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Abstract. Invariant feature representations for 3D objects are one of
the basic needs in 3D object retrieval and classification. One tool to ob-
tain rotation invariance are Spherical Harmonics, which are an orthog-
onal basis for the functions defined on the 2-sphere. We show that the
irreducible representations of the 3D rotation group, which acts on the
Spherical Harmonic representation, can give more information about the
considered object than the Spherical Harmonic expansion itself. We em-
bed our new feature extraction methods in the group integration frame-
work and show experiments for 3D-surface data (Princeton Shape Bench-
mark).

1 Introduction

In many fields researchers deal with a huge amount of three dimensional data.
In medical and biological applications one usually has to do with volumetric
scans of various types. There is a need for fast and reliable feature extraction
methods to handle and classify such huge amounts of data. The development of
3D modeling software has increased the number of freely available 3D-surface
models, fast retrieval systems are necessary to browse and search for 3D-models
in a user-friendly way. As the representation of 3D objects is not canonical and
objects often occur at different spatial position and in different rotational poses,
the question arises how to compare and classify the objects. One way is to use
invariant features.

There are basically two ways to obtain invariance: Group integration and
Normalization techniques. Normalization techniques obtain invariance by com-
puting features relative to a global reference frame. The determination of the
reference frame makes Normalization techniques extremely sensitive to noise.
Whereas Group Integration (GI) is known to be very robust to many kinds of
noise. In [1] a detailed overview over GI-techniques is given.

In this work we want to concentrate on 3D surface models. The Princeton
Shape Benchmark (PSB) [9] offers a possibility to evaluate 3D-feature extraction
techniques. It consists of approx. 1800 surface models collected from the Web.
There is already a huge amount of work concerning feature extraction for 3D
surface models by the use of Spherical Harmonics (SH). Vranic et al. [10] compute



a so-called spherical extent function of the model-surface and make a spherical
harmonic transform of this function, but the rotational invariance is obtained by
normalization. Kazhdan et al. [4] eliminate the rotational dependency by taking
the magnitude of the invariant subspaces of the Spherical Harmonic transform.
They show, that in most cases this is the better alternative than a normalizing
approach. In [8] Reisert et al. enhanced the Shape Distribution introduced by
Osada [6] by SH-expansion. The currently best performing methods on the PSB
are the so-called Light Field Descriptors (LFD) [2]. LFD is an appearence based
methods. The shape is rendered from several views and features for each view
are computed. Two models are compared by searching the best matching pair
of views.

The work is organized as follows: in Section 2 we introduce the basic algebra
concerning rotations in 3D and introduce the so called Wigner D-matrices, the
irreducible representation of the 3D rotation group. Further we give a relation for
fast computation. In Section 3 we shortly review the group integration framework
and show how the Wigner D-matrices can be used to enhance invariant features
and keep more discriminative power. Then in Section 4 we show how this can
be applied to extract features from 3D-surface models and show in Section 5
experiments on the Princeton Shape Benchmark. Finally we give a conclusion
and an outlook for future work.

2 Life in SO(3)

First, some preliminaries about the notation. We always assume complex-valued
vector spaces. Finite dimensional vectors x are printed bold face, their ith com-
ponent xi in normal face. Transposition is denoted by xT , so scalar products are
written by xT x′, complex conjugation by x∗i . Functions X (infinite dimensional
vectors) are printed in captial letters and scalar products between functions are
denoted by 〈X |X ′〉.

2.1 Spherical Harmonics

The Spherical Harmonic expansion is a basic tool for 3D shape representation.
We first want to give a short review about its basic properties. The complex
functions defined on the two-sphere S2 form a Hilbert-space with the inner-
product 〈X |X ′〉 =

∫

S2 X
∗(s) X ′(s)ds, where ds denotes the natural measure on

S2 and s ∈ S2 is some unit-vector on the two-sphere. The Spherical Harmonics
form an orthonormal basis in this space. They are commonly denoted by Y l

m(s),
where l ≥ 0 is a spectral index and −l ≤ m ≤ l. Basically the Y l

m are polynomials
of degree l in the normalized coordinates s = (x, y, z)T . We can expand any
function X in our Hilbert space in terms of Spherical Harmonics where the
expansion coefficients are simply the projections on the basis functions al =
〈Yl|X〉, where this abbreviates al

m = 〈Y l
m|X〉. The main property of a Spherical

Harmonic expansion is its behavior under rotations. Let g ∈ SO(3) an element
of the rotation group acting on functions X by (gX)(s) 7→ X(RT s), where



