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Abstract. The use of local features in computer vision has shown to be
promising. Local features have several advantages including invariance to
image transformations, independence of the background, and robustness
in difficult situations like partial occlusions. In this paper we suggest
using local integral invariants to extract local image descriptors around
interest points and use them for the retrieval task. Integral invariants
capture the local structure of the neighborhood around the points where
they are computed. This makes them very well suited for constructing
highly-discriminative local descriptors. We study two types of kernels
used for extracting the feature vectors and compare the performance of
both. The dimensionality of the feature vector to be used is investigated.
We also compare our results with the SIFT features. Excellent results
are obtained using a dataset that contains instances of objects that are
viewed in difficult situations that include clutter and occlusion.

1 Introduction

One of the main difficulties in computer vision is to identify objects despite of
the changes that may affect the appearance of the object. Possible changes in-
clude rotation, translation, changes in scale, changes in illumination conditions,
and partial object occlusion. Moreover, objects are usually located in cluttered
scenes. It is very important to take these facts into account when designing
real-world applications. One of the well-known approaches that deal with ob-
ject and image retrieval is the use of color histograms [1]. The use of color
histograms is simple and fast but it works mainly for non-cluttered scenes or
for pre-segmented objects. In [2], Schiele and Crowley proposed using multidi-
mensional receptive field histograms for object recognition. The histograms are
constructed from the responses of a vector of local linear neighborhood opera-
tors such as gradients, Laplacian, Gabor filters, and Gaussian derivatives. This
method is also problematic when dealing with clutter and partial occlusion.
Local invariant features computed around interest points have several inter-
esting characteristics. First of all, they are invariant to image transformations
like rotation and translation. They are also robust to partial occlusion, clutter,
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and changes in the background, as only corresponding local features in different
scenes should match. This also eliminates the need for any prior segmentation.
Schmid and Mohr [3] were among the first to use local image descriptors for the
retrieval task. They have used rotation-invariant local feature vectors based on
derivative-of-Gaussian local measurements. To identify the interest points, they
have used the well-known Harris corner detector [4]. Gout and Boujemaa [5]
extended this work to color images using color differential invariants. The fea-
ture vectors used in these methods have low dimensionality and are not highly
distinctive. Lowe [6] has introduced the SIFT features that are invariant against
similarity transformations. The feature vector used in SIFT consists of gradient
orientation histograms summarizing the content of a 16× 16 region around each
point. In this paper we explore the use of local integral invariants for the purpose
of retrieving objects located in complex scenes. Integral invariants capture the
local structure of the neighborhood around the points where they are computed.
Global versions of these features have proven to be robust to independent motion
of objects, articulated objects, and topological deformations [7]. In addition to
their invariance to Euclidean motion, we explain how it is possible to earn local
similarity-invariant features. We study two types of kernels that are used to gen-
erate integral invariants. The effect of the dimensionality of the feature vectors
is also investigated. A comparison with the SIFT features is also considered.

The paper is organized as follows. In section 2 a summary of the integral
invariants is given. Extending the features to be scale invariant is described in
section 3. Section 4 gives an overall look on the setup of the system. Results are
summarized in section 5 and a conclusion is given in section 6.

2 Integral Invariants

Following is a brief description of the calculation of the rotation- and translation-
invariant features based on integration. The idea of constructing invariant fea-
tures is to apply a nonlinear kernel function, f(I), to a gray-valued image, I, and
to integrate the result over all possible rotations and translations (Haar integral
over the Euclidean motion):

T[f ](I) =
1

PMN

M−1∑

n0=0

N−1∑

n1=0

P−1∑

p=0

f(g(n0, n1, ϕ = p
2π

P
)I) (1)

where T[f ](I) is the invariant feature of the image, M, N are the dimensions of
the image, and g is an element in the transformation group, G (which consists
here of rotations and translations). Bilinear interpolation is applied when the
samples do not fall onto the image grid. The above equation suggests that in-
variant features are computed by applying a nonlinear function, f , to a circular
neighborhood of each pixel in the image, then summing up all the results to get
a single value representing the invariant feature. Using several different kernel
functions builds up a feature space. To preserve more local information, one can
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remove the summation over all translations. This results in a map T that has
the same dimensions of I:

(T [f ] (I))(n0, n1) =
1
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f

(
g

(
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2π

P

)
I
)
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Two types of non-linear kernel function, f , are considered. Invariant features
can be computed by applying the monomial kernel, which has the form:

f(I) =

(
K−1∏

k=0

I (xk, yk)

