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Abstract

This report proposes a concept f8F(3)-equivariant non-linear filters
for multiple purposes, especially in the context of featamel object detec-
tion. The idea of the approach is to compute local descspsrprojections
onto a local harmonic basis. These descriptors are mapp&dam-linear
way onto new local harmonic representations, which thertriiarne to the
filter output in a linear way. This approach may be intergteds a kind
of voting procedure in the spirit of the generalized Hougim&form, where
the local harmonic representations are interpreted asiagviainction. On
the other hand, the filter has similarities with classical-level feature
detectors (like corner/blob/line detectors), just exazhtb the generic fea-
ture/object detection problem. The proposed approachtitigap between
low-level feature detectors and high-level object detectiystems based on
the generalized Hough transform. As an introductory examy# use the
proposed approach for edge preserving denoising. Secondlyvill ap-
ply the proposed filter to a feature detection task on comfimieroscopical
images of airborne pollen and compare the results to a 3énsidn of a
popular GHT-based approach and to a classification per \amhetion.

1 Introduction

The theory of non-linear filters is well developed for imaganslations. It is
known as \olterra theory. \olterra theory states that any-lneear translation-
invariant system can be modelled as an infinite sum of mutigtisional convolu-
tion integrals. More precisely, a filtdf is said to be equivariant with respect to
some grou, if gH{f} = H{gf} holds for all images and allg € G, where



gf denotes the action of the group to the imggeFor the group of translations
(or the group of time-shifts) such filters are called Voléeseries. In this paper we
want to develop non-linear filters that are invariant witbpect to Euclidean mo-
tion SE(3), therefore, we need a generalization of \Volterra’s prilectp S E(3).

In [1] a 2D non-linear filter was proposed thati&'(2)-equivariant. The filter was
derived from the general concept of group integration wheglaced Volterra’s
principle. In this paper we want to generalize this filterStd'(3). The general-
ization is not straightforward because the two-dimendiostation groupSO(2)
essentially differs from its three-dimensional countera (3).

As already mentioned the derivation of the filter in [1] wasdxhon the prin-
ciple of group integration. In this paper we want to follow anm@ pragmatic way
and directly propose the 3D filter guided by its 2D analogoet ws recapitulate
the workflow of the holomorphic filter and give a sketch of i3 Gounterpart. In
a first step the holomorphic filter computes several conuagtwith functions of
the formz/e~*I> wherez = z + iy is the pixel coordinate in complex notation.
Note, that the monomia¥ = r7e¢ is holomorphic. The results of these convo-
lutions show a special rotation behavior, e.g. fot 1 it behaves like a gradient
field or for j = 2 it behaves like a 2nd rank tensor field. Several productseseh
convolution results are computed. These products show agapecial rotation
behavior. For example, if we multiply a gradient field < 1) and a 2-tensor-
field (j, = 2) we obtain a third-order field with = j; + j» = 3. According to
the transformation behavior of the products they are agaiwalved with func-
tions of the formz7e~#" such that the result of the convolution transforms like a
scalar § = 0). This is the principle of the holomorphic filter which we wda
generalize to 3D.

The first question is, what are the function correspondingdo/*I” in 3D? We
know that the real and imaginary part of a holomorphic potgied are harmonic
polynomials. Harmonic polynomials solve the Laplace eipmatAs /¢ " is
a Gaussian-windowed holomorphic monomial we will use iadta Gaussian-
windowed harmonic polynomial for the 3D filter. The seconesjion is, how
can we form products of convolutions with harmonic polynalsithat entail their
transformation behavior? We will find out that the Clebsabrdan coefficients
that are known from quantum mechanics provide such prod@itsen two ten-
sor fields of a certain degree we are able to form a new tenddrdfeanother
degree by a certain multiplication and weighted summatiothe input fields.
The weights in the summations are the Clebsch Gordan ceifeci In [1] and
[2] it was shown that the convolutions with the Gaussiandeined holomorphic
basis can be computed efficiently with complex derivatiesact, there is a very
similar approach in 3D by so called spherical derivativés [3

The paper is organized as follows: in the following sectiom give a small
overview about related work. In Section 2 we introduce thgidsain spherical
tensor analysis. We introduce the spherical product whielples spherical ten-
sor fields and introduce basics about spherical harmoniesalgo introduce so



called spherical derivatives that are the counterparteauual complex deriva-
tives in 2D. They will help us to compute the occurring comtmns in an efficient
manner. In Section 3 we introduce the Harmonic filter. We show the filter
can be generalized to tensor valued inputs and outputs andteigparameters
can be trained to a specific problem. Section 4 shows how tiee ¢&n be im-
plemented efficiently and how it can be applied for featurecteon in confocal
microscopical images. In Section 5 we conclude and give gloaufor future
work.

1.1 Related Work

We figured out four frameworks that are closely related tsoiblterra filters,
Steerable filters, Tensor Voting and the generalized Horagtstorm.

