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Abstract

In many classification applications, Support Vector Maeki{iSVMs) have proven to
be highly performing and easy to handle classifiers with gagd generalization abil-
ities. However, one drawback of the SVM is it's rather higasdification complexity
which scales linearly with the number of Support Vectors }Shhis is due the fact,
that for the classification of one sample one has to evalbat&érnel-Function with
all SV. To speed up classification, several different apginea have been published,
most of them trying to reduce the numberof SV. In our work, ckhés especially
suitable for very large datasets, we follow a different aggh: as we show, that it is
effectively possible to approximate large SVM problems bgamposing the original
problem into linear subproblems, where each subproblenbeagvaluated irf2(1).
This approach is especially successful, when the assumptids , that the large
classification problem can be split into mainly easy and enflgw hard subproblems.
For this linear decomposition, we introduce a modified nuca¢roptimization
process, which preserves the maximum margin property. @mdatd benchmark
datasets, this approach achieved great speedups whiggisgfonly sightly in terms of
classificationaccuracy and generalization ability. WeHer extent the method using
not only linear, but also non-linear subproblems for theodegosition of the original
problem which further increases the classification pertoroe with only a little loss
in terms of speed. Additionally we introduce a set of heiggsivhich allow to directly
control the tradeoff between speedup and accuracy. An mmaation of our method
is available in [Rea04].

This documentis largely based on the master thesis of KZapé&n Arreola which
has been supervised by Janis Fehr and Hans Burkhardt, anesthiéng publications
at ICPR 2006 [AFB06] and GfKI 2007 [FAB].
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Chapter 1

Introduction

In terms of classification-speed, SVMs [1] are still outpenfied by many standard
classifiers classifying large problems. For non-lineanké&sk, the classification func-
tion can be achived with complexif(n) for a problem withn SVs. However, for
linear problems, the SV can be combined in one normal veafiokying classification
in Q(1) by calculating the dot product with the normal vectoof the hyperplane. In
addition, the SVM has the problem, that the complexity of &/Bviodel always scales
with the most difficult samples, forcing an increase in Suppectors. However, we
observed, that many large scale problems can easily diudechajority of rather sim-
ple subproblems and only a few difficult ones. Following #sumption, we propose
a classification method based on a tree whose nodes consly midinear SVM.

1.1 Related Work

The speedup in classification time has been approached faltbing ways:

Direct reduction of number of SVBurges and Scholkopf [BS97] proposed a method
to approximatew by aw’ which can also be expressed by a list of vectors as-
sociated with corresponding coefficients However, the method for determin-
ing the reduced set is computationally very expensive.r_Btewns, Gates and
Masteres [DGMO01] developed a method to identify and discartecessary SVs
—those SVs who linearly depend on other SVs— while leavieg3tiM decision
unchanged. A reduction in SVs as high4@s96% was reported.

Indirect reduction of number of SVs by reducing the size ef QP problem This
method calledRSVM(Reduced Support Vector Machines) was proposed by Lee
[LMO4]. It preselects a subset of training samples as sup@ators and solves
a smaller QP. The authors reported that RSVM needs much ¢esputational
time and memory usage than standard SVM. A comparative sta@®SVM and
SVM by Lin et al. [LLO3] showed that standard SVM possessgbiéii general-
ization ability, while RSVM may be suitable in very largeitriag problems or
those that have a large portion of training samples beco®\ifgy
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Reduction of the number of vector componehisi and Govindaraju [LHLO5] pro-
posed a reduction of the feature space using principal caemg@nalysis (PCA)
and Recursive Feature Elimination (RFE). The authors tedoa speedup in
classification time up to 10 times against a conventional S8l some tun-
ing has to be done in their procedure and it is not clear thengptnumber of
components to be taken, or the optimal number of top rankatdrfes.

Enlarging margins in Perceptron Decision Tre€®ennett et al. [BCSTWO0O0] experi-
mentally proved that inducing large margin in decisiongreéh linear decision
functions improved the generalization ability. Still, theethods relies on .sev-
eral parameters that have to be tuned in order to achiewesztry results.

