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Abstract

Hough transform based object detectors divide an object into a number of patches and
combine them using a shape model. For efficient combination of patches into the shape
model, the individual patches are assumed to be independent of one another. Although
this independence assumption is key for fast inference, it requires the individual patches
to have a high discriminative power in predicting the class and location of objects. In
this paper, we argue that the sparsity of the appearance of a patch in its neighborhood
can be a very powerful measure to increase the discriminative power of a local patch
and incorporate it as a sparsity potential for object detection. Further, we show that this
potential shall depend on the appearance of the patch to adapt to the statistics of the
neighborhood specific to the type of appearance (e.g. texture or structure) it represents.
We have evaluated our method on challenging datasets including the PASCAL VOC
2007 dataset and show that using the proposed sparsity potential result in a substantial
improvement in the detection accuracy.

1 Introduction

Despite recent progresses, object detection remains a challenging task in computer vision.
One of the most important reasons behind this difficulty is the problem of dealing with the
intra-class variability among instances of an object class and being able to generalize to
unseen instances. Hough-transform based object detectors [9, 14] deal with this problem by
dividing an object into a number of local patches aiming at less variation within patches.
These patches are then combined using a shape model to ensure spatial consistency among
them. In these models, the hope is that although the overall appearance of a new instance
may have not been observed in the training data, at the local patch level, similar patches have
been observed. To this end, the local appearances of the training data are clustered to form a
codebook which should ideally encode all the possible patterns that a foreground patch can
take [2, 9, 14].
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(@ (b) (©
Figure 1: The patches in an image exhibit different sparsity values. (a) Consider the two
patches on the foot of the rider and the leaves of a tree. The images in (b) and (c) show the
normalized cross correlation of these patches with the image. While the self-similarity of a
non-texture patch like the foot to its neighboring patch is low, the patch on the tree is less
sparse and much more similar to the patches in its neighborhood. Base on this observation,
in this paper, we introduce a measure which captures the sparseness of a patch within its
neighborhood and incorporate it as a “sparsity potential” for object detection.

When detecting an object with the Hough transform, given an object hypothesis, the indi-
vidual features are considered to be independent of one another. Although this independence
assumption makes the inference with these models very efficient, it requires the codebook
entries to have high discriminative power in predicting the class and location of objects. Pre-
viously, considerable work has been done on how to discriminatively learn a codebook of
local appearances [9, 14, 16, 26]. Yet, very little attention has been given to the statistics of
the patterns in a test image which is unobserved at training time.

The patterns in an image can range from simple textures to complex shapes. Likewise a
local patch in an image can be an element of a textured region or a complex shape region.
In the case that the local patch is a part of a textured region, we expect to see many similar
patches in its neighborhood which is the way a texture is defined. In contrast, if this local
patch is part of a complex structure in an image, it is unlikely for its neighboring patches to
have similar appearances.

Based on the self-similarity of a patch with the patches in its local neighborhood, we
define the sparsity of a patch as a measure of the uniqueness of its appearance in its local
neighborhood. We argue that this measure can be used to compactly summarize the infor-
mation in an immediate context of a patch and thus increase its discriminative power. In
particular, we make the following two observations

o the similarity in appearance of patches in a neighborhood of a central patch exhibit
different sparsity values when the central patch appears on an object as opposed to a
background region.

e the codebook entries associated with texture or simple edge patterns are consistently
less sparse in their neighborhood as opposed to entries which are associated to more
complex patterns (see Fig. 1).

Based on these observations, we utilize the sparsity of the local self-similarity in con-
junction with the appearance of the central patch to increase discriminativity of local patches.
Specifically, for every codebook entry a classifier is trained on the sparsity values to classify
a patch. Calculating the self-similarities with Normalized Cross Correlation [20] or image
specific codebooks [4] is computationally very expensive. to overcome this limitation, the
local self-similarities are efficiently calculated using the ISM codebook by assuming the
patches with similar assignments to be self-similar.
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We have evaluated our method on the challenging PASCAL VOC 2007 dataset [5] and
show that the proposed sparsity measure substantially improves the results although coming
at very little computational overhead. The proposed potential is also quite general and can
be easily integrated in other Hough-transform based detectors or used in other domains.

