋

(2j − 1)!!
Yj(n) for oddj > 0

wheren : R
3 7→ S2 is the gradient direction image andα the edge indicator

image. To computeα we follow Weickert [20]. He usedα = γ exp(− C
(||p1||/λ)4

) to
guide his nonlinear diffusion process (forγ = 1). The parameterγ ∈ R+ controls
the strength of the sharpening effect of the filter.

Similar as in [20] we have chosenC = 3.3 and forλ = 0.1. In Figure 3 we
show some results of the filter applied on MRI-data of the human brain and com-
parison to anisotropic nonlinear diffusion (following [20] Ch.5. pages 96-100),
both with the sameα. We also show the original image and a Gaussian smoothed
version (the harmonic filter withγ = 0). It is difficult to make a quantitive anal-
ysis of the differences. For the human eye the result of the harmonic filter seems
to be a little bit sharper due to the over- and undershoots which are inherent with
such an approach. But actually the anisotropic diffusion filter shows sharper edges
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Figure 4: Examples of confocally scanned pollen data. The goal is to detect the
three little porates on the ’surface’ of the pollen.

with higher details.

5 Pollen Porate Detection in Confocal Data

Analysis techniques for data acquired by microscopy typically demand for a rota-
tion and translation invariant treatment. In this experiment we use the harmonic
filter for the analysis of pollen grains acquired with confocal laser scanning mi-
croscopy (see [21]). Palynology, the study and analysis of pollen, is an interesting
topic with very diverse applications like in Paleoclimatology or Forensics. An
important feature of certain types of pollen grain are the socalled porates that are
small pores on the surface of the grain. Their relative configuration is crucial for
the determination of the species. We want to show that our filter is able to detect
this structures in a reliable way. In Figure 4 we show volume renderings of some
examples. The dataset consists of 45 samples. The images have varying sizes.
We scaled the images to a size of about803 voxels. We labeled the porates by
hand. The experimental setup is quite simple. We apply on each pollen image the
trained harmonic filter and then select local maxima up to a certain threshold as
detection hypotheses.

5.1 Reference Approaches

We use the ideas of Ballard et al [10], Lowe et al [11] and Leibeet al [12, 22] and
extended them to 3D. The approach is based on the generalizedHough transform
(GHT). Based on a selection of interest points local features are extracted and as-
signed to a codebook entry. Each codebook entry is endowed with a set of votes
for the center of object which are casted for each interest point. This approach
resembles closely the idea of the implicit shape model by Leibe et al [12], where
we used a 3D extension of Lowe’s SIFT features [11] as local features. We used
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several interest point detectors: Difference of Gaussians[11] (DOG), determinant
of Hessian (DHES) and the Harris detector [23]. The interestpoints were always
used in a non-scale invariant manner. This had basically tworeasons, we focus
on biological problems that demand scale robustness ratherthan invariance and,
secondly, the number of scale-invariant keypoints was for our problems just too
low, resulting in very poor results. The rotation invariance for the feature extrac-
tion process and the voting procedure is obtained by normalization with respect
to the eigensystem of the Hessian or the structure tensor (for the Harris detec-
tor). The features are joint gradient direction, position histograms relative to the
main eigenvectorn of the Hessian, i.e. the histogram dimensions are associated
with n⊤∇f(r) andr⊤n and

√
||r||2 − (r⊤n)2. As the main direction of the Hes-

sian/structure tensor is only determined up to a axial flip wenormalizedn for
eachr such thatr⊤n is positive. This retains more information than just taking
the absolute of the three quantities. As the eigensystem is determined up to eight
axial flips we have to cast each vote eight times to reach full invariance against
theO(3). After the generation of the voting map the map is blurred andlocal
maximas are used as detection hypotheses.

As a second approach we apply a simple classification scheme per voxel (VC).
For each voxel we compute a set of expressive rotation invariant features and
train a classifier to discriminate the objects of interest from the background. This
idea was for example used by Staal et al [24] for blood vessel detection in reti-
nal images in 2D or by Fehr et al [25, 26] for cell detection in 3D. We use fea-
tures that are based on a local spherical harmonics expansion of the image. The
norms of the spherical harmonic expansion serve as an invariant feature. For the
radial part we follow Koenderink et al [27] and use a Gaussian-windowed La-
guerre expansion, i.e. the local basis can be written up to a normalization constant
asbℓi(r) ∝ Lℓ+1/2

i (r2)Rℓ(r)e−r
2
, whereLℓ+1/2

i denotes the associated Laguerre
polynomials. Thebℓi(r) solve the differential equations connected with the 3D
harmonic oscillator in quantum mechanics and are optimal for smooth and lo-
cal white processes (see [2]). They are the eigenfunctions of the corresponding
Hamilton operator, hence they provide an orthogonal and complete set of func-
tions. Convolved with the image and taken the norm the||bℓi ∗ f || deliver rotation
invariant features for each voxel. We compute them for different scales, i.e. dif-
ferent size of Gaussians and up to expansion degrees of orderℓ+ i ≤ 6, resulting
in 80 features (per voxel!). For classification we use a KNN classifier as in [24].
We considered also to use a SVM together with a Histogram-Intersection kernel;
HI-kernels allow a fast implementation.
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5.2 The Voting Function

