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Abstract

A very common type of a-priori knowledge in pattern
analysis problems is invariance of the input data with re-
spect to transformation groups, e.g. geometric transforma-
tions of image data like shifting, scaling etc. For enabling
most general analysis techniques, this knowledge should be
incorporated in the feature-extraction stage. In the present
work a method for this, called Haar-integration, is gener-
alized to make it applicable to more general transforma-
tion sets, namely subsets of transformation groups. The re-
sulting features are no longer precisely invariant, but their
variability can be adjusted and quantified. Experimental re-
sults demonstrate the increased separability by these fea-
tures and considerably improved recognition performance
on a character recognition task.

1. Introduction

In pattern analysis one encounters a variety of arbitrary
structured or unstructured objects. The analysis target also
can consist of very different tasks like classification, regres-
sion, clustering, retrieval etc. In such settings the most ad-
vantageous and general representation of objects is a vector-
valued representation, for which a multitude of vector space
analysis methods is readily available.

The step of producing such vector-valued representa-
tions, called feature-extraction stage, is the crucial step for
determining which (problem dependent) a-priori knowledge
is captured for the subsequent processing stages.

A very common type of a-priori knowledge is the pres-
ence of data variability, which keeps the inherent "meaning”
(e.g. class number, regression value) unchanged. If these
transformations can be represented by mathematical groups
of transformations it is very common to construct invariant
features as object representation. There are different princi-
pled ways for generating invariants, e.g. group-integration,
normalization etc. [3]. Numerous work on developing and

using such invariant features can be found in the literature.
Suk and Flusser [13] derived statistical features that are in-
variant under the group of affine transformations and blur-
ring by combining moments. In [1] Al-Jarrah and Halawani
have constructed similarity-invariant features and used them
to recognize the hand postures of the alphabets in the ara-
bic sign language. Translation, rotation and scale invari-
ance is achieved by adequate normalization. Kadyrov and
Petrou [5] introduced the trace transform which is a gener-
alization of the radon transform. By appropriate choice of
operations one can get invariant representation to groups of
transformations like similarities.

However, such variability often cannot be described by
global transformation groups or this is not desired. For in-
stance, in optical character recognition small rotations of a
letter are acceptable, but large rotations change class mem-
berships like Z -+ N, M — W, 6 — 9 etc. Similarly, too
large horizontal stretching can convert a slightly bent I to
L, C or J. The focus of this paper is to extend a group-
integration framework called Haar-integral invariants to
these cases where invariance/robustness with respect to sub-
sets of transformation groups is wanted. In the literature
such robust or “slowly changing” features are called quasi-
invariants [2].

The next section will formalize the Haar-integration and
partial Haar-integration features including an analysis of
their adjustable robustness. We performed experiments on
artificial data to investigate the basic properties and on a
real world data set to evaluate the applicability. The results
of this are presented in Section 3 followed by concluding re-
marks.

2. Featuresby Haar-Integration

We assume G to be a group of transformations g operat-
ing on patterns s from some pattern space S. Let Go C G be
a subset of the group which is endowed with a measure dg
such that fgo dg = 1. These are the transformations g un-
der which invariance is to be achieved. If for a function f
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Figure 1. Motivation of the partial integration.

on S the following integral exists, this denotes the average
of f(s) over the transformations in Gy:

Ap(s) = ; f(gs)dg. @

For the case of G = Gy, this integral is called Haar-
integral. The resulting feature A;(s) is invariant (if dg is
uniform) and well investigated. Theoretical results include
existence of the integral and existence of complete sets of
invariants if G is a finite or a compact group [10]. Using
simple functions f, the resulting features can be computed
efficiently. Successful application of these features has been
obtained in texture-classification [8], image retrieval sys-
tems (SIMBA, MICHELscope) [11], and pollen-recognition
tasks [7]. The pattern-types used in these applications are
2D or 3D datasets with gray, color or multispectral compo-
nents. The transformation groups in these cases mainly con-
sist of euclidean motions.

As illustrated by examples in the introduction, practical
situations occur in which global invariance is not wanted,
but only adjustable robustness against local transformations
of the patterns. These cases can be solved by allowing G,
to be a subset of a transformation group with an appropriate
measure dg. This results in partial Haar-integration in Eqn.
Q).