\olterra filters are the canonical generalization of thedinconvolution to a
nonlinear mapping. They are widely used in the signal psiogscommunity and
also find applications in image processing tasks [4, 5, 6f fllter proposed in
this work might be interpreted as a kind of ’joint’ Volterr#tdi for translation and
rotation.

Steerable filters, introduced in [7], are a common tool ifyeasion and im-
age analysis. A generalization for non-group like defororet was proposed in
[8] using an approximative scheme. Applications of stelerfilbers are widespread,
an example in 3D is [9]. Our filter computes a certain subsgaoksian-windowed
spherical moments in a first step which is actually a steerfilér.

The generalized Hough transform (GHT) [10] is a major tooltfe detection
of arbitrary shapes. Many modern approaches [11, 12] fozatlgetection and
recognition are based on the idea that local parts of thecbbgest votes for the
putative center of the object. If the proposed algorithmsediin the context of
object detection, it may be interpreted as some kind of gopirocedure for the
object center. This voting interpretation also relates appgroach to the Tensor
\Voting [13] framework (TV). However, in TV the voting funcin does not de-
pend on the local context. Contrarily the proposed filterbke do cast context
dependend votes. In particular, in [14] the tensor votingepss in 2D is formu-
lated with the use of steerable filters. In a similar way oteifitan also interpreted
as an implementation of a voting process using steeraldesfilbut in 3D.

2 Spherical Tensor Analysis

In the following we shortly repeat the basic notions in 3Drhanic analysis as
they were introduced and proved in [3]. For introductorydiag we recommend
mostly literature [15, 16] concerning the quantum theoryhef angular momen-
tum, while our representation tries to avoid terms from dquantheory to also
give the non-physicists a chance to follow. See e.g. [17 fdi8hn introduction
from an image processing/engineering viewpoint.



2.1 Preliminaries

Let Dg be the unitary irreducible representation of & SO(3) of order; with
j € N. They are also known as th&igner D-matricegsee e.g. [16]). The
representatioi)’ acts on a vector spac€; which is represented b§**'. The
standard basis of**! is written ase/,. We write the elements o¥; in bold
face, e.gu € V; and write the2j 4+ 1 components in unbold face,, € C where
m = —j,...j. For the transposition of a vector/matrix we writé; the joint
complex conjugation and transposition is denotediby= u’. In this terms the
unitarity of D/ is expressed by the formu{®/) "D/ = 1.

Note, that we treat the spadg as a real vector space of dimensians+ 1,
although the components afmight be complex. This means that the spaGes
only closed under weighted superpositions with real nusib&s a consequence
we observe that the components are interrelated,py= (—1)"u_,,. From a
computational point of view this is an important issue. Altlgh the vectors are
elements ofC%*! we just have to store jugtj + 1 real numbers. So, the standard
coordinate vector = (z,y, )T € R? has a natural relation to elemenis= V; in
the form of

W sz —iy)
u= z = z =Sr eV,
—w —5(r +1iy)

Note, thatS is an unitary coordinate transformation. Actually, theresgntation
D, is directly related to the real valued rotation matklly, ¢ R*** by D} =
SU,ST

Definition 1. A functionf : R* — V; is called a spherical tensor field of rank
if it transforms with respect to rotations as follows

(g9f)(r) :== D/f(Ulr)

forall g € SO(3). The space of all spherical tensor fields of rgnk denoted by
7.

2.2 Spherical Tensor Coupling

We define a family of symmetric bilinear forms that connecistas of different
ranks.

Definition 2. For every; > 0 we define a family of symmetric bilinear forms of
type
9 - ij X V]z = V]
wherej, j» € N has to be chosen according to the triangle inequality— j»| <
j <ji+jrandj; + j» + j has to be even. Itis defined by

Z <jm | j1m17j2m2>

eV (vew):= - Upny Wiy
( m) ( J ) <.]0|j10,.720> 1 2

m=mj-+m2



where(jm | jymq, joms) are the Clebsch Gordan coefficients (see e.g. [16]).

Up to the factor(j0 | j;0, j20) this definition is just the usual spherical tensor
coupling equation which is very well known in quantum mecbsiof the angular
momentum. The additional factor is for convenience. It raiees the product
such that it shows a more gentle behavior with respect toghergcal harmonics
as we will see later.

The characterizing property of these products is that tegect the rotations
of the arguments, namely

Proposition 1. Letv € V;, andw € V,,, then for anyy € SO(3)
(Dglv) o (Difw) = Dg(v o W)
holds.

For the special casg = 0 the arguments have to be of the same rank due to
the triangle inequality. Actually, in this case the new prodcoincides with the
standard inner produste,w = w ' v. Further note, that if one of the arguments of
e is a scalar, themreduces to the standard scalar multiplication,+.€¢.w = vw,
wherev € 1, andw € V;. Another remark is thakis not associative.

The introduced product can also be used to combine tensds fiéldifferent
rank by point-wise multiplication.