Wavelet approximation of a SVMRatsch et al. [KWO05] developed an approximation
of a SVM decision function for face classification. This wadcalated by an
over-complete Haar wavelet transformation using a setatargles with con-
stant gray-level values. A feature of their training al¢fomi is that it is fast, sim-
ple and does not require that many complicated tuning inrashto other face
classifiers. The paradigm of this method, is that, insteadyofg to estimate a
classifier that is jointly accurate and fast, they first bailtlassifier that is proven
to have optimal generalization capabilities, then the appate approximation
is calculated.



Chapter 2

Definitions

2.0.1 Support Vector Machines

The following discussion will be centered in a two-classhpem. It will be assumed
that the set of features of each samplieelongs to a Hilbert space denotedMythat
is, is a vector space with a dot prodyet y), with 2,y € H such that aworm can be

induced by||x|| = \/(x, x).

2.0.2 Two-Class SVM

Definition 2.1 (Positive and Negative Class).etm; andms be two natural numbers
that fulfill m = mqy + mo, m; > 0, me > 0 @and% = {1,...,m}, without loss of
generality we can define:

Class 1 (Positive Class) of sizem, with index%, = {1,...,m1}, conformed by the
set{x;},i € %1, gravity centers; = m% Zie% x;, y; = 1 forall i € ¢, and

for some later applications, a global penalization vallig is defined such that
C; = Dy Vi € 6, C; represents individual penalization values.

Class 2 (Negative Class) of sizems, with indexé,; = {my + 1,...,m1 + ma}, con-
formed by the sefx;},i € %, gravity centers; = m% Zie% Xiy Yi = —1
for all i € %,, and for some later application, a global penalization &l
is assigned to this class such th@t = D5 Vi € %5; C; represent individual
penalization values.

Having two classes, we say that they lnearly separabléf there is a hyperplane
of the formP : {x € H|(w,x) +b =0}, w € H,b € R that can perfectly divide the
two classes. The vecter is a vector orthogonal to the hyperplaRend(w, x) is the
length ofx along the direction ofv.

We will be interested in finding theanonical hyperplane with respect tox;,

i € ¢ defined as the hyperplane with the p@air, b)) € H x R if it is scaled such that

rlnin [[{w,x) +b|| = 1. (2.1)

1=1,..., m
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That is, thecanonical hyperplane is the one whose minimal distance to the sam-
ples equalsL.
To illustrate this, let's consider the two-class examplgicked in Figure 2.1:

A

Figure 2.1: Example of a two-class problem

Without loss of generality, let the green triangles repnéskass 1¢7) and the blue
circles represent class Z4). The hyperplanes in Figure 2.2 are all valid functions to
divide them.

Figure 2.2: Possible dividing hyperplanes for a two-clasbem

If the objective is to divide the two classes with a plane, wauld like to do it
with the plane that has maximum distance (margin) to bothksels, i.e., a maximum
distance between the two classes. Figure 2.3 shows a hgperpith maximal margin
for the classification problem in Figure 2.1.

It has to be noticed that fot;, i € 61 andx;, j € €3, such thafw, x;) = +1 and

(w,x;) = —1, we have(w, (x; — x;)) = 2 and therefore
w 2
— (X — X)) = —— (2.2)
T 07 = g

With the previous equation, we can conclude that the distafithe closest vector
to the hyperplane iﬁvlv—‘, then, finding the hyperplane with the maximum distance is
equivalent to maximize the norm of the orthogonal vestothat corresponds to the
hyperplane that can divide the two classes.
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A
(x1(w, ) 4 b = +1}

~—

° . I
. . ° L \\fxT(w,x) +b=0}
{x[(w,x) +b=—1}

Figure 2.3: Hyperplane with maximal margin for a two-classipem

2.0.3 Multi-Class SVM

Originally the SVM is only capable of solving two-class platns, but there are differ-
ent strategies to extent SVMs to muti-class problemsi [HLO1

One vs. Onelf there aren classes(y) binary classifier s are pairwise trained for this
problem. For classification, vectors are tested in all modeling a probability
(points) of belonging to a clas s, finally, it will be labelesl the class that has
more points. The following is an example of a one-vs.-onssifeer.