Figure 1 illustrates the idea by plotting a common orbit
of 3 patterns with respect to some group. The goal of sepa-
rating large distorted patterns, i.e. s3 from s; or ss , while
capturing the closeness of s; and s, cannot be detected by
traditional Haar-invariants. These can be interpreted as eval-
uating a function f in each of the orbit’s points and integrat-
ing this along the curve, cf. Fig. 1 (i). By this we obviously
obtain identical values for the three patterns. However, if we
only use a subset of transformations, the integration is re-
stricted to a part of the orbit depending on the pattern s;,
see Fig. 1 (ii). With suitable choice of subset G, and func-

tion f, the results of the integration are expected to be very
similar for s; and s, but completely different from the re-
sult for s3. The reason for this is simply that the integration
regions Gos; and Ggss have a high overlap, but do not in-
tersect with Gy ss.

By the procedure of partial Haar-integration strict invari-
ance is no longer obtained, instead the invariance properties
can be steered by the size of Gy. The variation of the fea-
tures depending on the size of G, and f can easily be quan-
tified for certain cases. If we reasonably assume f to be
bounded we can set f := sup f —inf f as the maximal pos-
sible variation of f. We assume that G can be parametrized
by real valued parameters X := (A, ..., \,)T € IR™ such
that it basically ”behaves” like the additive group of real
vectors (IR™, +) by gy o gy’ = gy, (Which is particu-
larly satisfied, if A — gy is a group homomorphism from
(R™,+) to G). Such groups comprise rotations around a
fixed axis, cyclic or non cyclic translations in arbitrary di-
mensions, scalings with positive factors, etc. In the follow-
ing we denote with A; bounded intervals of length |A;|.
With these notations one easily obtains the following es-
timate for the difference of features for "close” patterns.

Proposition 1 (Estimate of Feature Variation). Let Go
be a subset of G parametrized by a ’box” of parameters,
Go = {g)|A € A1 x ... x A, } with the naturally induced
normalized measure

1
= ——d)\ ...
I A

Let s € S be a pattern and g be an arbitrary transforma-
tion in Go with A; < |A;|. Then we have

- n i
[Ar(gxs) — As(s)| < f (1 -11I (1 -~ ||A,-||)> )

i=1

Proof. The integration ranges of the left hand terms can be
expressed as 2 boxes which are shifted by A. Both integrals
coincide on the boxes’ overlap, the maximal error of f can
only appear in the remaining part of the boxes. The (nor-
malized) volume of this area is exactly the term in brackets
in (3). O

This estimate is an optimal upper bound as examples
with equality can be constructed. Beside prediction of max-
imum feature difference, this estimate can be used to deter-
mine the parameters A; necessary for guaranteeing certain
error levels of the resulting features. Another application
can be to ensure that two patterns are definitely not ”small”
transformations of each other if their features differ. The ex-
tent of these small transformation can be calculated.
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Figure 2. lllustration of toy data, evaluation-
points and integration range.

3. Experiments

For illustration and experiments we used grey-value im-
age data s : IR> — [0,1] transformed under certain sub-
sets of euclidean motions g, -, ¢ Via (g9s)(z,y) = s(z',y")
where (z',y)" := Ry (¢ — 7,y — 7,)" and Ry, is the
rotation matrix. The corresponding feature computation is
performed by Equation (1) setting Gy as the subset de-
fined by the cartesian product of 3 intervals A, Ay, Ag.
Go = {gro,ry,0| (T, 7y, 8)T € Ay x Ay x Ay}, choosing
dg as the induced measure (2) and integrating with respect
to the 3 parameters. For integration we used the simple
function

f(S) = \/S($1,y1)8($2,y2), (4)

depending solely on two image values at evaluation points
(z;,y:)T. Integration is performed by a numerical integra-
tion scheme.

3.1. Toy Data

We want to illustrate the basic properties of in-
creased separability and the adjustable invariance proper-
ties on some artificial toy data. In this example we interpret
an image as a continuous periodic function s(z,y) bilin-
early interpolated from the pixel values. We ignore the ro-
tation and by this end up with merely cyclical z- and
y-translations.

Figure 2 illustrates the 4 sample images of size 16 x 16.
The last image indicates the 2 evaluation locations of f =
v/s(1,1)s(6,5) by small rectangles. The area that is cov-
ered by the upper evaluation point during integration is
striped (e.g. the range 7, € [—5, 5], 7, € [—8, 8]). The task
is to discriminate between these images, allowing slight but
no large z-translations.