Proposition 2. Letv € 7;, andw € 7;, andj chosen such thay; — jo| < j <
J1 + j2, then
f(r) = v(r) o w(r)

isin7;, i.e. atensor field of rank.
If we consider a translation of the image function, that is
(7f)(r) :=f(r — t,).

we can verify that for any two tensor fieldsandu and anyy € SFE(3) we obtain
that (gv) e; (¢gw) = g(v e; w). Actually, there is another way to combine two
tensor fields: by convolution. For the convolution the eundvproduct respects
the translation in a different sense.

Proposition 3. Letv € 7;, andw € 7;, andj chosen such thaj; — j»| < j <

(vejw)(r) := / v(r' —r) e w(r') dr’
R3
isinZ;, i.e. atensor field of rank.

Now, consider the behavior @f with respect to a translation The following
relation is simple to be verified

ve (Tw) = (1v)ew = T(ve;w) 1)

due to properties of the convolution.



2.3 Spherical and Solid Harmonics

We denote the well-known spherical harmonics ¥y : S5? — V;. We write
Y’(r), wherer may be an element &3, but Y’(r) is independent of the mag-
nitude ofr. We know that thé¥”/ provide an orthogonal basis of scalar functions
on the 2-spheré&?. Thus, any real scalar fielfl € 7, can be expanded in terms
of spherical harmonics in a unique manner. In the followiwg, use Racah’s
normalization (also known as semi-Schmidt normalizatioe) (Y’ Yj/>s2 =

ﬁéjjﬁmm/. One important and useful property is tiat = Y7' o; Y72. We
can use this formula to iteratively compute higher ord€&rfrom given lower
order ones. Note thaY’ = 1 andY! = Sr, wherer € S2. The spherical
harmonics have a variety of nice properties. One of the nmpbrtant ones is
that eachY”, interpreted as a tensor field of raiks a fix-point with respect to
rotations, i.e.(gY7)(r) = Y7(r) or in other wordsY’(U,r) = D)Y/(r). The
spherical harmonics naturally arise from the solutiongnfiihe Laplace equa-
tion as the so called solid harmoni& (r) := r’Y7(r). The generalization
R}(r) := r7T7Y77(r) is a complete basis of the analytical functions®h i.e.
we can write any analytical function as

f(r) = > (a)) "Ri(r) 2)
j>i

In this way we can project any analytical function on its hamnig part by restrict-
ing on the summands with= 0. Note that the harmonic part depends on the
choice of the origin. Thus we cannot imagine that there isiquenharmonic part
of an analytical functions, moreover there are many waysotapute this pro-
jection. Further note that thR/ are homogeneous polynomials of orde¥- i,
meaningR’ (Ar) = M*RI(r) for any \ € R.

2.4 Spherical Derivatives

This section proposes the basic tools for dealing with @éries in the context
of spherical tensor analysis. In [3] the spherical derxegtiare introduced. They
connect spherical tensor fields of different ranks by déffeiation. Specifically,

we will examine the spherical Gaussian derivatives. Theyjast the Gaussian-
windowed harmonic polynomials that we have mentioned inrttreduction.

Proposition 4 (Spherical Derivatives)Letf € 7, be atensor field. The spherical
up-derivativeV' : 7, — 7,,, and the down-derivativ&, : 7, — 7, ; are
defined as

Vf = Ve f (3)
Vlf = V .j—l f7 (4)
where . '
V= (50 ~19,),0., —ﬁ(ax +1i0,))



is the spherical gradient and,, 9, 0, the standard partial derivatives.

Note, that for a scalar function the spherical up-derieisjust the spherical
gradient, i.eVf = V'f.

In the Fourier domain the spherical derivatives act by puiisiee-multiplication
with a solid harmonidkY'(k) = iR!(k) = iSk wherek = |k| the frequency
magnitude:

Proposition 5 (Multiple Spherical Derivatives)For j > i we defineV{ 2Ty —
T, by

Vi =V,V/=V,..V,V' . V.
—_—
i—times Jj—times

In the Fourier domain these multiple derivatives are givgn b

(Vi) = " Ri(k)f(k), (5)
Using this one can show thm{ = V’/7'A?, whereA is the Laplace operator.

The above proposition is mainly due to the fatt = Y’ o; Y72, The intro-
duced spherical derivatives can be used to compute the sxpacoefficients of
the expansion introduced in equation 2. In factahare given by

i RU-9)+1)

& T iy + (Vi£)(0).

(see [3] for a proof). In this way we obtain the spherical gglant of the usual
Taylor expansion in cartesian coordinates.

2.5 Spherical Gaussian Derivatives

As a prerequisite to the Harmonic filter we have to show treGhussian-windowed
solid harmonics have a very special behavior with respetitéourier transform.,
Actually, they are th&v’-derivatives of the Gaussian.

Proposition 6. The Gaussian windowed harmonic of widtlis defined as
—1\’ 2
Gy = ot () Rime 22
(V2mo)3 \ o

then
_ (ok)?
2

Gl(k) = (*'", GI(r))r, = (/R (k)e

is the Fourier transformation of/(r).



