
Progress In Electromagnetics Research, PIER 82, 19–32, 2008

A NOVEL HYBRID APPROACH TO RAY TRACING
ACCELERATION BASED ON PRE-PROCESSING &
BOUNDING VOLUMES

N. Sedaghat Alvar, A. Ghorbani, and H. Amindavar

Amirkabir University of Technology
Hafez St. Tehran, Iran

Abstract—Ray tracing has been successfully used in prediction of
wave propagation models in recent years. Although this method has its
own obvious benefits, it suffers from a big problem: slow performance.
In this paper, novel methods are proposed in which the main focus
is on reducing the number of ray-facet intersections. First a pre-
processing method is proposed which reduces the number of ray-facet
intersection tests dramatically. Later this method is combined with
a volume bounding algorithm to make improvements in the speed of
ray-tracing simulations, even more.

1. INTRODUCTION

Radio propagation modeling in urban and indoor environments is
a complicated electromagnetic problem. Ray tracing and Uniform
Theory of Diffraction (UTD) are already widely applied to radio
propagation modeling for wireless applications [1-10]. In most of the
cases, the modeling requires a large number of facets to be considered.
On the other hand, even a simple mobile communications problem,
calls for computation of the field for a large number of points along a
predefined path, or on a user-defined mesh.

The most time and resource consuming operation in ray tracing
method, when used to model the propagation for a complex
environment, is the ray-facet intersection test [3]. The purpose of
this test is to determine if a ray intersects with the specified facet
in the environment or not. This test should be performed each time
a new ray is generated in the simulation process (after each reflection,
diffraction, etc.). And each time, it should be tested for all the facets
in the environment! So, when the number of involved facets is large,
the ray tracing procedure would be very slow and almost impractical.
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Many modifications and acceleration techniques have been
proposed to speed up the ray tracing procedure [3, 11–19]. Some of
the most important techniques are Binary Space Partitioning (BSP)
[3], Space Volumetric Partitioning (SVP) [3], etc.

In this paper, a novel method, called PDM (Prior Distance
Measures), is proposed in which the main focus is on reducing the
number of ray-facet intersection tests. No extra approximations are
applied to the solution to gain the mentioned improvement. Instead,
it eliminates the need to perform some part of the operation, which
in fact is redundant. This is done by performing a light-weight pre-
processing operation on the environment, before the main procedure
is started. This step is independent of the main ray tracing procedure
and even the location of transmitter and receiver, and depends only
on the environment. Thus this process is in fact performed when the
environment data is being gathered & generated (not by the ray tracing
software).

Although the basic PDM method makes great enhancements to
the simulation performance, it is combined with volume bounding
methods in the rest of this paper, forming a hybrid method, to make
even more improvements. The detailed information for this procedure
is described in the following sections.

2. THE MAIN PROPOSED METHOD

2.1. Prior Information Collection

In this method, prior information about the environment is collected
at the initialization stage. To do this, all N facets in the environment
are indexed in an arbitrary order. Then two N × N matrices are
constructed. Let the names be D1 and D2. These matrices are filled
in so that D1

ij corresponds to the minimum distance between facets i

& j and similarly D2
ij corresponds to the maximum distance between

facets i & j. These matrices are symmetric matrices with zeros on the
main diagonal:

Dk :




0 Dk
1,2 · · · Dk

1,N

Dk
1,2 0
...

. . .
Dk

1,N 0




k=1,2

(1)

Without loss of generality, facets are assumed to be positioned so that
no crossing pair exists. This is true as we can divide each of the crossing
facets to two distinct parts. Now, the minimum distance between two
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facets, would be the minimum of a set containing distances between
each facet and all the edges of the other one:

D1
i,j = min

{∥∥∥P i
u, F j

∥∥∥ ,
∥∥∥F i, P j

v

∥∥∥ ; u = 1, . . . , ni & v = 1, . . . , nj

}

(2)
where ni & nj denote number of vertices/edges in ith & jth facet,
respectively. ‖P i

u, F j‖ represents the distance between the jth facet
and uth vertex of the ith facet. For triangular facets, as an example,
the set would contain 6 entries. Fig. 1 depicts a demonstration where
the bolded dashed line shows the minimum distance between the two
facets. Note that the triangles represent facets in 3D space.

Figure 1. A demonstration of minimum distance measurement
between two facets in 3D space.

The maximum distance is similarly the maximum of a set which is
constructed in a simpler way. This set contains the distances between
vertices of the first facet and the vertices of the other one:

D2
i,j = max

{∥∥∥P i
u, P j

v

∥∥∥ ; u = 1, . . . , ni & v = 1, . . . , nj

}
(3)

with the same notation. For the triangular facets example, it would
contain 9 members. Fig. 2 depicts an example for this scenario.

