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This short article will explain how to detect a specific type of structures from
(microscopic) images, focusing on a real task: the detection of epithelial cells
organized radially, or rosettes, within a tissue. It is written for non-computer-
scientists who are interested in using a computer program to automate or
standardize some quantitative analysis related to object detection.

1 How does a trainable detector work

In Computer Vision techniques, the detection of any interested structures,
patterns or constellations can be abstracted as object detection. Object detection
has wide applications in many practical tasks, like face detection [1] and
pedestrian detection [2]. It also has many successful applications in biomedical
tasks. Approaches which are similar to our rosette detector are used for detecting
cell mitosis [3] or specific structures in zebrafish embryos [4, 5].
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Fig. 1. An object detector goes through the whole image, checks every image patch,
and produces a detection score map

As illustrated in Fig.1, an object detector can be considered as a function
which maps every image patch (a small sub-region of image with predefined
size) to an detection score value (ideally 0 or 1). This detection score indicates
whether there is a target object at the center of the patch. To build such a
detector, we always need some training data - images in which the rosettes have
been manually identified and labeled, to help the computer program learn how to
distinguish the target objects from other things (background or other objects).
From the training data, we can have a lot of “image patch → desired detection
score” pairs, based on which we can model and estimate the desired function.
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Fig. 2. How does a rosette detector work.
(a - b) Training data: (a) manual labeling
of the rosette positions as a binary image
(b) microscopy image. (c) Transfer the
manual labeling to the test image based
on the similarity comparison: example
patches are picked from image (b) and (d);
similarities are illustrated by the thickness of
the lines; the uncertainty in these relations
leads to the real-value detection score. (d -
g) Test data and detection result: (d)
test image (e) detection map : response of
the detector by applying the procedure in (c)
on all positions). (f - g) Post-processing:
(f) local maximum points (g) after a thresh-
olding and a soft quantization.  
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One idea behind most common solutions is to find the image patches similar
to the ones, which are manually labeled in the training data. Every image patch
in the test image gets a score which results from its comparison with patches in
the training images. Computing this score for all different patches, which can be
densely sampled at each pixels, fulfills the detection job. See Fig.2a-e.

For the similarity comparison, there are definitely some uncertainties, e.g .,
whether it is similar enough for propagating the labeling, or whether a patch p1 is
more similar to p0 than p2. So the estimation in general will not produce a binary
(0/1) label for each position, but a real-value detection score between 0 and 1.
It is actually very natural to get the real-value score in the output, because the
image patches (and the underlying observed objects) have a continuous change
in the appearance.

For more details about the basic object detection framework, refer to [6] as
a good example.

2 More insight into the rosette detector

The technical way to implement a detection approach is not as straightforward
as it is illustrated in Fig.2. We need to choose a local image feature to represent
the important image property for each sub-patch; we need a regional description
for representing all image content in a patch (which is usually too large for a
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local feature to describe); we need a statistics or machine learning approach to
learn a function, which maps the feature/representation of an image patch to
the detection score, and learn its parameters. In the following, we briefly explain
the modules used in our rosette detector. We refer the readers to the references
for more technical details.

Local image feature The local image content is described by densely sampled
SIFT features (Fig.3) [7, 8]. This feature describes the orientation and coarse
localization of image gradients (edge structures), which is exactly the information
we need, to distinguish the rosettes from other image content. In our experiment,
the SIFT feature consists of 4× 4 subregions. Each subregion is about 2× 2µm2

(which corresponds to 8× 8 pixels with our microscopy).

Fig. 3. Local image feature extraction. Top: an il-
lustration of one sub-patch in an image patch. SIFT
features are computed on sub-patches. A regional
description for the whole image patch will be gen-
erated from these SIFT features. Bottom: the SIFT
feature (from [7]): a descriptor is created by first
computing the gradient magnitude and orientation at
each pixel, as shown on the left. These are weighted
by a Gaussian window, indicated by the overlaid
circle. These gradients are then accumulated into
orientation histograms summarizing the contents over
each subregion, as shown on the right, with the length
of each arrow corresponding to the sum of the gradient
magnitudes near that direction within the region. This
figure shows a descriptor using 2 × 2 subregions of 4
× 4 pixels.

Regional description A decision has to be made for each pixel, based on the
image patch centered at that pixel. So all the image features computed on the
sub-patches in a certain range should contribute to the decision. We choose to
use a filter technique to “collect” all neighboring information [9]. A group of
filters are computed efficiently on the features, which produce an output vector
at each pixel, representing all image features in about 12.5µm radius around the
pixel (the radius of a rosette is normally about 10− 15µm).

Learning From the training data, we can obtain many vectors from different
patches, with their corresponding labels. Based on these, to estimate the
mapping from a vector to a detection score can be as simple as a linear Least-
Squares Fitting [9].