R ∈ R3×3 is the corresponding rotation matrix, then the expansion coefficients
have the following property

m′=l
∑

m′=−l

Dl
mm′(g) al

m′ = 〈Y l
m|gX〉,

or shortly Dl(g)al = 〈Yl|gX〉. Note the close relation Dl
m0 = Y l

m. The Dl(g)
are unitary transformation matrices depending on the rotation g. Note that
only coefficients al

m with the same index l mix with each other, i.e. the sub-
spaces with fixed index l stay invariant. This property is often used to obtain
invariance against rotations. Due to the unitarity of Dl(g) the energy within a
subspace is preserved. One can easily obtain invariant features of the function X

by taking the magnitudes ||al|| =
√

∑m=l
m=−l |al

m|2, which are sometimes called

SH-descriptors, analog to the Fourier-Descriptors in 2D.

2.2 Wigner D-Matrix

Let us have a closer look on the Dl(g) itself. For l = 1 there is a close relation
to the real-valued ordinary rotation matrix R by a special linear unitary trans-
formation U, i.e. D1(g) = UTRU. The general Dl(g) are called the Wigner

D-matrices and they are the irreducible representations of the three dimensional
rotation group. Irreducibility means that there is no further linear decompo-
sition of the al

m such that the corresponding subspaces do not mix up during
rotations (for references concerning the related group theory see e.g. [5] and ref-
erences therein) The irreducibility has several important consequences: in fact,
the Dl(g) are an orthogonal basis for the functions defined on the rotation group
itself. Before going into detail let us introduce some basics. We obtain a Hilbert-
space whose elements are the functions defined on SO(3) by introducing an inner
product via the group integral. Let Z,Z ′ : SO(3) 7→ C two functions defined on
the rotation group, then

〈Z|Z ′〉 =
∫

SO(3)

Z∗(g) Z ′(g)dg

defines a regular inner product, where dg is the natural group measure on SO(3),
which is left- and right-invariant (in Euler angles dg = dψdϕ sin θdθ). Now we
are able to state the orthogonality relation for the irreducible representations

〈Dl1
m′

1
m1

|Dl2
m′

2
m2

〉 = δl1l2δm′

1
m′

2
δm1m2

8π2

2l1 + 1
,

i.e. any components of the representation matrices Dl(g) are orthogonal with
respect to the given inner product. Now, given a function Z we can expand this
function in terms of Wigner D-matrices as follows

Z(g) =

∞
∑

l=0

l
∑

m=−l

l
∑

m′=−l

blm′mD
l
m′m(g),



where the bl are expansion-’matrices’ obtained by the projections on the basis-
functions blm′m = 2l+1

8π2 〈Dl
m′m|Z〉.

Now the question arises how the Dl(g) look like explicitly. There is an expres-
sion involving the Jacobi-polynomials depending on the Euler-angles correspond-
ing to g. The direct computation of this expression is a little bit cumbersome
and of high computational complexity. Moreover the parameterization in Euler-
angles is not advantageous for our purposes. We need a formulation in terms of
the corresponding three-dimensional rotation matrix itself. In the following we
want to point out the alternative way.

2.3 Product relations and Clebsch-Gordan coefficients

As we know that any function on the sphere can be expanded in terms of
Spherical Harmonics, then also products of two Spherical Harmonics must have
such a representation. The corresponding expansion coefficients are the so called
Clebsch-Gordan coefficients.

Y l1
m1

(s)Y l2
m2

(s) =

l1+l2
∑

l=0

m=l
∑

m=−l

〈lm|l1m1l2m2〉Y l
m(s) (1)

The Clebsch-Gordan coefficients 〈lm|l1m1l2m2〉 fulfill two selection rules. They
only give a contribution when |l1−l2| ≤ l ≤ l1+l2 andm = m1+m2. Additionally
the Clebsch-Gordan coefficients themselves fulfill several orthogonality relation
by what we can reformulate equation (1) as follows

Y l
m(s) =

m1=l1
∑

m1=−l1

m2=l2
∑

m2=−l2

〈lm|l1m1l2m2〉Y l1
m1

(s)Y l2
m2

(s),

where l1 and l2 have to be chosen such that l = l1 + l2 due to the selection rules
of the Clebsch-Gordan coefficients. By choosing l1 = l−1 and l2 = 1 we have an
iterative way to compute the Spherical Harmonics. The computation of the Yl(s)
only involves Yl−1(s) and Y1(s). For a fast implementation the Clebsch-Gordan
coefficients can be precomputed and stored in a lookup-table. Considering the
selection rules the actual algorithm to compute the Spherical Harmonics is a
convolution-like method. In fact, the overall computational complexity is linear
in the number of coefficients to be computed.

