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1 Introduction

In this technical report we want to connect two invariant feature extraction tech-
niques, namely Shape Distribution and feature extraction based on Group Integra-
tion. Both techniques have a proven good performance, where Group Integration
is mainly used for feature extraction on gray-value images [5, 6, 7, 1] and Shape
Distributions have their application area in 3D Shape Retrieval [4, 3].

To show the connection we formulate the feature extraction process in contin-
uous space by introducing the notion of fill- and binning-functions. We also estab-
lish an interesting connection of the Shape Distribution to the rotational averaged
Power spectrum, i.e. the squared magnitudes of Fourier Transform averaged over
concentric spheres around the origin in fourier domain. We will see that both are
equivalent in an unitary sense.

The presented theoretical insights give us more intuition how already known
invariant features extraction techniques are related and show that most of them
are theoretically equivalent in a linear sense. We will also give a small set of
experiments, which also prove our results empirically.

2 Establishing the Connection

The Shape
�������

is given by a measurable subset of
���

. Thinking of 3D surface
models the shape is the set of points on the surface of the model. A continous
gray-value image is a volumetric function �
	 ������� .
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2.1 Shape Distribution revisited

A ��� Shape Distribution [4] measures how often two points on a surface of an
object appear within some distance � . It can be written by a double integral as
follows ���������
	 ������
���������� ����� ��� �!�"�#�%$'&
�(�%�)$*&+�,���
where

�-�
	 � � �

is a binning-function, which gives contribution whenever its
argument is nearby � . By $'&
�(�%� we denote an appropriate measure element of the
shape (usually a surface element).

2.2 Haar integrals based on second-order Monoms

Group Integration features average some nonlinear kernel-function over the con-
sidered group. The appropriate group measure is known as the Haar-measure. The
typical second-order monomial Haar-Integral for a function � 	 � � � � is given
by . �/�0�1�+	 ��2 ��3/45 ��6 �87'9 �1��:;� �1�0:<�>=��%$*:?$'&
�0=�� (1)

where @ �� denotes a sphere with radius � and $'&
�0=�� the corresponding area ele-
ment. Those features were successfully applied in [5]. A shape can be represented
by a function �

�
	 � � ��� as follows

�
� ��:;�
	 � �����1A ��:?� �)�;$'&
�,�)� (2)

where
A
	 � � � � is a isotropic ’fill’-function like a Gaussian or something else.

This embedding is nothing else than a convolution of the shape represented by
Dirac-Distributions with the ’fill’-function.

2.3 Merging them

Now let us show how the connection between the Haar Integral

. � applied on �
�

and the Shape Distribution �B� applied on
�

can be established. First we insert (2)
in (1) and rearrange the integration� ����� � �����DC �2 ��3�45 �-6 �87'9�A ��:<� �%� A �E��:D�F=���� ���%$*:D$'&
��=��HGI$'&
�,�)�%$'&
�(�1� (3)

Now we shift the integration variables, which we can do since the integration
ranges over the whole domain. We rename the inner integral withJ �,�D� �<�>=��
	 ��6 ��7 9�A ��:;� A ��:LKF�?�M�N�F=��;$*:�O
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Figure 1: Moving two points in all translational and orientational poses over the
object and count how often both points hit the surface of the model.

where
J

is actually the autocorrelation of
A
. Rewriting expression (3) gives� ����� � �����DC ��2 ��3 45 J �,�D�M�<�F=��;$'&
�0=�� GI$'&
�(�%�)$*&+�,���

where we can identify the integral over the sphere @ �� with the binning function���
, which we introduced above. We have the correspondence��� ����� ��� �!�"�#�+	 ��2 ��3/45 J �(�?� �?�F=��%$*&+��=�� �

The RHS necessarily depends only on the norm of �+�I� , because the only rotation-
invariant feature of a point is its distance from the rotation center, and the integral
over the sphere generates this invariance.

The result that � � Shape Distribution and

. � Haar Integrals are the same
is also very intuitive. If we imagine the shape as the function we have already
explained, a function which gives contribution whenever its argument is on the
surface of the object. If we now move two points with some fix distance � in all
orientation and all translational poses over the shape, multiply the values of the
function at those points and sum everything up, we obtain nothing else than a

�����

order monom over the Euclidean group. And it is obvious that such an integral
counts how often two points on the surface of the model occur in a distance � . In
Figure 1 we give an illustration of this procedure.
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Figure 2: Comparing a Gaussian binning function to the one obtained in (4).

2.4 Gaussian ’Fill’-functions

Now we go into detail and examine how the ’binning’-function looks if we assume
a Gaussian fill functions. We haveA �0:��+	�� ��� � ��� �

4
�
4

and hence we get for the autocorrelationJ �0:��
		�
� ��� � ��� �
44
�
4
�

where � is some constant, i.e. autocorrelation is just a broader Gaussian. Follow-
ing the general way from the last section we arrive after some calculation at��� � � �+	��� �� ��� ������� 5��

44
�
4 K�� ������� 5��

44
�
4 � � (4)

Unfortunately this binning-function is not shift-invariant, i.e. it does not hold��� � � �+	 ����� � � � K�� � . But this property should be expected from a usual binning-
function. But if we have a closer look for large � ,