Locating objects From the above procedures, we have basically finished the
training of the detector, which can produce a detection map as the one shown
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in Fig.2e. This map shows the detection score at each pixel. To get the exact
positions of object, local maximum points are selected out (Fig.2f), because
the detection score should be the highest at the object center1. Besides, the
absolute magnitude of detection score has to be taken into account too, since
a local maximum point with low detection score should not be recognized as a
rosette. After applying a thresholding on the detection score and a re-scaling,
the result is like Fig.2g.

3 Training and validation

In order to train the detector, we used 30 images of non-treated or DMSO-
treated embryos with clearly distinguishable rosettes, and 17 images of embryos
treated with the FGFR inhibitor SU5402 thus lacking rosettes. The positions of
the rosettes were manually labeled using the “ImageJ” software.

A meaningful validation of the performance of the trained rosette detector
can only be done experimentally. We used the standard cross-validation method
to check the performance of the trained detector. We randomly choose half of
the manually labeled data to train the detector, and use the other half to check
if the detector produced the same result as the manual labeling, and repeat this
for 5 times.

Fig. 4. Precision-recall curve of our rosette
detector from cross-validation. Precision =

Hits
Hits + False Alarm

, Recall = Hits
Hits + Misses

. The curve

is plotted by varying the threshold.
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There is always a precision/recall trade-off in detection tasks, e.g ., when we
set a lower threshold for the step from Fig.2f to Fig.2g, we can get a higher
recall with a lower precision (each true rosette gets a higher chance to be found
by the detector, but meanwhile we also get more false-positives in the results).
This ends up in the so-called precision-recall curve (shown in Fig.4). From the

1 usually an additional non-maximum-suppression is carried out to remove the local
maximum which is very close to but smaller than another local maximum. This
is somehow not so critical in our approach, as the filtering technique guarantees a
high smoothness in the detection map, which makes a object usually have only one
corresponding local maximum
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precision-recall curve, the detection performance is highly reliable. With a certain
threshold (at the top right position of the curve) we can achieve 91.7% precision
at 91.7% recall (this is the so-called Equal-Error-Rate point). This is a very good
result, considering that the task itself is challenging even for a human expert.

Besides this quantitative test, the results are also checked against human
perception qualitatively in more test images. Some example results are shown in
Fig.6.

4 Counting the rosettes

From the extracted local maxima (Fig.2f), the standard method to determine
the number of rosettes is to count only points with detection scores over a certain
threshold. Due to the smooth transition from non-rosette to rosette structures,
such a hard thresholding would introduce unnecessary quantization noise. As
we are only interested in the relative number of rosettes for different biological
experimental conditions, we can avoid this quantization noise and instead use
the “confidence-weighted rosette number”.

The “confidence-weighted rosette number” is computed as follows (as illus-
trated in Fig.2f-g): any candidate with a detection score lower than a preselected
threshold t is discarded; the scores of the remaining candidates are renormalized
into the range 0 to 1 (a detection score 1 will remain 1, but a detection score at
the threshold will be shifted to zero); then the normalized values are summed up
in each image separately to get the final “confidence-weighted rosette number”
(e.g ., it is 0.95 + 0.89 + 0.83 + 0.38 = 3.05 in Fig.2g.). This avoids some artifacts
which could be caused by a hard thresholding, and also makes the threshold
selection less critical to the statistics. See Fig.5 as an illustration of this effect.

The threshold t is then chosen to make the average “confidence-weighted
rosette number” in the control group to be around 2.5, which is the expected
average number of rosettes in the control group.

5 Applicability and limitation

The detector is trained from labeled samples, this leads to some advantages and
limitations. The dependence on the training data is an intrinsic limitation of
this method. It should be clarified that the trained detector can not ”judge”
the rosettes like a human. The actual job it does, is to find the objects (image
patches) similar to the ones which are manually labeled in the training data,
and the final confidence value somehow indicates the extent of the similarity. So
if some imaging environment (like the microscopy setting) changes, it is possible
that the trained detector no longer works for the new generated data. So in
our experiments, we try to make the imaging condition as fixed as possible: all
images were taken at the same microscope with the same objectives and laser
intensities.

On the other side, we can always easily adapt the detector to some different
imaging environment as long as sufficient manually labeled data is available in
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Fig. 5. The advantage of confidence weighting. Left: the detection score of the local
maximal points used in this example. Right: how the threshold selection affects the
output rosette number. The curves are plotted by varying the threshold from 0 to 1. It
is clear that the hard thresholded result may “jump” when the threshold has a small
change.

that environment. Another scenario is, when we observe the detector failed in
some samples, we can manually label them and put them into the training set
so that the detector can be improved. 2

2 The trained detector (in Matlab) is available at lmb.informatik.uni-
freiburg.de/people/liu/rosette-detection. The full Matlab package including
the detector training will also be available upon request.
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(a) (b) (c)

Fig. 6. Qualitative results of the rosette detector. (a) raw image. (b) output detection
map. (c) detected rosettes with their confidence (after thresholding and re-scaling,
shown by the same color coding as in Fig.2)
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