) 1
K

. (3)

Integral invariants are computed using the monomial kernels by multiplying a
constellation of pixels in the circular neighborhood of the center pixel and then
averaging the local results. One disadvantage of this type of kernels is that it is
sensitive to illumination changes. The work in [8] defines another kind of kernels
that are robust to illumination changes. These kernels are called the relational
kernel functions and have the form:

f(I) = rel (I (x0, y0) − I (x1, y1)) (4)

with the ramp function

rel (x) =

⎧
⎨

⎩

1 if x < −ε
ε−x
2ε if −ε ≤ x ≤ ε

0 if ε < x
. (5)

Feature calculation using the relational kernels is similar to using the monomial
kernels. In the case of the relational kernels, two pixels are compared using
the rel-function instead of multiplying them. This kind of kernels is based on the
Local Binary Pattern (LBP) texture features [9], which map the relation between
a center pixel and its neighborhood pixels into a binary pattern. Equation 5
extends the LBP operator to give values that fall in [0, 1]. This is done in order
to get rid of the discontinuity of the LBP operator which makes the features
sensitive to noise. For more detailed theory about integral invariants, please
refer to [7].

3 Scale Invariance

The integral invariants in the form described in Section 2 are invariant to Euclid-
ean motion only and are therefore sensitive to scale changes. Extending the prin-
ciple of integral invariants to be scale invariant is not easy due to the fact that
compact groups are needed, whereas scaling is unbounded [10]. However, if the
local scale of each interest point can be determined, we can establish local fea-
tures that are scale invariant by adapting the local support (the patch size on
which the kernel function acts) of the kernels used to the local scale of the point
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around which they are evaluated. This way, the patch that is used for feature
extraction covers always the same details of the image independent of the scale,
which consequently means that the extracted feature vector is scale invariant.
To achieve this, we use the difference-of-Gaussian (DoG)-based point detector
introduced by Lowe in [6], which localizes points in scale and space.

4 Setup

4.1 Dataset

To run the experiments, 11 different objects were chosen. Model images for the
objects were recorded. For the purpose of testing, each object was photographed
18 different times resulting in images that show each object in 18 different place-
ments. The placements include rotation, scaling, illumination changes, partial
occlusion, and combination of two or more of these situations. All shots were
taken in different complex and cluttered backgrounds. The images have a reso-
lution of 480 × 640 pixels and are stored in JPEG compressed format.

4.2 Feature Extraction

Using the DoG-based detector, the interest points in an image are identified.
The detector gives the location and the scale of each candidate point in subpixel
resolution. The number of extracted points is between 500 and 2000 depending
on the image content. To extract the local integral invariants, we use a set
of two-point kernel functions. For an interest point located at (n0, n1), each
kernel function manipulates (multiplies in the case of monomials or subtracts and
compares in the case of relationals) two points that lie on the circumferences of
two circles of radii r1, r2, respectively, where r2 ≥ r1. A phase shift, θ, between
the two points is considered. The radii are adapted to the local scale of each
interest point as described in section 3. An example of kernel application is
shown in Figure 1. Having a set of V kernel functions, fi, a V -dimensional
feature vector around each interest point, (n0, n1), is constructed using:

F(i)
∣∣
(n0,n1) = 1

P

∑P−1
p=0 fi

(
g

(
n0, n1, ϕ = p 2π

P

)
I
)
, i = 1...V.

4.3 Retrieval Process

The feature vectors are saved in the database with a pointer to the model image
to which they belong. In the retrieval process, a query image is presented to
the system. The features of the image are extracted as described above. Each
individual feature vector from the query image is compared using the Euclidean
distance measure with all the other feature vectors stored in the database of the
model images. A kd-tree structure [11] is used to speed up the search. Corre-
spondences between the feature vectors are found based on the method described
in [12] which allows for robust matching based on a confidence measure that de-
pends on a uniqueness value assigned to each feature vector. A voting scheme
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n
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Fig. 1. Evaluation of the monomial kernel f (I) = I (0, 3) .I (6, 0). The grayvalue of a
point on a circle of radius r = 3 around (n0, n1) is multiplied by the grayvalue of a
point on a circle of radius r = 6. Notice the phase shift of π/2 between the two points.
Points that do not fall on the grid are interpolated. The same calculation strategy is
also valid for the relational kernel function, f (I) = rel (I (0, 3) − I (6, 0)), substituting
multiplication with subtraction.

is applied to determine the object model that corresponds to the query image.
If a match between a vector from the query image and another from a model
image is fired, the model image gets a vote. Finally, the model image that gets
the maximum number of matches wins the voting scheme and is returned as the
best match to the query image.