2 Related Work

In the recent years, several methods have been proposed for measuring saliency of im-
age [11, 12, 23] to focus the attention on regions with distinctive patterns. Similarly a num-
ber of approaches have been proposed to detect salient key points in an image. These works
are mainly used to extract sparse image features that are invariant under certain geometric
transformations, e.g. scale [13, 15] or affine [17] invariance. Similar to those approaches,
in this work, we are also aiming at measuring the sparsity of regions in an image to sepa-
rate foreground from background. However, we differ from these approaches since firstly
our sparsity measure is class-specific instead of a generic measure as in those works. Sec-
ondly, in our approach we use dense features and no non-sparse image region is discarded
a-priori. Although detecting objects with sparse features can be quite fast, it has been shown
previously [2, 6] that superior performance can be achieved by dense sampling of features.

Learning the codebook of local appearances has been the subject of many investigations
as well [2, 9, 14]. Although the codebook is obtained generatively by clustering local patch
appearances in [14], the class label and spatial distribution of the patches are used in [9] to
discriminatively learn the codebook in a random forest framework. While these approaches
cluster training patches, Boiman et al. [2] take a non-parametric approach and directly re-
trieve the nearest training patches without performing any quantization. Learning the spatial
distributions of a codebook entry is done generatively in [9, 14] whereas in [16] and [26],
a max-margin approach is taken to learn weights for codebook entries and training images
respectively.

Our self-similarity based sparsity potential is also related to the self similarity features. [20]
proposed the local self-similarity (LSS) feature as an appearance independent feature which
encodes the spatial location of self-similar patches in a neighborhood of a patch. The LSS
has subsequently been integrated in several image classification benchmarks and have shown
to consistently improve classification accuracy (e.g. see [10]). This feature has been ex-
tended by [4] as a global self-similarity measure. Our proposed sparsity potential can also
be interpreted as a self-similarity feature. However, in our approach, the self-similarity is
used to measure the sparsity of a patch in its neighborhood. To this end, this measure is
used conditioned on the appearance of the central patch to classify a patch as foreground or
background.

Several approaches have previously used the information around a single patch for stronger
classification. Similar to our work, in [21] all patches are assigned to a codebook and a clas-
sifier is trained on the cluster assignment of neighboring patches to improve the classification
performance. Similarly, in [8] a bag of words model [3, 22] is learned on neighboring su-
perpixels for classification of a superpixel. In [25], according to certain proximity rules, the
close patches have also been grouped together to cast more accurate votes for object detec-
tion. Yet, to the best of our knowledge, we are the first to propose the self-similarity sparsity
of a neighborhood for object detection.
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3 Object Detection with Sparsity Potentials

Before explaining how the detection is done with the proposed sparsity potentials, we briefly
give an overview of probabilistic object detection with the Implicit Shape Model [1, 14]. In
this model, for detecting objects in a test image I, a number of features £ = {f; = (1;,1;,s;)}
are first extracted from I, where I; represents the appearance of the feature and /; and s;
its location and scale in the image pyramid. An object hypothesis # € H in the ISM is
parametrized by a category label ¢j, a location [, and a scale s;,. The detection approach is
to estimate the probability density p(h|f).

In an ISM, all features f; in an image are considered to be independent of one another
and a uniform prior is assumed over all patches and hypotheses. Therefore, p(h|f) is approx-
imated by the product of the individual probabilities p(h|f;):

|1l

p(hlf) = Hp hlfi). (1
The probabilities p(h|f;) are obtained by matching a feature’s appearance /; to a code-
book of local appearances Q = {@1, ..., ®j,...,®q|} as
12|
p(hlf) =Y. p(hlfi, ;) p(aj|f;) 2)
j=1

where p(h|f;, ®;) encodes the conditional votes of the feature f; for hypothesis & given the
assignment of f; to ®;. The conditional votes are estimated non-parametrically by storing
the relative offsets of training patches with respect to training object centers and optionally
the class probability at each codebook entry @;. As mentioned earlier, several previous
approaches have been proposed for creating the codebook Q. In this paper, we use the
Hough Forests [9] for this purpose, where the leaves of the decision trees are interpreted as
codebook entries.