In Figure 3 we plotted the (partial) integration feature of
each toy-image after applying z-translations of varying ex-
tent. The subsequent plots depict the corresponding results
while the 7, -integration range is decreased from [—8, 8] to
[_77 7]a [_57 5] and [_07 0]

Obviously integrating over the whole group of cyclical
translations is identical to integrating 7, 7, in [—8, 8] and

integration with T in[-8 8], T, in[-8 8] integration with T in[-7 7], T, in[-8 8]
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Figure 3. lllustration of toy results for de-
creasing z-shift integration range.

results in completely invariant features, which can not sep-
arate pattern A from B (upper left plot). For small decreases
of the 7,-range the features change slightly and get more
discriminative (upper right plot). In case of 7, € [—5,5]
(lower left diagram), the single feature is able to discrimi-
nate between all patterns and their +2 z-translated versions,
which solves the initial task.

So we have an increased separability compared to the
features from the complete group integration. Of course fur-
ther reduction of the 7, -integration range to 7, € [0, 0]
(lower right plot) leads to features, which do no longer cap-
ture any information of this z-shift. So the integration range
indeed can be used to adjust the invariance properties of the
features.

In the first 3 plots the correct predictions of the variation-
estimate of Prop. 1 can be illustrated. The curves interpolate
linearly between features obtained by subsequent z-shifts of
size 1. This corresponds (using the notation from Prop. 1) to
A1 = 1 and Ay = 0 between two images, the y-integration
range |A»| = 16 is constant for all plots. The z-integration
range decreases from |A;| = 16 to 14 and 10. With the max-
imum variation f = 1 the 3 predictions of the estimate (3)
are 0.0625,0.0714 and 0.1. These indeed are tight upper
bounds on the feature-differences, as the maximum slopes
in the plots are 0, 0.0683 and 0.0997.

3.2. Classification of USPS Data

To address real-world applicability, we tested our ap-
proach on classifying the raw US-Postal-Service (USPS)



| Method | Error rate [%] |

SVM, no invariance [9] 4.0
SVM, VSV-method [9] 3.2
TD + kernel densities [6] 24

| Human Performance [12] | 25 |

Table 1. Selection of USPS results.
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Figure 4. Examples of USPS digits.

digit dataset. Table 1 lists some reference results from lit-
erature. The difficulty of the set is indicated by large human
recognition error, the best known machine solution implies
tangent distance with kernel densities.

The data consists of 7291 training and 2007 test images
of 16 x 16 grey-value images of handwritten digits. Fig-
ure 4 shows some example images. The data is particularly
suited for our purpose, as only small (non cyclic) transla-
tions and rotations are reasonable. We mapped the image
intensity values to [0, 1] such that the background is repre-
sented by 0. We interpret the images as continuous func-
tions on IR? by padding out-of-image pixels with zero and
performing bilinear interpolation.

As feature representation we extracted 64 partial Haar-
integration features implying functions of the form (4),
which is a fair reduction in data dimensionality by factor
4. The parameters that define such a feature-vector are the
64 pairs of evaluation points and the 64 triplets of integra-
tion intervals Az, Ay, Ag.

We chose the integration intervals to be identical for all
components of a feature vector. We fixed the midpoints of
A, and A, as the image center and chose the the midpoint
of A4 as 0. This realizes the motivation of modelling slight
translations and rotations around the image center. The 3
interval-widths were roughly optimized, details will follow.
We demonstrate the ease of getting good results by circum-
venting the step of producing optimal features. For this the
majority of parameters, namely the 64 pairs of evaluation
points, were chosen randomly. Figure 5 shows such a ran-
dom parameter choice.

In order to prove that the good results are not acciden-
tal, we present the outcome of the experiments for 5 such
random feature parameter sets P1,..., P5.

As an objective and comparable quantitative qual-
ity measure for the features we chose the test-error of
a support-vector-machine (SVM) with a gaussian ker-
nel. These have proven to produce good if not very good re-
sults on a variety of features and applications. We used the

Figure 5. Example of a random feature param-
eter set defining 64 functions of type (4) used
for integration.

widespread implementation libsvm [4] for training and test-
ing an SVM for each pair of parameters (v, C) ina 10 x 10
logarithmic  grid  {0.002,0.001,0.005,0.01,...,2} x
{20, 50, 100, 200, . .., 20000}. Here -y denotes the width-
parameter in the gaussian kernel and C' the constant that
penalizes misclassifications.

For every choice of features in this section, the (v, C)
grid was shifted such that the maximum recognition perfor-
mance was mostly obtained for parameters strictly inside
this parameter grid. By this we prevented obtaining subopti-
mal results due to wrong positioning of this grid. This iden-
tical procedure of parameter optimization for the different
feature choices enables to compare the resulting recogni-
tion accuracies.