The computation of the Wigner D-matrices is very much the same as above.
Products of Wigner D-matrix elements show nearly the same behavior, but need-
ing products of Clebsch-Gordan coefficients. The basis for the iteration is now

Dl
m′m(g) =

m
′

1
=l1

m1=l1
∑

m′

1
=−l1

m1=−l1

m
′

2
=l2

m2=l2
∑

m′

2
=−l2

m2=−l2

〈lm′|l1m′
1l2m

′
2〉〈lm|l1m1l2m2〉Dl1

m′

1
m1

(g)Dl2
m′

2
m2

(g),

and we again choose l1 = l − 1 and l2 = 1. The computational complexity is
again linear in the number of computed matrix elements.



3 Group Integration Features

Group Integration is a well known tool to gain invariance for object represen-
tations. Suppose a given 3D-object X which has to be represented invariant
against rotations. The easiest way to get an invariant feature is to extract some
non-invariant non-linear ’kernel’-feature f(X) and sum up this feature for all
rotational poses

If (X) =
∫

SO(3)

f(gX) dg

Due to the integration lots of information about the original object is getting
lost. In previous work [7] we have shown how to use Spherical Harmonics to
keep more discriminative power. We will shortly review how this was done. The
integral over a 3D rotation can be decomposed into an integration over the sphere
S2 and the circle:

If (X) =
∫

S2

2π
∫

0

f(gs,ϕX)dϕds,

where gs,ϕ is a rotation around the axis s with angle ϕ. Now, instead of just inte-

grating over the sphere we projected the inner integral FX(s) =
∫ 2π

0
f(gs,ϕX)dφ

on the Yl(s) by Il
f (X) = 〈Yl|FX〉 and obtained invariance by taking the band-

wise magnitudes ||Il
f (X)||. Doing this we already retained much information, but

we still lose information about the φ-angle.
The Wigner D-matrices offer a much more natural way to extend the dis-

criminative power of the features. Instead of an artificial decomposition of the
integral we can simply project the function FX(g) := f(gX) on the irreducible
group representation itself

Il
f (X) = 〈FX |Dl〉 =

∫

SO(3)

f∗(gX) Dl(g) dg (2)

But what effect does have a rotation of the object X 7→ g′X on the Il
f (X)?

Since the Dl(g) are unitary representations of the rotation group, i.e. Dl(gg′) =
Dl(g)Dl(g′), we can show that

Il
f (gX) = Il

f (X) Dl(g−1),

i.e. a rotation of the object X leads to right-multiplication of the features ma-
trices Il

f with Dl. This means that the magnitudes of the columns are preserved
during rotations and hence form an invariant feature. The final invariant features
we use look as follows

I
l,m
f (X) =

√

√

√

√

m′=l
∑

m′=−l

|I l
f,mm′(X)|2,

where I l
f,mm′(X) denote the components of the feature matrices Il

f (X).



4 Application to Surface Models

In [8] the group integration framework was already applied to surface models.
The surface model is represented by a function X : R3 7→ R3 giving only contri-
bution on the surface S of the shape, where the function value on the surface is
given by the surface-normal at this position.

4.1 First-Order

To obtain translation invariance we shift the origin of the coordinate system
into the center of gravity of the shape X, i.e. we first use a simple normalization
approach. For the group integration we will use the following kernel-function

fh,r(X) = δ(hT X(r) − 1), (3)

where r,h ∈ R3 are parameters with ||h|| = 1 and δ is the Delta-Distribution.
The kernel-function gives contribution whenever at position r the surface is
present and its normal is parallel to h. Inserting the kernel into (2) gives

Il
h,r(X) =

∫

SO(3)

δ(hTRX(RT r) − 1) Dl(g) dg

=
∫

SO(3)

∫

R3

δ(hT RX(r′) − 1) δ(RT r− r′) Dl(g) dg dr′.