It is common among practitioners to use the sum of the probabilities as in [14] instead of
their products [1] to get an outlier insensitive estimate [18]:

L)

p(h|f) ~ ZZp h\f;, ;) p(@;f;) A3)

i=1j=

The assignment probability p(@;|f;) usually depends only on the appearance of the feature,
I;, the class probability of c; depends only on the matched codebook entry @;, and the
location /j, and scale s;, of the hypotheses on the location /; and scale s; of the feature and ®;.
A common ISM model is therefore given by

17l 19

p(h|f) ~ ZZP Inysnllis sis @, ¢n) pen| @f) p(@;1;). “
i=1j=

Once the posterior probability over all object hypotheses is estimated, the objects are de-
tected as local maxima of this distribution by mean-shift mode seeking [14, 24] or iteratively
found by detecting the most probable one and removing its features [1]. In this paper, we
use the feature removal technique as it produces more accurate results and does not require
any further non-maxima suppression.
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3.1 Sparsity Potentials

In object detection with the Hough transform, the probabilities p(h|f;, ®;) and p(w;|I;) de-
pend on a codebook that captures the appearance of relatively small patches. As explained
earlier in Section 1, the information in this local observation is limited which makes the es-
timation less reliable. In this paper, we argue that the sparsity of the appearance of a patch
in its neighborhood can be a very powerful measure for summarizing the information of a
much larger patch and thus can be used to increase the discriminative power of the local
patches. To this end, we assume that p(h|f;) in Eq. (2) not only depends on its appearance
I;, but also on the appearance of the features appearing in a neighborhood around it denoted
by N. Thus, (3) becomes

Ligle]

phlf) =~ Y Y p(hlfi, 0;, N*)p(w)] fi, N). (5)

i=1j=1

In this work, we focus only on the class probability term p(cp|®;) that is now estimated
by p(cp|®;, N') while the other terms are still estimated independently of the appearance
neighborhood. Equation (4) thus becomes

17l 12|

p(h[f) ~ ZZleSth,Suwpch) (chlo;j, N")p(@yI). (6)
i=1j=

The probability p(c;|®;,N) can now be modeled such that not only the discriminative
power of the patch estimated from the training data, but also its ability in distinguish between
foreground and background in a particular test image is taken into account. To this end, we
measure the sparsity of the feature within a local neighborhood in the test image.

3.2 The Sparsity Measure

In this work, we base our sparsity or distinctiveness measure on self-similarity [4, 20]. Let
us assume that we have a metric that measures the similarity of a patch f; with all patches
in its neighborhood, {f,|n € N}, e.g., NCC as in [20]. Further, we assume that the re-
turned similarity is normalized to be in [0, 1] with 1 representing the most similar and 0
the most dissimilar patch. In this case, one is getting a real valued self-similarity vector
ss; = (881, .. ;85| Nil) where each element ss, records the normalized similarity of I, to I;.

The sparsity of the self-similarity vector ss; can be measured in many different ways,
e.g., by using entropy or various vector norms. In this work, we use the L1-norm,

lIssill1 =) [ssul )
neN?

which is both simple and fast to calculate.