In fact, foroc = 1 the G’s are eigenfunctions of the Fourier transformation

with eigenvalues/27r3ij. They form a orthogonal basis of the space of Gaussian
windowed harmonic functions (with respect to the standanei product). Or, in
other words they are a orthogonal basis of the space of hacrforctions with

respect to the Gaussian measifg x ¢ -2dx. Using the above proposition it
is also easy to show that th@&’ are just thejth order spherical derivatives of a
Gaussian.

Corollary 1 (Spherical Gaussian Derivativeyhe spherical derivativd7’ of a
Gaussian computes to

r2 . J . 2
Vie 57 — (Vo) G (r) — (—iz) Ri(r) e 5

o

An implication is that convolutions with th& are derivatives of Gaussian-
smoothed functions, namely

Gl x f =V (G, * f),

r2

wheref € 7;. Note that we use the conventi@lf = G, = ﬁe‘w.

3 Harmonic Filters

Our goal is to build non-linear image filters that are equasmirto Euclidean mo-
tion. An S E(3)-equivariant image filter is given by the following

Definition 3 (SE(3)-Equivariant Image Filter)An image filterF is a mapping
from7,, onto7,,. We call such a mappin§£(3)-equivariant ifF{¢f} = gF{f}
forall g € SE(3) andf € T7;,.

First, consider a scalar filtéd : 7, — 7, that takes a scalar fielfl as input
and also gives a scalar-valued output.

Our approach may be interpreted as a kind of context-depenaging scheme.
The intuitive idea is as follows: Compute for each positiorthe 3D space the
projection onto the Gaussian windowed harmonic b&igor j = 0, ..., n. You
can do this by a simple convolution of the imageith the basis, i.e.

p’ =G x f.

Imagine this set of projectiong’ as some local descriptor images, where the
set of [p°(r), p'(r), ..., p"(r)] of coefficients describe the harmonic part of the
neighborhood of the voxel Then, for each voxel map these projections on some
new harmonic descriptor¥’(r) = VJ[p°(r), p'(r),...,p"(r)] which can be
interpreted as a local expansion of a kind of voting functiwett contributes into
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the neighborhood of. The contribution stemming from the voter at voxéht
positionr is

Velr) = Gyr =x') 3_ VI (') 4 R (r =), (6)

i.e. the voting function is just a Gaussian-windowed harméumction. The final
step is to render the contribution from all pixelén an additive way together by
integration to arrive at

H{f}(r) = /Rgm,(r)dr':Zthovj.

To ensure rotation-equivariance tNe[-] has to obey the following equivariance
constraint:

Definition 4. We call a mappindv’ of type
Vj:%x...anHVj,
equivariant if it behaves as
V/[D)p’,...,Dlp" =D/V/[p’ ... p"].

We will use the spherical produstas the basic building block for the equiv-
ariant non-linearitied/’. There are many possibility to combine several spherical
tensors by the producesn an equivariant way. Later we will discuss this in detalil.

Finally, we want to verify thes F(3)-equivariance of the filter. We can con-
sider translation and rotation separately. First, exantingetranslation: if the
imagef is shifted, also the descriptor imagesare shifted by the same amount,
which comes due to the properties of the convolution. Wsis working in a
pointwise manner it is also obvious th&¥[rp°, ..., 7p"] = 7VI[p°, ..., p"].
And finally, due to equation (1) we also have tt@je,(7V’) = 7(G/&yV/)
which shows the translation-equivariance. Now, considerrotation: we know
that theG? are fix points with respect to rotations, i/ = G/ for any rotation
g. And so, due to Proposition 3 the descriptor figidsare spherical tensor fields,
becaus&s’ x (gf) = g(GJ * f). Hence, als&/?[p’, ..., p"] is a spherical tensor
field of orderj. And again, due to the fix point property Gfg and Proposition 3
we know thatd { f } € 7, which proves the rotation-equivariance.

3.1 Differential Formulation

A computational expensive part of the filter are the convohg. On the one hand,
the projection onto the harmonic basis of the input and, rsglgpthe rendering
of the output, also by convolution. Equation (6) shows thatée is another way

11



to compute such projections: by the use of the sphericalatere. So, we can
reformulate the filter as follows:

H{f}:=GyxY V, VIV f, ... V"f] 7)

J=0

with f, = G, * f. In Algorithm 1 we depict the computation of the filter. Note,
that we just have to computespherical derivative¥ if we implement them by
repeated applications. And actually the same holds for thenederivativeV , if
we follow Algorithm 1. In Figure 1 we illustrate the workflow the filter.

Algorithm 1 Filter Algorithmy = H{f}

Input: scalar volume image f

Output: scalar volume imag y

. Initializey™ := 0 € 7,

Convolvep® := G, * f

for j=1:n do
pl = Vipi-!

end for

forj=n:—1:1do
y'7hi=Viy? + VIp’ ... p")

end for

Lety :=y°+ VOp° ....p"])

: Convolvey := G, x y

CceNThrwNR

=Y
o

3.2 Generalization to Tensor Fields

The generalization of the filter to tensor-valued input antpat is simple. In
fact, there are many possibilities to do this. We want to pout one alternative.
Assume, we want to construct a filter of type: 7,, — 7,,. Starting with the
differential formulation we can compute the descriptor g@s as beforgy’ =
V7 (G, * f), where nowp’ € 7;,,. And now, we have to design local non-
linearities V7 of type 7o, X ... X Ty, — 744, @and can use just the same
formula in eqn. (7) as before for an assembly of the output.