�
shift-invariance is approxi-

mately fulfilled. Only nearby zero we get into trouble. In Figure 2 we compare
a simple Gaussian ’binning’-function to the one obtained above. If the centers �
of the function are far away (relative to the width � ) from zero the function in (4)
is nearly a Gaussian, only for small � the differences get large. Of course, the
smaller we choose the width � , the less differences we get for a fixed value of � .
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2.5 Extension to higher orders

The results from Section 2.3 are easily extended to higher order monoms, i.e. any
group integral over the Euclidean transformation group of the form�-3

��� ���
�
�
�87 9
�1��� :	� K�
/� � � � �1��� : � K�
/�%$� $�


can be written as integrals over the shape���
���������
�
� � 6 ��� ����� � 6 � � ��=���O � � � = � �;$'&
��=�� � � � � $'&
��= � ��O

where
�

is a generalized ’binning’-function again depending on the ’fill’-function.
We know that

�
is invariant to Euclidean motion in the sense that� ��� 6 � � � � ����� � � 6 � � � � 	 � � 6 ��� ����� � 6 � � �

This statement also includes that in the case of second-order monoms the binning-
function

�
only depends on the norm �"�#:��;�F:%����� which we formerly called � .

3 The Connection to the Power Spectrum

In the following we establish the connection of � � and

. � to the fourier spectrum
of the shape. Rewriting equation (1) we obtain. ���0�1� 	 � 6 ��7 9

�1�0:�� C0� 2 ��3 45 ����:<�F=��%$'&
��=��HG!$*: (5)	 ��6 ��7*9
�1�0:�� C ��6 � ��7*9 �1�0:<�F: � ��� �����#: � �����F�1�%$ : � G!$ : (6)

We can identify the inner integral with a convolution of the function � with a
sphere of radius � and we can write. ���0�1� 	 ��6 ��7*9

�1��:;��� �! #" ��$ �0:��%$*: (7)

where  denotes the convolution and we used "
� ��:;�
	%� �����#: �"���F��� , where "

�
is

just a function representing a sphere around the origin with radius � . The Fourier
Transform is known to be a very powerful tool when dealing with convolution, so
we reformulate (7) in fourier space and get. �/�0�1� 	 �

&
�87'9 �('���*))��� �,+" � �*))�;$)1O (8)

where '.- denotes the Fourier Transform. One can derive that the Fourier Transform
of a sphere is related to the sinc-function as follows

+"
� ��))�+	0/21)� � sinc ���!�"� ) �"� �
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Figure 3: Explanation of the algorithm

Since
+"
� ��))� is a isotropic function we can perform the angular integration in (8)

independently and get. ���0�1�+	%/21 � � ���
�

� ���� sinc �������)$�� (9)

where � ���� is squared magnitude of '����) � averaged over a sphere of radius � , i.e.

� ����+	 � & ��3 4� � '�1��) ��� � $*&+��))� (10)

We established the connection between

. � and � � respectively to the power spec-
trum � ����� . And it is actually the case that in theory equation (9) is one to one. One
can derive that

� �����
	 � � � � �
�

. �/�0�1� sinc ������%$*�
with appropriate ’fill’- and binning-functions. We can conclude, if �L� or

. � are
given we are able to compute � ����� and backwards.

4 Experiments

In this Section we shortly explain an algorithm to compute

. � in fourier space.
We show that for 3D surface models our theoretical results can be empirically
verified.

4.1 Implementation

We first compute the averaged magnitude of the fourier spectrum following equa-
tion (10). We do this by a Monte Carlo approach. First we compute the fourier
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transform
'�1��))�
	 �

�
�
� ��� �
�
� �
��� & � � � &

4
���
4 O

where used Gaussian fill-functions. The wave-vectors ) are chosen equidistributed
and deterministically on a sphere with appropriate radii �>	 � ) � . In the experi-
ments 282 points were distributed over the sphere [2] by an energy-minimizing
approach. The set �
	 $ � � � stands for some randomly chosen points on the surface
of the model. To obtain those points we followed the approach by Osada [4]. For
every different ) , of course, new random points were chosen. The size of �
	 $ � � �
is 1000 in the experiments. The fourier coefficent were calculated for 128 differ-
ent radii � , i.e. we computed � ��  ���� 	���������� fourier coefficients. After that, the
computation of � ����� is straight-forward. The last step to obtain

. � is to compute
an approximation of (9). We did this without any interpolation scheme, just by
substituting the integral by a discrete sum. In Figure 3 we illustrate the method.
For the implementation of � � we completely follow the algorithm proposed in
[4].

4.2 Empirical Verification

In Figure 4 we give two examples for the computation method proposed above.
One can see that both methods give nearly the same results, which gives an em-
pirical verification of our theoretical results. The computation of

. � is about � ���
seconds on an Intel P4 2.8Ghz, of course � � is faster to compute (0.5 seconds),
since there is no intermediate representation of the features in fourier domain.

5 Conclusion

We have given theoretical insights how two different invariant feature extraction
methods, which are known from two different fields of pattern recognition, are
related. We have also proven by a small experiment that the theory also holds in
practice. The introduced theory is also able to connect the Haar-integral features
with features proposed by Ohbuchi [3] which also use surface-normals to compute
the histograms. In this case the scalar ’fill’-function we introduced here would be
extended to a vector-valued fill-function.
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