The probably most simple generic nonlinear voting functionVj is a sum of second
order products of the descriptor imagespj , namely

Vj[p0, . . . ,pn] =
∑

|j1−j2|≤j≤j1+j2
j1+j2+j even

j1,j2≤n

αjj1,j2 pj1 •j pj2 (9)

whereαjj1,j2 ∈ R are expansion coefficients. We call the order of the products
that are involved inVj the order of the filter and denote it byN . Depending on
the application they may or may not depend on the absolute intensity values of the
input image. To become invariant against additive intensity changes one leaves out
the zero order descriptorp0. For robustness against illumination/contrast changes
we introduce a soft normalization of the first order (’gradient’) descriptorp1. This
means, that in the for-loop in Alg. 1 from line 3-5 we introduce a special case for
j = 1, namely

p1(r) =
1

γ + sdev(r)
∇

1f(r),

whereγ ∈ R is a fixed regularization parameter andsdev(r) denotes the standard
deviation computed in a local window aroundr. The normalization makes the
filter robust against multiplicative changes of the gray values and, secondly, em-
phasizes the ’structural’ and ’textural’ properties rather than the pure intensities.
Besidesγ, the filter has three other parameters: the expansion degreen, the width
of the input Gaussianσ and the output Gaussianη. In the spirit of the GHT, the
parameterσ determines the size of the local features that vote for the center of
the object of interest. To assure that every pixel of the object can contribute, the
extent of the voting function should be at least half the diameter of the object.

5.3 Training

For the training of the harmonic filter (and for all referenceapproaches) we se-
lected one(!) good pollen example, i.e. three porate samples. To train the har-
monic filter we built an indicator image with pixels set to 1 atthe centers of the
three porates. The indicator image is just the target imagey which should sat-
isfy H{f} = y. As mentioned before the linearity of the filter in its parameters
makes it easy to adapt them. We use an unregularized least square approach. Due
to the high dynamic differences between the filter responsescorresponding to the
individual parameters it is necessary to normalize the equation to avoid numerical
problems. We used the standard deviation of the individual filter responses taken
over all samples in the training image. Theσ parameter determining the size of
the local features was chosen to be2.5 pixels. The output widthη determining the
range of voting function was chosen to be8 pixels, this is about half the diameter
of the porates.
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Figure 5: Mugwort pollen (green) with overlayed filter response (red) for two
examples. The filter detects the three porates, but there arealso some spurious
responses within the pollen, because the pollen has also strong inner structures.

The training of the GHT based approach is straightforward. For the code-
book generation we used k-means clustering. We found about 65 clusters most
beneficial for the application. For the voxel-based classification the training was
more difficult. We have chosen a 6-neighborhood around the true labels as posi-
tive training samples and a randomly chosen set of non-positive pixels as negative
samples. We chooseK = 20 for the KNN-classifier. With the number of negative
samples one can control the a-priori probability of the classifier. We found a rate
of 1/5 most suitable. The SVM approach (we use a C-SVM) has more problems
with such kind of unbalanced training sets. We also experienced a high depen-
dency on the randomly generated negative samples. To becomeless dependend of
the sampling procedure we increased the number of negative samples and adapted
the class-specificC parameter to control the a-priori probability.