3.3 The Harmonic Subspace

We proposed to consider just the harmonic part to computéottad descriptor
imagesp’. One should ask what advantages and disadvantages fothowtfris

restriction. Of course, the complexity of the algorithmesluced if we just con-
sider the harmonic part which is an advantage, but what kimutaperties of the
local neighborhood are neglected? Or, what subspace ofidunscis described

12



y=H{f}

Figure 1: The workflow of a second order-filte¥ (= 2). The harmonic function
is expanded up to a degree of= 3. The star ™ in the circle is indicating a
convolution of the two incoming images. The plus indicate a addition of the
incoming images, and the a spherical multiplication of incoming channels. The
labels at the arrows indicate a multiplication or spherdiéierentiation, respec-
tively.

completely by its harmonic part. Of course, the harmonicfioms are such a
class. But there are also analytical functions which camfeuch a subspace,
namely, those functions whose analytical part has a detéstii dependency on
the harmonic part.

Let us be more precise. We denote the analytical local gascrimages by
p. = V! f, and byp), = p’ the harmonic ones. As we are considering rotation-
invariant problems the subspace of functions should beedlasder rotations, i.e.
the functional dependency has to be equivariant with régpeotations. Let us
consider a linear functional dependency between the haoamd disharmonic
part. One can imagine that the only rotation-equivariamtdr dependency is
described by

pl = olp’~" with i >0,

whereq are some fixed real coefficients. We know that the sphericatative
V7 can be written a&’ A’ and hence! = V" IAf, = AIV" ' f, = Alp) ™"
So, a simple guess for a function class which fulfills the &blavear constraint
are those functions which are eigenfunctions of the Lapbgezator with respect
to the same eigenvalue. The plane wax¥s* with fixed frequency magnitude
k = |k| are these functions, that i§ = k*. These subspaces are known to
be the irreducible subspaces of the motion gréif(3), that is, there are no
smaller subspaces that are closed under the action of tHiel&at motion. More
practically, functions that have locally a dominating wdeegth in its Fourier
domain are well described by the harmonic part. The funstlook like a sea of

13
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Figure 2: Isosurface Plots of the harmonic kernel in z-dioecr.. Left: f(r) =
K(r,r,). Middle: f(r) = R(K(r,ir,)). Right: f(r) = $(K(r,ir,)).

bubbles of approximately the same size. The size is detediy the magnitude
k of the wave number. For physicists: they are the steady stdtgions of the
Schrodinger equation of the free patrticle.

On the other hand we suggested to use harmonic functions delnacally
the output, i.e. the voting function. Here also the questiagses how limiting this
fact is. To understand this more deeply we want considerfardiit basis. Recall
the expansion as given in eq. (6). What kind of function we rcaxlel with this
type of basis? From kernel theory we know that the reprodukérnel is a kind
of basic building block, in our case, for the harmonic fuastspace. Following
Burbea [19] the reproducing kernel can be easily comput&fms of an orthog-

onal basis. Given the square nof6¥. ,,, GJ ,,.) = (\Q/J_l the reproducing kernel
of the harmonic subspace is
T
]Z 2 _1 2(1) T GL(r'). t)

It fulfills the reproducing property(r) = [ K(r,r’)f(r')dr’ for any functionf
within the harmonics and hence prowdes an orthogonal gtiojeonto this space.
In Figure 2 we show a surface plot of the harmonic kernel fadigvaluation in
z-direction. One can see that the real harmonic kernel &ngiveq. (8) is a bulb
like structure oriented in z-direction. The bulb gets mdangated and moves
away from the origin if the magnitude of is increased. With linear combinations
of this bulb-like functions one can model any harmonic fiortt As mentioned
above (Proposition 6) the Gaussian-windowed harmoniceigenfunctions of
the Fourier transform fos = 1, hence it is easy to compute the projection of the
plane wave onto the harmonics, namely,

Ki(r,ik) = v o Ki(r,r))e™ " ar’,
R3

i.e. the harmonic projection of a Gaussian-windowed plaaeans just the imag-
inary evaluationk'(r, ik) of the reproducing kernel. In Figure 2 we also show the

14



real and imaginary part of this complex kernel. It gives adkifiwave of just one
period evolving in z-direction. The magnitudegfdetermines the wavelength.

4  An Introductory Example

We already explained the workflow of the algorithm roughlyheTquestion of
how to compute the spherical derivatives was already areshiar[3] by a finite
difference scheme. In the following introductory expemne use a central
difference scheme. The implementation of the sphericalyebis straightforward
and follows strictly definition 2. Note, that we just have tors 25 + 1 real
numbers for spherical tensors of degyjesnd use the relation ,,, = (—1)"7,, to
compute the product. The Clebsch-Gordan coefficients cgrdmmputed and
do not cost any computation time. The pre- and post-smogthith the Gaussian
is performed with the aid of an FFT. We implemented our expents inC++ and
used themexinterface ofMATLABas a frontend.