We see that the integral only gives contribution, whenever ||r|| = ||r′|| and
r′ ‖ RT r and h ‖ RX(r′). The last two conditions are only satisfiable, if rTh =
r′T X(r′). If they are satisfied they determine the rotation matrix R uniquely. So
the group integral disappears and only the r′-integral is left over. As the function
X gives contribution on the surface of the shape, the volume-integral is actually
a surface-integral and we arrive at

Il
h,r(X) =

∫

r′∈S

δ(||r′|| − r) δ( r
′T

X(r′)
||r′|| − α) Dl(g∗) dr′, (4)

where r = ||r|| and α = r
T
h

||r|| (for illustration see Figure 1). The g∗ denotes the

rotation which turns r′,X(r′) into r,h. One can see that g∗ is the only part
that depends on the actual values of r and h, the rest on their relative direc-
tions and the length of r. A joint rotation of the two parameters leads to a
left-multiplication of Il

r,h with Dl. As this is only a unitary transformation of
the features, we can restrict us for computation to one standard pose of h and r

and hence the features depend on r and α only. But the actual invariant features
depend on the actual choice of the standard pose. Following expression (4) for
the integral the algorithm looks as follows:

Start with result array Il
r,α initialized with zeros.

For all points r′ on the surface of the object

Compute α = r
′T

X(r′)
||r′|| , r = ||r′||

Compute g∗, which turns r′,X(r′) into rnorm,hnorm

Update Il
r,α = Il

r,α + Dl(g∗) for all l ≤ lmax



The vectors rnorm,hnorm are the parameter-vectors in normalized pose such

that α =
r

T

norm
hnorm

||rnorm|| and ||rnorm|| = r. Actually we compute for l = 0 something

like a histogram. We count how often a point on the surface of the shape occur
within a distance r to the COG and with angle arccos(α) between the surface-
normal and the vector connecting the point with the COG.

4.2 Second-Order

Now we assume an unnormalized model and obtain translation invariance by
group-integration. We first perform a group integration over the three dimen-
sional translation group T and treat the result as above by projecting it on the
irreducible representations. Equation (2) becomes

Il(X) =

∫

SO(3)

(
∫

T

f∗(τgX)dτ

)

Dl(g) dg.

In this case the kernel-function (3) is too simple, the results would be undiscrim-
inative. We need a more complex kernel-function. A simple generalization of (3)
is

fh,h′,d(X) = δ(hTX(0) − 1) δ(h′TX(d) − 1).

We do not want to give the complete derivation again since it is very much the
same like in the first case, so we outline the resulting algorithm directly.

Start with result array Il
d,α,β,γ initialized with zeros.

For all pairs of points r1, r2 on the surface of the object
Let d = r1 − r2 and d = ||d||
Compute α = dTX(r1)/d, β = dTX(r2)/d

Compute γ = PdX(r1)
||PdX(r1)||

T
PdX(r2)

||PdX(r2)||

Compute g∗, which turns d,X(r1),X(r2) into dnorm,hnorm,h
′
norm

Update Il
d,α,β,γ = Il

d,α,β,γ + Dl(g∗) for all l ≤ lmax

The matrix Pd denotes a projection matrix, projecting on the plane given by
the vector d. For illustration of the variables see Figure 1. Again dnorm,hnorm,h

′
norm

are the parameters in standard pose. For l = 0 the feature can also be interpreted
as a histogram, the frequency of occurrences of two points within a specific dis-
tance d and a specific surface-normal configuration determined by the parameters
α, β, γ.

4.3 Implementation details

For evaluation of our features we use the Princeton Shape Benchmark [9]. It
consists of approx. 1800 polygonal mesh models. We represent the models in
2563 voxel grid. Additionally, each voxel gets a reference to the triangle it is
stemming from to enable us to incorporate the original surface normals in our
calculations. To exclude non visible constructional artefacts inside the closed
surface we use a floodfill operation.



X(r) X(r1)
X(r2)α α β

γ

COG

r r1
r2

First-Order Second-Order

Fig. 1. Explanation of variables. For first-order just the length of r and the angle
between r and X(r) are relevant. For second-order we have four parameters, α, β, γ

and distance between r1 and r2. The γ-angle is the angle between X(r1) and X(r2)
after projection onto the plane orthogonal to r1 − r2.

The implementation of the first-order features is straight-forward, because
each voxel has to be accessed only once. The time for a computation of one
feature set is less than a second (Pentium4 2.8Ghz), where most of the time is
spend on voxelization. For the second-order features the complexity is quadratic
in the number of voxels. Typical models consist of several tens of thousand voxels,
hence an exhaustive computation is not possible. We use a randomized approach
to keep the computation time low. Computation times are varying from one to
several seconds, depending on the accuracy of the computation and the number
of Wigner D-matrix coefficients.