Figure 2.4: One versus one classifier for 4 classes

One vs. Restlfthere aren classesy two-class classifiers a re trained, where one class
is differentiated from all the others. New samples are testall models and the
results are compared. The following is an example of a oneess classifier.

Sum of points

Figure 2.5: One versus rest classifier for 4 classes
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2.1 SVM Constrained Optimization Problem

The following problem is a formal definition of the maximal rga hyperplane prob-
lem that needs to be solved in the SVM approach.

Problem 2.2 (SVM-Primal Optimization Problem) Let a class 1 and a class 2 be
defined as in Definition 2.1, the optimal margin hyperplanenat problem is defined
as follows.

o g2
minimize T(w) = 3[wll*, (2.3)
subjectto y;((x;,w)+b)>1,i=1,.,m, (2.4)

And the corresponding decision function would look like
f(z) = sign((w, x) +b) (2.5)

In problem 2.2,f(z) = 7(w), £ = 0 andZ = . Following [NW99] and as in
[SS02], theLagrangian function can be defined together with the objective function
7 and the constraints in 2.4 as follows

L(w,b ) = SIW[2 = 3 il iy w) + ) — 1) 26)
i=1

One of the K K'T' conditions states that the gradient of the Lagrangian fanct
must equal zero, that is,

0
%ﬁ(w, b,a) =0 and (2.7)
0
S L(w.b,0) =0. (2.8)
this leads to
S aii=0 and (2.9)
i=1
w = Z QG YiX - (2.10)
1=1

The solution vector has thus an expansion 2.10 in terms obseswf the training
patterns, namely those patterns with non-zeracalledSupport Vectors (SV3. By the
K KT conditions,

a;lyi((xi, w) +b) — 1] =0foralli =1,...,m, (2.11)

the SVs lie on the margin. All remaining training examplgesy;) are irrelevant: their
constrainty; ((w,x;) + b) > 1 could just as well be left out, and they do not appear in
the expansion. Thus, the hyperplane is completely detewmiryy the patterns closest
to it, the solution should not depend on the other examples.
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2.1.1 SVM Optimization Problem

By substituting 2.9 and 2.10 into the Lagrangian 2.6, onmiaktes the primal vari-
ablesw andb, getting the following problem which is in practice solvadce it de-
pends only on the sample vectors.

Problem 2.3 (SVM-Dual Optimization Problem) Let class 1 and class 2 defined as
in Definition 2.1, the optimal margin hyperplane dual prables defined as follows

maximize W((X) = Zzil oy — % Z?»:l Q05 Yi Y <Xi7 Xj>7 (212)

acR™ »J
subject to oa; >0,i=1,...,m, (2.13)
Sy aiyi = 0. (2.14)

Using 2.10, the hyperplane decision function 2.5 can thusriteen as

f(x) = sign iyiai<xi,x) +b (2.15)
i=1

Figure 2.6 shows a solution for the example in Figure 2.1 y#lw area shows
the points in the space that will be labeled as class 1 and/drearea shows the points
that will be labeled as class 2. Vectors whase# 0 are marked.

Figure 2.6: Two-class classification problem with linedugon

2.1.2 Soft Margin SVM

Often, the problem can be unfeasible because no lineai@olstable to separate the
classes properly. For such problems, the C-SV classifieiniasluced allowing some

mistakes through slack variables with a penalization inathjective function, leading

to the following problem.
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Problem 2.4 (C-SV Classifier Primal Problem) For a two-class problem, the primal
optimization problem with slack variables is defined as:

N T S
werpf!géﬁlszeeu&m (W, 5) 2 ”W” + Z’L:l Ci&, (2.16)
subjectto y;((x;,w)+b)>1—&,i=1,..,m, 2.17)

&>0,i=1,.,m. (2.18)

The definition here given varies depending on the sourcetékisn. Using again
2.9 and 2.10, the last problem can be converted into thewWailpdual problem.