To get a first understanding how the filter actually works wastder two
simple examples. First we start with a linear one. Suppos&ating functionvV
is linear in its arguments, i.&V7[p°, ..., p"] = o/p’ with someq; € R. This is
the only rotation-equivariant linearity. Then we can cotepu

H{f} = G,*» o/V;VI(G,x*f)
§=0
= Y N (Gy x f)

Jj=0

with ¢’ = /0% + n?. This means that the harmonic filter can model any linear
filter with a spectrum of the form

n . . (o',k)2
E adk¥e 2,
=0

wherek = |k| is the frequency magnitude. In fact, any rotationally syrtime
ric spectrum can be modelled with such a kind of filter. Or mgeaerally, any
rotation-equivariant linear filter is a Harmonic filter. Gretone hand we can be
really happy with this fact, we know that in the linear casddes not harm the
expressivity of the filter if we just consider the harmonictpd@ut the practical
benefit of this fact is limited. Computations of such filtera #FT convolutions
are in most cases more practically. But at least the paranfetm of the Har-
monic filter offers a simple way to adapt the filter coefficeemf via regression to
a specific problem.

Secondly, we consider an image reconstruction problene pdeserving de-
noising. The idea is as follows: First, we take the origimahge and apply a
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Original Gaussian Smooth Harmonic Filter Anisotropic Diffusion

Figure 3: Results for edge preserving smoothing.

classical isotropic smoothing with a Gaussian. Then, basethis image we
compute a kind of edge indicator image, providing informatabout intensity
and orientation of the edges in the volume, e.g. just theignddmage. This
image is then used for edge enhancement as follows: if aniedgdicated the
imaginary part of the harmonic kernel (shown in Figure 2)upesimposed to
the local neighborhood, where the harmonic kernel is steal@ng the indicated
edge direction. This approach enhances the edge like céhssige enhancement
techniques known from 1D, but here, extended to 3D, the taiem of the kernel
is locally adapted (steered) depending on an edge indicatae.

Now, let us translate this approach into terms of the harmfuter and its vot-
ing function. The imaginary part of the harmonic kernel haly @dd summands,
so theV7 give only contribution for odg. The amplitude of the harmonic kernel
should be proportional to the edge strength which is encbgdg'|. Forj = 0
we just transfer the original blurred image encodegin Thus, we have for the
voting function,

VO _ pO
Vi = 0 forevenj >0
v/ Nk Y’(n) for odd
= — oroddj >0
wheren : R?® — S, is the gradient direction image ardthe edge indicator
image. To compute we follow Weickert [20]. He used = yexp(—m) to

guide his nonlinear diffusion process (foe= 1). The parametey € R* controls
the strength of the sharpening effect of the filter.

Similar as in [20] we have choseén = 3.3 and forA = 0.1. In Figure 3 we
show some results of the filter applied on MRI-data of the huibwain and com-
parison to anisotropic nonlinear diffusion (following [20h.5. pages 96-100),
both with the same.. We also show the original image and a Gaussian smoothed
version (the harmonic filter with = 0). It is difficult to make a quantitive anal-
ysis of the differences. For the human eye the result of thexbiaic filter seems
to be a little bit sharper due to the over- and undershootsiwéaie inherent with
such an approach. But actually the anisotropic diffusiderfdhows sharper edges
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Figure 4: Examples of confocally scanned pollen data. Tle igao detect the
three little porates on the 'surface’ of the pollen.

with higher detalils.

5 Pollen Porate Detection in Confocal Data

Analysis techniques for data acquired by microscopy tylyiceemand for a rota-
tion and translation invariant treatment. In this expenimge use the harmonic
filter for the analysis of pollen grains acquired with cordblaser scanning mi-
croscopy (see [21]). Palynology, the study and analysi®bép, is an interesting
topic with very diverse applications like in Paleoclimatgy or Forensics. An
important feature of certain types of pollen grain are theat®ed porates that are
small pores on the surface of the grain. Their relative coméition is crucial for
the determination of the species. We want to show that oer fdtable to detect
this structures in a reliable way. In Figure 4 we show voluerederings of some
examples. The dataset consists of 45 samples. The images/aaung sizes.
We scaled the images to a size of absit voxels. We labeled the porates by
hand. The experimental setup is quite simple. We apply oh palten image the
trained harmonic filter and then select local maxima up tortatethreshold as
detection hypotheses.