2.2. Improved Ray-facet Intersection Test

As mentioned previously, in a standard shooting-and-bouncing ray
method, a ray, regardless of type of its source (a transmitter, a
reflection point, etc.) is tested for intersection with all existing facets
in the environment. After finding all intersecting facets, all distances
between the source point and the intersection point on all facets should
be computed and the nearest facet is selected [3]. In this new method,
however, a ray is tested with only a few facets, resulting in a dramatic
improvement in speed.
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Figure 2. A demonstration of maximum distance measurement
between two facets in 3D space.

The algorithm is as follows. The first ray which is originated
from the transmitter is tested just like before, and no optimization is
performed. From this step on, all the starting points of the rays will
be located on some facet. So the optimization can be applied. Let
the ray be originated from some point on facet number n. In this case
row n of matrix D1 gives some measure of distance between the facet
containing the origin of the ray and all other facets. So all existing
facets are ordered with ascending distances (near to far) according to
D1. This helps to perform the test on nearer facets before the others.
This step is paused when the first facet having intersection with the
ray is found. Let the index of this facet be k, so the corresponding
entry in D1 would be D1

nk.
Up to here, the facet with index k is just a candidate for being “the

nearest intersecting facet ”. This is due to the fact that the distance,
d, between the origination point of the ray and the intersection point,
fulfills the following limits:

D1
nk ≤ d ≤ D2

nk (4)

So there are still other probable candidate facets, which are identified
by:

D1
nx ≤ D2

nk (5)

There is no other facet that the ray might intersect with, before a
member of this set (visible to the ray). So (5) designates the remaining
facets for which the ray-facet intersection test should be performed.

We shall now consider a simplified example for this algorithm to
clarify the procedure. Fig. 3 depicts a simple 2D scene. Note that in
the 2D case, facets are replaced with lines. In this simple case, the ray
originated from facet number 4 is to be considered. We have:

D1
4,5 = D1

4,6 = 0 (6)



Progress In Electromagnetics Research, PIER 82, 2008 23

Figure 3. A simplified presentation of the method.

So the facets number 5 and 6 are tested before all other ones. Since
no intersection is detected between the ray and these facets, one step
farther facets will be tested, which in this example are the number 8
and 9. Number 9 intersects with the ray. So number 9 will be the
“first candidate ”. Here the first step is completed and the algorithm
moves on to the next step.

In this step, a set of facets, satisfying the following condition
should be found and tested:

D1
4,x ≤ D2

4,9 (7)

According to Fig. 3, facets 2, 3, 7 are the members of this set. Finally
these facets are subjected to intersection test, and since there’s no
intersection, number 9 will be “the first-intersecting facet ”.

It can be seen that just some probable candidates had to be tested
using the PDM method. This was for a simple environment containing
only 12 facets and as it is discussed in the next sub-section, this method
would show much more improvements in more complex environments.

2.3. Effectiveness & Optimization Degree

From the simple example of the previous sub-section, it is evident
that the number of performed tests is reduced due to conditions (4) &
(5) which limit the number of candidate facets to a really small set.
Although in this simplified example, which contains only 12 facets,
there is no big achievement; but the PDM method will have its best
effect in crowded environments, such as urban areas.
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The preprocessing step, is performed only once for an
environment. For example, if the ray tracing software is to be applied
to a 3D city map, there’s no need to perform the preprocessing
each time. Also this step is really light-weight. To investigate it,
a simulation has been performed. 1000 facets have been distributed
in 3D space uniformly. The preprocessing algorithm has been coded
in C++, using Object Oriented coding schemes, without any special
optimizations. The personal computer used for this simulation was
an Intel r© Pentium r© Mobile processor 1.86 GHz, running Microsoft
Windows XP ProfessionalTM with 504 MB of RAM. Also none of
the routine processes belonging to the OS have been stopped. The
interesting result was that it only took about 21 seconds to generate
both matrices!

The PDM method has variable effects on speed of the main ray
tracing procedure, according to the geometry of the scene and as stated
before, it appears in its best performance when applied to complex
environments. It can be seen well in Fig. 4. In this simplified 2D
example, there are 280 facets (lines) in the scene. As it is shown,
for this particular ray, only 36 facets should be tested. This is only
about 13% of the standard case. Which proves the great improvement
achieved using PDM.

It should be noted that, in a real example, there are much
more facets in the scene; thousands and even more. In such cases,
the number of tested facets will remain equal to 36 which leads to
interesting results. The computation time can be reduced even down
to 1%!