3.3 Calculating the Self-Similarity Efficiently

Measuring the self-similarity by cross correlation of patches in the feature space, as done
in [20], can be quite time consuming and is not appropriate for object detection. To ef-
ficiently calculate the self-similarities, Deselaers et al. [4] proposes to cluster the patches
in an image into an image specific codebook and assume that the patches assigned to the
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Figure 2: This figure evaluates the effect of the neighborhood size used for calculating the
sparsity on the accuracy of the detector. (a) The comparison of the detection performance of
our baseline [19] with our proposed sparsity measure with various window sizes on the test
set of ‘aeroplane’ category of the PASCAL VOC 2007 dataset. As can be seen, the proposed
sparsity potential always improves the accuracy. The performance tends to increase with the
window size until it saturates at around 71 pixels, almost doubling the average precision (AP)
compared to the baseline. (b) The sparsity potential is calculated on a square neighborhood
of every 16 x 16 patch.

same codebook entry are self-similar. Although, this can be done faster, performing this on
the image pyramid densely as required in our setup is quite challenging. However, since
in detection with an ISM, the image patches are already assigned to the entries of a large
codebook, these assignments can be directly used to calculate the self-similarities.

For each patch in the scale pyramid of a test image, a self-similarity score in Equation (7)
needs to be measured. To this end, the features at one level are passed to the Hough Forest
codebook [9], their leaf assignments are recorded and for each tree an assignment image
is formed. Each pixel i in the assignment image records its matching leaf index, i.e., the
codebook entry @;. For each image feature f; with a leaf assignment @, all the neighboring
features which are also assigned to @; are considered to be self-similar and their similarity
is set to 1. The similarity of all other patches in the neighborhood is set to zero. Therefore,
(7) can be written as

lIssill1 =) w0 ®)
keN?
where 5(0].7(0,{ denotes the Kronecker delta. Given the assignment image, all sparsity measures
can be efficiently calculated by decomposing the assignment matrix based on unique leaf
assignments.

3.4 Discriminative Learning of the Sparsity Classifiers

For training the sparsity classifiers, first a set of features on the validation set, both on ob-
jects as well as background, are extracted and are assigned to one or more codebook entries
;. Given a neighborhood function, the sparsity measure of every feature is calculated.
Next, for each @; and class label c, these sparsity measures for different class labels are col-
lected and used to learn a simple threshold 6 ;. These thresholds are then used to calculate
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Figure 3: The precision recall curves for some categories of the PASCAL VOC 2007 [5].
As can be seen, the proposed sparsity potentials substantially improve the detection perfor-
mance. The average precision (AP) is calculated by the integral under the curve.

p(cp|®;, N) in Equation (6) as

(el A7) {p<c|w,~> if sl < 6o, o)
0 otherwise,
p(c|w;) is the class probability estimated at the codebook entry m;.
Using the sparsity measure as a single dimensional feature, the thresholds are learned
such as to separate the positive and negatives with the best classification accuracy with zero
false negatives on the training data.

4 Experiments

In the previous section we have proposed the sparsity potentials described how to detect
objects with them. In this section, we evaluate the benefits of using these potentials for object
detection. As a baseline for our comparisons, we use the class-specific Hough Forests [9]
and all evaluations are done according to the rules of the ‘competition 3* of PASCAL VOC
2007 detection challenge [5].

The trainings of the forests are done using the ‘trainval’ set of images. Prior to the train-
ing, all object bounding boxes together with a 10% around them are cropped and rescaled to
the smallest possible box with a maximum width or height of at most 100 pixels and a least
minimum width or height of 50 pixels. The boxes annotated with ‘difficult’ tag are removed
from the training set and for every category the images that do not contain any object of that
category are used as the negative set. 15 trees are trained for each class. For training each
tree, 200 positive objects and 200 background images are chosen randomly and from each
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2 ]
g & PR £ £
= 2 g B o= 5 s &
€ %25 %, . -5 :E et E:EFsos 2| o
VOC2007 | <« B B @A 2 A O 0O 0 o Ad 2 =& &8 3 & B %
Our Approach
HF baseline [9] | 11.734.42.0 0.7 16.210.822.8 32 3.5 35.1 42 2.2 253319 3.6 158199 43 6.6 42.3| 14.82
HF + sparsity | 20.839.8 1.5 0.8 20.319.8 31.0 5.6 4.0 345 6.7 4.5 30.338.2 54 164252 9.1 8.7 45.3| 20.68
Competing Approaches
HT ISK [26] 24.632.15.0 9.7 9.2 23.329.111.3 9.1 109 8.1 13.031.829.516.6 6.1 7.3 11.822.621.9| 16.65
LSVM[7] | 29.054.6 0.6 13.426.239.446.4 16.1 16.3 16.524.5 5.0 43.6 37.8 35.0 8.8 17.321.634.039.0| 26.25
VOC best [5] | 26.240.99.8 9.4 21.439.343.224.012.814.0 9.8 16.233.537.522.1 12.017.5 14.7 33.4 28.9| 23.33