5.1 Reference Approaches

We use the ideas of Ballard et al [10], Lowe et al [11] and La&ibal [12, 22] and
extended them to 3D. The approach is based on the generblaegh transform
(GHT). Based on a selection of interest points local featare extracted and as-
signed to a codebook entry. Each codebook entry is endowibdavget of votes
for the center of object which are casted for each interesttpd his approach
resembles closely the idea of the implicit shape model bpé.et al [12], where
we used a 3D extension of Lowe’s SIFT features [11] as locufes. We used
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several interest point detectors: Difference of GausqieligDOG), determinant
of Hessian (DHES) and the Harris detector [23]. The integpestts were always
used in a non-scale invariant manner. This had basicallyréasons, we focus
on biological problems that demand scale robustness rdtharinvariance and,
secondly, the number of scale-invariant keypoints was orpsoblems just too
low, resulting in very poor results. The rotation invariarior the feature extrac-
tion process and the voting procedure is obtained by noratadin with respect
to the eigensystem of the Hessian or the structure tensoth@Harris detec-
tor). The features are joint gradient direction, positiastdgrams relative to the
main eigenvecton of the Hessian, i.e. the histogram dimensions are assdciate
with n" Vf(r) andr 'n and/|r|2 — (r'n)2. As the main direction of the Hes-
sian/structure tensor is only determined up to a axial flipnwemalizedn for
eachr such thatr "'n is positive. This retains more information than just taking
the absolute of the three quantities. As the eigensystemitésmined up to eight
axial flips we have to cast each vote eight times to reach riuliiance against
the O(3). After the generation of the voting map the map is blurred kmcdl
maximas are used as detection hypotheses.

As a second approach we apply a simple classification schemwxyel (VC).
For each voxel we compute a set of expressive rotation awafeatures and
train a classifier to discriminate the objects of interestfithe background. This
idea was for example used by Staal et al [24] for blood vesstgation in reti-
nal images in 2D or by Fehr et al [25, 26] for cell detection . 3Ve use fea-
tures that are based on a local spherical harmonics expaokibe image. The
norms of the spherical harmonic expansion serve as an amtdgature. For the
radial part we follow Koenderink et al [27] and use a Gaussvamdowed La-
guerre expansion, i.e. the local basis can be written up tyraalization constant
asb’(r) o« LIT2(r)R!(r)e~"*, where£!™/? denotes the associated Laguerre
polynomials. Theb!(r) solve the differential equations connected with the 3D
harmonic oscillator in quantum mechanics and are optimakifoooth and lo-
cal white processes (see [2]). They are the eigenfunctibtiseocorresponding
Hamilton operator, hence they provide an orthogonal andpbete set of func-
tions. Convolved with the image and taken the norm|thiex f|| deliver rotation
invariant features for each voxel. We compute them for ckffié scales, i.e. dif-
ferent size of Gaussians and up to expansion degrees of#der 6, resulting
in 80 features (per voxel!). For classification we use a KNN cféssas in [24].
We considered also to use a SVM together with a Histograerdettion kernel,
HI-kernels allow a fast implementation.
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5.2 The Voting Function

The probably most simple generic nonlinear voting funchoiris a sum of second
order products of the descriptor images namely

370 ny _ J J1 9. 12
V’[p’,...,p" = > aj , P’ ep 9)
[71 g2 <i<ii+i2
J1+i2+jeven
j1,d2<n

whereozj.'m2 € R are 'expansion coefficients. We call the order of the products
that are involved iV’ the order of the filter and denote it by. Depending on
the application they may or may not depend on the absolwgasity values of the
inputimage. To become invariant against additive intgrdiinges one leaves out
the zero order descript@’. For robustness against illumination/contrast changes
we introduce a soft normalization of the first order ('gradipdescriptorp!. This
means, that in the for-loop in Alg. 1 from line 3-5 we introéuwe special case for

j =1, namely

1 1 1
S v4 ,
p!(r) = V)

wherey € R is a fixed regularization parameter ang,(r) denotes the standard
deviation computed in a local window aroumnd The normalization makes the
filter robust against multiplicative changes of the grayuesland, secondly, em-
phasizes the ’structural’ and 'textural’ properties ratti@an the pure intensities.
Besidesy, the filter has three other parameters: the expansion degtbe width
of the input Gaussian and the output Gaussian In the spirit of the GHT, the
parameter determines the size of the local features that vote for timeceof
the object of interest. To assure that every pixel of thealgjan contribute, the
extent of the voting function should be at least half the ditenof the object.

5.3 Training

For the training of the harmonic filter (and for all refereraggroaches) we se-
lected one(!) good pollen example, i.e. three porate sample train the har-
monic filter we built an indicator image with pixels set to ltla¢ centers of the
three porates. The indicator image is just the target imagdich should sat-
isfy H{f} = y. As mentioned before the linearity of the filter in its paraens
makes it easy to adapt them. We use an unregularized leasesgpproach. Due
to the high dynamic differences between the filter respoogsggsponding to the
individual parameters it is necessary to normalize the igu#o avoid numerical
problems. We used the standard deviation of the individiiat fiesponses taken
over all samples in the training image. Thearameter determining the size of
the local features was chosen todbg pixels. The output widthy determining the
range of voting function was chosen to ®gixels, this is about half the diameter
of the porates.
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Figure 5: Mugwort pollen (green) with overlayed filter reape (red) for two
examples. The filter detects the three porates, but theralsmesome spurious
responses within the pollen, because the pollen has atsagsitnner structures.