4.4 Performance Measures

In addition to the recognition rate, we use two other measures to evaluate the
quality of recognition: the number of matches and the match precision. The
match precision gives an indication of how good the matching is, by giving the
ratio of correct matches to the total number of matches in the image:

Match Precision =
Number of correct matches
Total number of matches

× 100%. (6)

Given two images that contain the same object, a match between a point, p1,
in the first image and a point, p2, in the second image is considered as a cor-
rect match if the error in the relative location of the two points is less that a
threshold, τ :

‖p1 − Hp2‖ < τ, (7)

where H refers to the homography. We set τ = 3 pixels following [13].

5 Results

5.1 Monomial vs. Relational Features

The robustness of the features against intensity changes is an important aspect.
Local characteristics should not change when lighting conditions change. Mono-
mial type kernels are very sensitive to changes in the intensity since they work
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directly on the raw grayvalue of the pixels. Consider the following equation that
describes the affine change in intensity value, I(x, y):

γ(I(x, y)) = aI(x, y) + b. (8)

Considering a simple monomial kernel that multiplies two grayvalues, I(x1, y1)
and I(x2, y2), the result is simply M = I(x1, y1)I(x2, y2). If the image was ex-
posed to change in illumination conditions such that the equation above applies,
then we have:

M ′ = γ(I(x1, y1))γ(I(x2, y2))
= a2I(x1, y1)I(x2, y2) + b[a(I(x1, y1) + I(x2, y2)) + b]
= a2M + bγ(I(x1, y1) + I(x2, y2)).

So the result will be scaled by a factor of a2 and shifted by a factor that is
equal to the scaled affine change of the sum of the two grayvalues. The behavior
of relational kernels, on the other hand, is different. They are robust against
intensity changes as they consider relations between grayvalues of the pixels
rather than the raw values themselves. A relational kernel function applied to
I(x1, y1) and I(x2, y2) will give a result of R = rel(δ), where δ = I(x1, y1) −
I(x2, y2) and rel is the fuzzy relation defined in Equation 5. When the intensity
changes according to Equation 8, then:

R′ = rel(γ(I(x1, y1)) − γ(I(x2, y2)))
= rel(aδ).

=

⎧
⎨

⎩

1 if δ < −ε/a
ε−aδ
2ε if −ε/a ≤ δ ≤ ε/a

0 if ε/a < δ

Clearly, the result is invariant against the shift in the mean luminance. The
effect of the scaling parameter, a, depends on the threshold value, ε, used in
the ramp function, rel. As ε approaches zero, a smaller range of δ values will be
affected by the scaling parameter a. If ε is set equal to zero, then we return to the
LBP step operator [9] which is totally invariant to exact monotonic gray scale
transformations but sensitive to disturbances. So ε is chosen to achieve a good
compromise between the robustness against noise and the robustness against
gray scale changes. In our experiments, ε = 0.098 (I(x, y) ∈ [0, 1]) was found to
give very good results. Two tests were carried out on the database. Once with
monomial type features and another with relational type features. In each case,
43 kernels were used to extract a feature vector around each interest point. The
results shown in Table 1 depict the tremendous difference in the performance
between both types of features. Not only the recognition rate of the monomial
features is very low, but also the number of matches per image is small and the
percentage of correct matches is low.

Trying to enhance the performance of the monomial-based features, the fea-
ture vectors were normalized such that they have a zero mean and a unit vari-
ance. A remarkable enhancement in the performance was observed after the
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Table 1. Comparison between the results of the tests based on monomial and relational
features

Recognition rate Avg. # of matches Avg. match precision
Monomial Features 30.15% 9.94 60.31%
Relational Features 98.99% 72.34 91%

Table 2. Results after normalizing the monomial feature vectors to zero mean and
unit variance

Recog. rate Avg. # of matches Avg. match precision
Monomial Features (norm.) 89.45% 36.56 82.1%