To start the experiments we determined some base-
results in Table 2 for later comparison. First the Haar-
integration was performed for complete translations with
and without complete rotation and for the trivial sub-
group Go = {id}, such that no integration but merely
an evaluation of each f; is performed. The latter is de-
noted “no integration”. As the image-function has compact
support implying f(gs) being 0 for large 7,, 7, it is suffi-
cient to restrict the translation-integration region to some
sufficiently large rectangle. As SVMs are known to per-
form very well on the simple raw data, we additionally
determined the error of an SVM on the 256 dimen-
sional raw data.

We start discussing the results bottom up. The "no inte-
gration” features perform consistently worse than the “raw
data SVM”. This indicates that the reduction of feature
dimensionality by factor 4 eliminates important informa-
tion necessary for discrimination. Note that more optimized
SVM architectures allow even better raw data results, e.g.
”SVM, no invariance” in Table 1 uses a polynomial ker-
nel. The results of the 7,7, integration indicates that this
actually is an example of an application, where the Haar-
invariants are suboptimal, as they perform even worse than



Method Error rate [%]
PL | P2 | P3| P4 | P5
Tz, Ty, @ integr. | 195 | 19.3 | 19.1 | 20.1 | 19.7
Ty, Ty INtEQY. 92 | 90 | 95 | 94 | 88
no integr. 67| 71 | 68 | 70 | 79

| raw data | 4.7 |

Table 2. Base results for the 5 parameter sets.

- P1

Error rate [%)]
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Figure 6. Variation of misclassification rate
with changing parameter ¢.

the raw data or the no-integration features. If additionally
the rotation is considered in the integral, the recognition ac-
curacy falls drastically, as now e.g. 6 and 9 are no longer
discriminated.

This is the point, where the partial Haar-integration fea-
tures come into play. To test these features we restricted the
T, and 7, integration to range from =£¢ around the image
center, and ¢ to range between +k<{%, where ¢,k are now
integer parameters. The change of recognition accuracy by
varying ¢ with constant ¥ = 2 is illustrated in Figure 6.
The considerably improved recognition rate is obvious for
slight increases of the translation integration range. How-
ever for larger integration ranges the recognition is getting
worse.

To determine good values ¢, k, we performed a very
coarse search by varyingt = 0,..., 11 with constant k = 2,
taking the best value ¢ and optimizing k¥ = 0,...,6. The
best results obtained by this are listed in Table 3. The con-
sistent improvement of recognition accuracy compared to
the global Haar-integral features from Table 2 is evident
for all sets of feature-parameters P1, ..., P5. Comparison
with Table 1 yields that most results are better than the
”SVM, no invariance” result. This architecture is the best

[Param. [ ¢ [ k%= | C | ~ [ Errorrate[%] ]
P1 4 16 | 10000 | 0.005 41
P2 3 2% 1000 0.02 3.9
P3 4 0 2000 0.02 3.5
P4 4 4% 200 0.2 3.9
P5 3| 2% 500 0.05 3.9

Table 3. Best partial integration results.

among those which do not imply any invariance knowl-
edge. So the proposed method definitely captures parts of
the wanted invariances. The gain in accuracy between our
“raw data SVM” (Tab. 2) and the partial Haar-integration
features (Tab. 3) is comparable with the gain of "SVM, no
invariance” to "SVM, VSV-method” (Tab. 1), the latter ef-
fectively includes invariance knowledge.

4. Conclusion and Per spectives

We have proposed an extension of Haar-integral invari-
ants to more general transformation sets, namely subsets of
transformation groups. By varying the integration range, the
invariance and herewith the separability properties can be
adjusted. We have quantified this adjustability by a tight es-
timate of the features’ variation. We have demonstrated by
the USPS digit classification experiments that there are ap-
plications where global group invariance is not adequate,
while the features by partial integration perform success-
fully.

Perspectives for the new features are similar to the de-
velopment of the Haar-invariants: By replacing integration
with histogramming with respect to some parameters, the
same computation cost yields a more informative histogram
instead of a single scalar value. Immense speedup of the
integration procedure can be obtained by applying Monte
Carlo integration techniques [11]. The approach can be ap-
plied to more general object types like large color-images,
volume data, non-grid data as wire-frame models etc. Ap-
plication to more general transformations like subsets of the
similarity, affine or projective transformation group seems
straightforward and only limited by possible computational
complexity problems. It also seems to be promising to ex-
tend the possible transformation sets from group-subsets to
arbitrary transformation sets assigned with a measure dg,
like line-thickening, local deformations of objects etc.
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