It is evident that the time of simulation goes up with increasing
the complexity of the environment, ONLY up to some specific level.
After that point, the simulation time will remain almost constant and
this is a great improvement in ray-tracing performance which will be
investigated at the end of this paper.

3. COMBINATION WITH BOUNDING SPHERES

In this section, the so called “bounding spheres method ” has been
combined with the basic PDM method, to improve the ray tracing
speed even more. Bounding spheres has been used as a speed-up
method in ray-tracing in the field of computer graphics [20].

In this paper, using spheres bounding all facets, two improvements
will occur. First in the pre-processing step where the computation of
distance measures between facets is enhanced (speed and simplicity).
Second, in the main processing loop where the computations to choose
the set of candidate facets are reduced a lot, due to the simpler decision-
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Figure 4. A simple 2D environment to evaluate the achieved
optimization.

making algorithm. Finally and mainly, in the main processing loop the
ray-facet intersection test, becomes a 2-phase intelligent test and will
result in even more enhancements in speed of the ray-tracing algorithm.
The algorithm is described in detail in following subsections.

3.1. Computation of Bounding Spheres

The first step in the new hybrid method would be computation of
a bounding volume. Bounding spheres are found to be simple and
effective enough to be reasonable for the purpose of this method. These
spheres will be used in later steps to generate simple distance measures
between facet pairs and also will enhance the ray-facet intersection test
in the main processing loop.

In a 3D ray tracing problem, a facet in most cases is assumed to be
a triangle. In this case, a volume enclosing all 3 vertices would enclose
all the points belonging to the surface of the facet (Fig. 5).

There are algorithms for computing the optimized bounding
sphere (enclosing sphere) for a set of points [21]. However the algorithm
proposed in this paper is not theoretically optimized and is more
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Figure 5. A triangular facet in
3D space enclosed by a sphere.

Figure 6. Computation of the
center point and radius of the
bounding sphere.

considered to be simple and fast. It is described as follows. First
the center point for vertices should be measured. This would be the
average of associated points which in vector notation would become:

�C =
�V1 + �V2 + �V3

3
(8)

This will be the center point of the bounding sphere. Now the radius
of the sphere would be the maximum distance from center point to
vertices:

R = max
{∣∣∣�Vi − �C

∣∣∣
}

(9)

This way the bounding sphere is achieved in a simple and fast way. An
example is depicted in Fig. 6.

3.2. Prior Information Collection

After applying bounding spheres to the basic PDM method, prior
information collection undergoes some changes. This step is now
performed as follows. At first, all the N existing facets in the
environment (or their corresponding spheres) are indexed in an
arbitrary order. The result would be an N ×N matrix. Let the name
be D. Dij corresponds to the distance between centers of spheres I &
j. This would be a symmetric matrix with zeros on the main diagonal:

D :




0 D1,2 · · · D1,N

D1,2 0
...

. . .
D1,N 0


 (10)
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This matrix is a new one and is different with those presented in (1)–
(3). It is seen that there is only one distance matrix needed for this
enhanced approach, when compared to the main method proposed in
the previous section. Although the radii of all the spheres are saved in
a simple vector (column matrix) named R:

R : [Ri]i=1,...,N (11)

3.3. Improved Ray-facet Intersection Test

The basic PDM method proposed in previous section, improved the
speed of ray-tracing simulation by limiting the number of facets which
should be tested for intersection with the ray. In this section the
approach is enhanced to increase the speed of algorithm even more.
Since there are two major enhancements due to the use of virtual
spheres, for ease of understanding, they are described one by one and
independently.

The improvement in selection of candidate faces is considered
first. The algorithm goes as follows. The first ray which is originated
from the transmitter is tested just like before, and no optimization
is performed. From this step on, as stated in the main algorithm,
all the sources are placed on some facet. So the optimization can be
applied. Let the ray be originated from some point on facet number n.
All existing facets are ordered with increasing distances (near to far)
according to the entries of row n of matrix D. This helps to perform
the test on nearer facets before the others, just like before. This step is
paused when the first facet having intersection with the ray is found.
Let the index of this facet be k, so the corresponding entry in D would
be Dnk. Up to now, all the steps seem similar to the main PDM.
However the big difference is seen in the following step:

The next step is to find those few neighbors which are probable
candidates for “the nearest intersecting facet ”. Such candidates exist,
due to the fact that the facets were ordered using distances between
spheres, not the facets themselves. So there might be some other facet,
with a farther bounding sphere, while the facet itself intersects the ray
before the first candidate. These are the spheres which satisfy the
following inequalities:

Dni ≥ Dnk (12)
Dni − Dnk ≤ Ri + Rk (13)

Condition (12) is satisfied automatically because of the ascending
nature of the algorithm. Condition (13) specifies the facets for which
the sphere intersects with sphere number k. Fig. 7 displays a simple
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scenario. In this scene, the sphere #2 is the first candidate and #3
is the only neighbor candidate. There is no other facet that the ray
might intersect with, before a member of this set (visible to the ray).