For the computation of Clebsch-Gordan coefficients we use Matpack. Due
to the precomputation of the coefficients the running time does not depend on
their implementation. We tried several discretizations of the parameters r, α and
d, α, β, γ. In the experiments we always give the results for the best quantizations,
which always depend on the type of feature. To obtain invariance we take the
magnitudes of the rows of the ’matrix’-features Il. As already mentioned the
features depend on the absolute pose of the parameter-vectors rnorm and hnorm

(dnorm,hnorm,h
′
norm for second-order). But which pose one should choose? The

most simple representation hnorm = (α,
√

1 − α2, 0)T and rnorm = (r, 0, 0)T has
the disadvantage that the magnitude of the rows of Dl are the same for m with
the same absolute value. We have found that the complex representation hnorm =

(
√

1−α2

2 ei
π

4 , α,
√

1−α2

2 e−i
π

4 )T and rnorm = (0, r, 0)T keeps the magnitudes of the

rows of Dl more independent. And it actually performs better than the first
simple one.

5 Experiments

In order to keep the results comparable to experiments given in [9] we conducted
our experiments only on the test set of the PSB at the finest granularity. To
show the superiority of the Wigner D-matrices over the Spherical Harmonics we
also give the results for the best corresponding SH-feature (see [8]). As distance
measure between the features we use the L1-norm. In Table 1 the results for
the first- and second-order features are shown. For a description of the used



performance measures Nearest-Neighbor/1-Tier/2-Tier/E-Mesure/Discounted-
Cumulative-Gain see [9]. Experiments were made for different cutoff indices lmax.
We found that higher cutoff indices than 4 show only marginal improvements if
at all.

Table 1. Results for finest granularity on the PSB. All results are given in percent.
Higher rates mean better performance. (DW) stands for our new approach followed by
lmax the cutoff-band. (SH) for the old Spherical Harmonic approach. Best results in
bold face.

First-Order Second-Order

method NN 1T 2T EM DCG

DW 1 48.3 24.6 34.4 19.8 52.3
DW 2 53.4 28.2 38.2 21.9 55.4
DW 3 54.0 28.3 38.0 22.0 55.5
DW 4 55.3 29.1 38.5 22.5 56.1

SH 4 50.1 26.1 36.1 21.0 53.6

method NN 1T 2T EM DCG

DW 1 60.5 31.6 42.2 24.5 59.3
DW 2 62.5 32.7 43.9 25.5 60.1
DW 3 63.5 32.7 43.8 25.5 60.2
DW 4 63.5 32.9 44.0 25.5 60.5

SH 4 60.6 31.5 42.9 24.7 59.4

We see that the Wigner expansion is superior to SH expansion in all cases,
which gives evidence that the proposed descriptors can, in fact, carry more infor-
mation and discriminative power than the pure Spherical Harmonic approach.
Of course, in this comparison, the number of features is larger in the Wigner
case, because for each l we have 2l+1 features instead of only one. The absolute
number is also rather high, because the quantization setting for the Wigner case
is 32, 2, 8, 8, (for d, γ, α, β) resulting in several thousand of features. So we addi-
tionally tried to reduce the number of features by feature selection using Simba

[3]. In Figure 2 we show the performance results and precision/recall graph with
10% of the second-order features with lmax = 4. In fact, feature selection im-
proves the results very much, while reducing the number of features drastically.
We also give results of two other shape descriptors, LFD and GEDT (for ref-
erences see [9]). The PR-graph shows that our approach works with the same
precision as the LFD approach, while recall is comparable to the GEDT method.
It is astonishing that a group integration approach, which keeps second-order in-
formation only , i.e. relative properties about two points averaged over the whole
shape, give us similar results like LFD which is basically a registration approach,
or GEDT which keeps nearly the whole information about the shape.

6 Conclusion and Future Work

We presented how the irreducible representation of the 3D rotation group can
be used for invariant shape representation. The Wigner expansion can be seen
as the canonical generalization of the Spherical Harmonic expansion. We applied
the Wigner expansion in the group integration framework and were able to show
the superiority of them over SH-expansion in a shape retrieval task. The perfor-
mance of the features is comparable to the currently best performing methods on



method NN 1T 2T EM DCG

10% DW 65.7 34.8 46.0 26.7 62.1
LFD 65.7 38.0 48.7 28.0 64.3

GEDT 60.3 31.3 40.7 23.7 58.1

 0
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Precision/Recall
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Fig. 2. Results for the second-order features with feature selection in comparison to
LFD and GEDT. (For references see [9])

the Princenton Shape Benchmark, but our approach is ’single-feature’-method,
while LFD is a ’compositions’ of features. For future work we want to apply our
methods for volume data. Further we want to examine other methods to obtain
invariance instead of just taking the magnitude of the rows of the ’matrix’-
features.
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