5.4 Evaluation

In Figure 5 we show two examples. The filter detects the porates but shows also
some small responses within the pollen, however the resultsare still acceptable.
For quantative results we computed Precision/Recall graphs. A detection was
found to be successful if it is at least 8(4) pixels away from the true label. In Fig-
ure 6 on the left we show a PR-graph for a varying expansion degreen with a low
detection precision of 8 pixels. As one expects the filter improves its performance
with growingn. For n = 8 no performance gain is observed. The runtime of
the filter heavily depends on the number of spherical products to be computed.
For example forn = 6 we have to compute46 products. The computation of
these products takes on aP4 2.8Ghzabout 6 seconds. In Figure 6 in the middle
we compare the result of the Harmonic filter withn = 7 with the reference ap-
proaches. The results of the GHT based on DOG interest pointsare comparable
with the Harmonic filter. The voxel classification approach (VC) performs not so
well. In particular, for the SVM based classification is performing quite poorly.
Finally, we evaluated the PR-graph with a higher detection precision of4 pixels.
As already experienced in [1] the GHT based approach has problems in this case,
which has probably to do with the inaccurate and unstable determination of the
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Figure 6: Precision/Recall graphs of the porate detection problem. Top: Compar-
ison of the Harmonic filter for different expansion degrees (precision 8 pixels).
Middle: Comparison with reference approaches (precision 8pixels). Bottom:
Comparison with reference approaches (4 pixels).
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interest points. Now both VC approaches are outperforming the GHT approaches
while the Harmonic Filter is definitely superior over all theothers.

6 Conclusion

In this paper we presented a general-purpose non-linear filter that is equivariant
with respect to the 3D Euclidean motion. The filter may be seenas a joint Volterra
filter for rotation and translation. The filter senses locally a harmonic projection of
the image function and maps this projection onto a kind of voting function which
is also harmonic. The mapping is modelled by rotation equivariant polynomials in
the describing coefficients. The harmonic projections are computed in an efficient
manner by the use of spherical derivatives of Gaussian-smoothed images. We
applied the filter on a 3D detection problem. For low detection precision the
performance is comparable to state of the art approaches, while for high detection
precision the approach is definitely outperforming existing approaches.

A Spherical Harmonics

We always use Racah-normalized spherical harmonics. In terms of Legendre
polynomials they are written as

Y ℓ
m(φ, θ) =

√
(l −m)!

(l +m)!
P ℓ
m(cos(θ))eiφ

Mostly we writer/r ∈ S2 instead of(φ, θ). The Racah-normalized solid harmon-
ics can be written as

Rℓ
m(r) =

√
(ℓ+m)!(ℓ−m)!

∑

i,j,k

δi+j+k,ℓδi−j,m
i!j!k!2i2j

(x− iy)j(−x− iy)izk,

wherer = (x, y, z). They are related to spherical harmonics byRℓ
m(r)/rℓ =

Y ℓ
m(r/r)

B Clebsch Gordan Coefficients

Orthogonality
∑

j,m

〈jm|j1m1, j2m2〉〈jm|j1m′
1, j2m

′
2〉 = δm1,m′

1
δm2,m′

2
(10)

∑

m=m1+m2

〈jm|j1m1, j2m2〉〈j′m′|j1m1, j2m2〉 = δj,j′δm,m′ (11)

∑

m1,m

〈jm|j1m1, j2m2〉〈jm|j1m1, j
′
2m

′
2〉 =

2j + 1

2j′2 + 1
δj2,j′2δm2,m′

2
(12)
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Special Values

〈ℓm|(ℓ− λ)(m− µ), λµ〉 =

(
ℓ+m
λ+ µ

)1/2 (
ℓ−m
λ− µ

)1/2 (
2ℓ
2λ

)−1/2

(13)

〈ℓm|(ℓ+ λ)(m− µ), λµ〉 = (−1)λ+µ

(
ℓ+ λ−m+ µ

λ+ µ

)1/2

(
ℓ+ λ+m− µ

λ− µ

)1/2 (
2ℓ+ 2λ+ 1

2λ

)−1/2
(14)

Symmetry

〈jm|j1m1, j2m2〉 = 〈j1m1, j2m2|jm〉 (15)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈jm|j2m2, j1m1〉 (16)

〈jm|j1m1, j2m2〉 = (−1)j+j1+j2〈j(−m)|j1(−m1), j2(−m2)〉 (17)

C Wigner D-Matrix

The components ofDℓ
g are writtenDℓ

mn. They are called the Wigner D-matrix. In
Euler anglesφ, θ, ψ in ZYZ-convention we have

Dℓ
mn(φ, θ, ψ) = eimφdℓmn(θ)e

inψ,

wheredℓmn(θ) are the Wigner d-matrix which is real-valued. Relation to the Cleb-
sch Gordan coefficients:

Dℓ
mn =

∑

m1+m2=m

n1+n2=n

Dℓ1
m1n1

Dℓ2
m2n2

〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (18)

Dℓ1
m1n1

Dℓ2
m2n2

=
∑

l,m,n

Dℓ
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (19)

C.1 Double Factorial

(2ℓ+ 1)!! = Γ(ℓ+ 3/2)
2l√
π/4

= (2ℓ+ 1)(2ℓ− 1)(2ℓ− 3) . . .
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