The training of the GHT based approach is straightforwardr the code-
book generation we used k-means clustering. We found aluatusters most
beneficial for the application. For the voxel-based classifon the training was
more difficult. We have chosen a 6-neighborhood around treelabels as posi-
tive training samples and a randomly chosen set of nonipegitxels as negative
samples. We chood€ = 20 for the KNN-classifier. With the number of negative
samples one can control the a-priori probability of the siféex. We found a rate
of 1/5 most suitable. The SVM approach (we use a C-SVM) has mordgrsh
with such kind of unbalanced training sets. We also expeeédra high depen-
dency on the randomly generated negative samples. To bdesmdependend of
the sampling procedure we increased the number of negatnples and adapted
the class-specifi€’ parameter to control the a-priori probability.

5.4 Evaluation

In Figure 5 we show two examples. The filter detects the psiate shows also
some small responses within the pollen, however the reatdtstill acceptable.
For quantative results we computed Precision/Recall graph detection was
found to be successful if it is at least 8(4) pixels away frova true label. In Fig-
ure 6 on the left we show a PR-graph for a varying expansioregegwith a low
detection precision of 8 pixels. As one expects the filterrmaps its performance
with growingn. Forn = 8 no performance gain is observed. The runtime of
the filter heavily depends on the number of spherical pradtecbe computed.
For example fom = 6 we have to computd6 products. The computation of
these products takes orPa 2.8Ghzabout 6 seconds. In Figure 6 in the middle
we compare the result of the Harmonic filter with= 7 with the reference ap-
proaches. The results of the GHT based on DOG interest paiatsomparable
with the Harmonic filter. The voxel classification approa¥iC] performs not so
well. In particular, for the SVM based classification is penfiing quite poorly.
Finally, we evaluated the PR-graph with a higher detecti@tigion of4 pixels.
As already experienced in [1] the GHT based approach hasgmnshin this case,
which has probably to do with the inaccurate and unstableraetation of the
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interest points. Now both VC approaches are outperforntied@HT approaches
while the Harmonic Filter is definitely superior over all thiners.

6 Conclusion

In this paper we presented a general-purpose non-linear tiilat is equivariant
with respect to the 3D Euclidean motion. The filter may be seeajoint Volterra
filter for rotation and translation. The filter senses localharmonic projection of
the image function and maps this projection onto a kind oifptunction which

is also harmonic. The mapping is modelled by rotation eqiawapolynomials in

the describing coefficients. The harmonic projections areputed in an efficient
manner by the use of spherical derivatives of Gaussian-sraddmages. We
applied the filter on a 3D detection problem. For low detetiwecision the
performance is comparable to state of the art approachélg, imhhigh detection

precision the approach is definitely outperforming exgapproaches.

A Spherical Harmonics

We always use Racah-normalized spherical harmonics. mstaf Legendre
polynomials they are written as

VA000) = | (o Ph(cos(O)) e

Mostly we writer /» € S? instead of(¢, §). The Racah-normalized solid harmon-
ics can be written as

RE(r) = /¥ m)(l m'z ihtiim (N )ik,

Z'j']{?'2223

wherer = (z,y,z). They are related to spherical harmonics By (r)/r =
Yo (x/7)

B Clebsch Gordan Coefficients

Orthogonality

Z<]m|jlm17]2m2><]m|jlm/b]Zm/2> = 6m17m’16m2,m’2 (10)
7,m
Z (gmljima, jama) ('m’|jima, joma) = 0 5 Omm (11)
m=mj—+m2
o . o . 27 +1
> Gmlgimy, jama) Gmljima, jymh) = S50 (12)

2] _|_1 ]2]2 m2m2

mi,m
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Special Values
(e m NP e=m P20\
ke = nm == () (4T)(5) @

—m 1/2
(| (€ + N)(m — ), M) = (—1)M* ( 0+ A Ty )

A+
2 (14)
/2 —1/2
C+X+m—p 2042\ + 1
A— U 2\
Symmetry

(gmljimy, joma) = (jima, jama|jm) (15)
(Jmljimy, joma) = (=1)2(jm|jomy, j1my) (16)

(jmljima, jama) = (=1 HH2(5(—m)|ji(—ma), jo(—m2)) (A7)

C Wigner D-Matrix

The components de; are writtenD’? . They are called the Wigner D-matrix. In
Euler angles, 0, ¢ in ZYZ-convention we have

Din(9,0, ) = " d,,,, (0)e™,

whered’  (6) are the Wigner d-matrix which is real-valued. Relation t® &leb-
sch Gordan coefficients:

Dﬁmn = Z Dﬁiﬂh Dﬁiznz (lm|l1m1, l2m2> (ln|l1n1, l2n2> (18)
i
DD,y = Db (Imllimy, loma) (In|ling, lons) (19)

l,m,n

C.1 Double Factorial

20+ DN =T+ 3/2) l

= (20+1)(20 - 1)(20—-3) ...

ﬁw
~
o~
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