Relational Features 98.99% 72.34 91%

Fig. 2. Some query results using relational features

normalization as can be seen in Table 2. Nevertheless there is still a big gap be-
tween the performance of the relational-based features and the monomial-based
features. Figure 2 shows different example queries for different instances of some
objects in the database using relational features. The left part of each exam-
ple shows the query image of a complex scene that contains an instance of one
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Fig. 3. Performance as a function of vector dimensionality

object. Different situations like object occlusion, rotation, scaling, and intensity
change are shown. The result, expressed by the model image that won the voting
scheme, is shown to the right. The outline of the detected object is also shown on
the query image. For the sake of clarity, not all matches between the query and
the model are displayed. Only randomly selected matches that do not overlap
are shown. In the rest of the experiments only relational-based feature vectors
are used.

5.2 Dimensionality of the Feature Vectors

Usually, high-dimensional feature vectors convey more information about the
local characteristics of a point and lead to better results but at the expense
of the storage requirements and the computation and matching complexities.
Several experiments were run using feature vectors with dimensionality that
ranged between 14 and 127 dimensions. In each case, the recognition rate, the
average number of matches and the average match precision were observed.
Figure 3 shows the results. The recognition rate and quality (number of matches
and match precision) go up as the dimensionality increases. The average match
precision shows that, in most cases, most of the matches are correct matches.
Only for low dimensionality the average match precision is under 90% (about
82% for dimensionality = 14). It reaches about 95% for 127-dimensional vectors.
The time needed for recognition depends on the dimensionality of the feature
vector in addition to the number of interest points (the number of feature vectors
consequently) found in each image. The average recognition time as a function
of the vector dimensionality is shown in Figure 3(d). Utilizing feature vectors
with dimensionality of about 40 gives a good compromise between recognition
rate and quality from one side and complexity and storage from the other side.

5.3 Comparison with SIFT

We report here the performance achieved when using the well-known SIFT fea-
tures. Table 3 summarizes the results. More matches and higher match precision
are obtained using SIFT. However, the recognition rate achieved using SIFT is
the same as that achieved using the relational integral invariants.

It should be noticed that the dimensionality of the used integral invariant vec-
tors (43 dimensions) is much less than that of SIFT (128 dimensions). Moreover,
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Table 3. Results using SIFT features

Average Average
Recognition rate # of matches match precision

SIFT 98.99% 151.8 96%
Rel. Integral Invariants 98.99% 72.34 91%
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Fig. 4. Precision-Recall graph using 400 queries of the COIL-100 database

in SIFT, about 15% of the points have multiple feature vectors corresponding
to multiple orientations assigned to these points. This leads to more storage
and matching requirements. This is not the case for the integral invariants. An
important advantage of the integral invariants over SIFT is their capability of
exploiting color information when needed. SIFT is extracted using grayscale in-
formation only. The integral invariants can be extracted from color information
by simply applying the kernel functions to the different channels of the color
space. To demonstrate this, we carried out some experiments on the COIL-100
database of color objects. In this database, images of 100 different objects were
taken at pose intervals of 5 degrees resulting in 72 poses per object. Exploiting
color information in such a database is a big plus as the number of points de-
tected in the images of the database is very small (not more than 10 for some
objects). Moreover, some objects in the database are similar but with different
colors. We tested the performance of the different methods in retrieving objects
using 400 query images (4 per object). Figure 4 shows the results in terms of
the precision-recall performance measures. The best results were achieved us-
ing the color-based integral invariants. SIFT comes in the second place and the
grayscale-based integral invariants come third.

6 Conclusion

In this paper we have investigated the use of integral invariants to extract local
feature vectors around interest points for the purpose of retrieving objects in



260 A. Halawani and H. Tamimi

complex scenes. The features are by definition invariant to Euclidean motion
and can be made similarity invariant by adapting the support of the kernels
used to the local support of the interest points. Two types of features were
discussed; relational type and monomial type features. Much better results in
terms of recognition rate and quality were achieved using the relational type
features as they are robust against intensity changes, which is not the case with
the monomial type features. Tests were conducted using test images of objects
against cluttered backgrounds and in difficult situations like partial object oc-
clusion and intensity changes. Several experiments considering the feature vector
length were conducted and it was found that vectors with about 40 dimensions
give a good compromise between performance and complexity. We compared
our work with the SIFT features. The main advantages of the integral invariants
over SIFT is the lower dimensionality and the ability to use color information if
needed.
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