Table 1: The comparison of our detection results on the PASCAL VOC 2007 dataset [5].
The first block compares the performance of our proposed approach with sparsity potentials
(HF + sparsity) to the Hough Forest baseline (HF baseline [9]). As can be seen, by using the
sparsity potentials the performance has been substantially improved for most categories. The
comparison to the state-of-the-art approaches is shown in the second block. We outperform
the best previously published Hough transform based approach (ISK [26]) in mAP. The other
two rows give a comparison of our approach compared to the latent part model (LSVM [7])
and the best results of the PASCAL VOC Challenge (VOC best [5]).

of which 250 16 x 16 patches are extracted and represented with the 32 channels HoG-like
features as in [9]. The training of each tree is continued until either the maximum depth of
20 is reached or less than 10 patches are left in a leaf.

The multi-scale detection on an image in the the ‘test’ set is done by building an image
pyramid of 18 scales; starting from an up scaled image of 1.8 times the original image size
and a scaling factor of %2. For every detection image, 40 candidate objects are detected and

their bounding boxes are estimated from backprojection [19]. Similar to [1], the non-maxima
suppression is done by considering all features contributing more than 0.0005 to a detection
as its support and removing the votes of all patches at its position from the scale pyramid.

For measuring the sparsity of a patch, the patches in a square neighborhood around it
are considered 2(b). The parameters of the self-similarity classifiers are trained by first
running the detector on cropped positive objects and all negative images in the validation
set of a category. Then two histograms, one for positives and one for negatives, is created
which records the sparsity values for every codebook entry. Finally, a classifier is trained to
separate the positives from negatives based on this value.

Figure 3 evaluates the performance, in Precision/Recall, of using our proposed sparsity
potentials for detecting objects on the PASCAL VOC 2007 dataset. The full comparison of
the proposed sparsity potential with our baseline and other state-of-the-arts methods for all
categories is given in the Table 1. As can be seen, the proposed sparsity potentials signifi-
cantly improve the detection performance on this challenging dataset. The Fig. 2, shows the
effect of this neighborhood size on the detection performance. For all of these experiments,
the sparsity is calculated on a square neighborhood size of 71 x 71 pixels.

5 Conclusions

In this paper, we have introduced the sparsity potentials for object detection with the Hough
transform. We have shown that the distinctiveness of the appearance of a patch in its neigh-
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borhood can be a strong cue for object detection. Further, we have proposed to measure this
distinctiveness by the L1-norm of the self-similarity vector of a patch to its local neighbor-
hood. Based on this measure and using the validation set, we have discriminatively trained a
classifier for each codebook appearance and used it to separate foreground from background
patches at test time. The proposed detector with sparsity potentials substantially outperforms
the baseline detector and leads to a comparable accuracy to the state-of-the-art detectors on
many categories of the PASCAL VOC 2007 dataset. In the future, it would be interesting
to use this sparsity potentials in a multi-class setup to also discriminate classes from one
another. Since the self-similar patches tend to belong to the same label, it would be also
interesting to incorporate it as a higher order potential for image segmentation. Although we
have used the simple L.1-norm for sparsity, other popular measures (e.g. mutual information)
can be used as well. Yet, efficient calculation of these measures remains a challenge.
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