Figure 7. Finding candidate spheres for “the first intersecting facet ”.

Now the other advantage of bounding spheres is considered: the
2-phase ray-facet intersection test. Using enclosing spheres lets a fast
ray-facet intersection test in 2 phases. In phase 1, a ray is intersected
with spheres. This is a test which needs less computation time than
the standard ray-facet intersection. In fact it is a simple intersection
test between a half-line and a sphere in which the heaviest computation
job is checking of the following inequality:

‖L, Ci‖ ≤ Ri (14)

where L indicates the half-line which represents the path of the ray and
Ci & Ri indicate the center of the ith sphere and its radius respectively.
It is evident that this test is performed much easier than the ray-
facet intersection test in which the half-line is to be intersected with a
bounded plane!

The procedure moves on to the phase 2, only if the ray has
intersected the bounding sphere. This way, the rigorous computations
will be performed only for facets which are more likely to intersect the
ray, and the others are simply subject to a fast test.

Here a simple example environment is assumed and the algorithm
is applied to it to clarify the steps of the algorithm. Fig. 8 displays
the environment. A ray is originated from facet #1. In a standard
SBR method, 5 ray-facet intersections tests would be performed and
the minimum distance intersection point would be chosen at the end.
However in this new method, the test is performed as follows:
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Figure 8. A simplified presentation of the method.

The virtual spheres are ordered as 6, 3, 2, 5, 4 according to their
distances from sphere #1. Sphere #6 is not in the path of the ray. So
the algorithm moves on and tests sphere #3. The sphere intersects with
the ray. Now the facet itself should be tested for intersection. If the
ray and the facet intersect, which is assumed to be so in this example,
#3 would become the first candidate. In this level, the only sphere
satisfying (12) & (13) is #5 which fails in intersection test and #3
becomes the only candidate and is chosen as “the nearest intersecting
facet ”.

In this simple example, 3 ray-facet intersection tests were
performed. Considering that only one of the tests was a real ray-facet
intersection test and the others were ray-sphere intersections, time &
computation resources are saved much more than 40%.

It should be noted that, as stated before, this method shows its
best performance in crowded environments like urban areas where time
saving is much more than this example. This is discussed in the next
sub-section in more details.

3.4. Effectiveness & Optimization Degree

To investigate the performance of the pre-processing step (for the
bounding spheres case), a simulation has been performed on the same
1000-facet environment introduced in the previous section. Hardware,
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Figure 9. Simulation time versus complexity of the environment, for
standard SBR, basic PDM and hybrid PDM methods.

software and OS had the same conditions as before. The interesting
result was that it only took 1 millisecond to generate both matrices!
This time was at least 20 seconds for the case in which no bounding
spheres were used.

The enhanced approach still has variable effects on speed of ray
tracing procedure, according to the geometry of the scene and as before,
it appears in its best performance when applied to crowded scenes. To
view this, a simulation has been run and 1000 rays have been traced
in an environment. The simulation times versus the number of facets
present in the environment are plotted in Fig. 9. This plot shows
the great improvement in the time of simulation. It can be seen that
the PDM method, even without the sphere bounding enhancement,
approaches a constant time and the simulation time is not increased
proportional to the complexity of the environment after that. So it is
obvious that in complex environments such as urban areas, even up to
99% of simulation time could be saved, when compared to a standard
SBR method.

4. CONCLUSIONS

In this paper, a novel fast ray tracing method, called PDM, was
presented. The method’s main focus is on reducing the number of
ray-facet intersection tests in a ray tracing simulation. This method
has a basic version which relies on distance measures between facets
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which improves the performance very nice. However a complementary
method is provided to enhance the basic method and gain more
advance in performance. As the results of the simulation section
state, we could even reach to more than 99% percent of time saving in
comparison to standard SBR method.
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10. Fügen, T., J. Maurer, W. Sörgel, and W. Wiesbeck, “Charac-
terization of multipath clusters with ray-tracing in urban MIMO



32 Sedaghat Alvar, Ghorbani, and Amindavar

propagation environments at 2 GHz,” IEEE Proceedings of the In-
ternational Symposium on Antennas and Propagation, Washing-
ton DC, USA, July 2005.

11. Agelet, F. A., A. Formella, J. M. H. Rábanos, F. I. Vicente, and
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