Problem 2.5 (C-SV Classifier Dual Problem)In a two-class problem, the optimal
margin hyperplane dual problem with slack variables is dedias follows

maxglgnize W) =310 o — 5 2000y iy (Xi, X5), (2.19)

aeR™ ? ’

subject to 0<; <Cy,i=1,....,m, (2.20)
Z;il Y = 0. (221)

For this problem, the decision function remains as in 2.15.
We notice that there is still missing the value of the thrédhpif there exist a solution
for Problem 2.3, the hyperplane could be placed in the midfillee two closest points
to each class. Nevertheless, for Problem 2.5, the valueeofvtimust be taken into
account; the calculation éfcan be done as proposed in [KSBM99] as following

1 .
b= 2 (iGIZrL.LJZI?uIQ (ki wh} + i IyO Tl {(xi,w>}) ’ (2.22)
where,
Iy = {Z|0 <oy < Ci}, (223)
L ={ilyi=1,0, =0}; L= {ilyi=—1,0; = C;}, (2.24)

2.1.3 Non-Linear SVM

Often, no satisfying linear solution can be found. To overedhis problem, feature-
vectors are mapped into higher dimensional spdcly the use of some non-linear
function

O(x):R" = H (2.26)

® is chosen in a way such that the classes can be separdiehithe trivial SVM
decision function.

The linear case was developed in a Hilbert spicdn order to make generaliza-
tions of this method, the dot produgt, x’) can be expressed in terms of the kerhel
evaluated on input patternsz’ in a transformed space induced ®yx) = z,

k(x,x') = (z,2) = (®(x), ®(x")). (2.27)
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This substitution, which is referred to as tkernel trick, is used to extend the
method to transformed spaces with nonlinear Support Védaamhines in a new space
'H called thdinearization spacéecause in the new space, the samples are divided with
an hyperplane (i.e. a linear function).

The kernel trick can be applied since all feature vectors1%2nd 2.19 only oc-
curred in dot products. The vecterthen becomes an expansion in feature space, and
therefore will typically no longer correspond to tfke— image of a single input space
vector. We obtain a decision function of the form

f(x) sign (Z Yo (P(x), P(x;)) + b) (2.28)

i=1

= sign (i yiik(x,x;) + b) (2.29)

with the threshold calculated similarly as in 2.22, but considering that nowhage
applied® to the original samples,

b= 2 <i€IZrL.LJZI?u12 (ke W)} + i€ TyO L30T {k(xi,w)}> ’ (2.30)
where the indeX;, are defined as in 2.23, 2.24 and 2.25.
The following quadratic problem is the one formulated with kernel trick

Problem 2.6 (C-SV Kernel Trick in Classifier) In a two-class problem, the optimal
margin hyperplane dual problem in the transformed Hilb@ase induced by (x, x’)
(with slack variables) is defined as follows

mg)e(gglnlze W(Oé) = Z;il o — % Z::jzl oziozjyl-yjk(xi, Xj), (231)
subject to 0<o; <Ci,i=1,...,m, (2.32)

The only restriction on kernels is that the eigenvalues hawatisfyA > 0. Thus,
K has to besemi positive definiteln general, a¥ is a kernel if and only ifK" holds
ZZ;ZI aiajK(xi, Xj) Z 0.

This is stated by Mercer theorem:

Theorem 2.7 (Mercer Theorem) K (x;,x;) = (®(x;), ®(x;)) iff for arbitrary g(x)
with [ g(x)?dx < oo holds:

/K(xi,xj)g(xi)g(xj)dxidxj > 0. (2.34)

Forx € R™ there are several proposed kernels [SS02]:

Homogeneous

k(x,x') = (x,x) (2.35)
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Polynomial

k(x,x') = (x,x')? (2.36)

Gaussian or Radial Basis Function (RBF)

T
k(x,x') = exp (—M) (2.37)
20
Sigmoid
k(x,x') = tanh(k{x,x') + 1) (2.38)

The Gaussian function, also known as Radial Basis FuncR@t}, proposed by
Boser, Guyon and Vapnik [BGV92], [GBV93] and [Vap95] is naihy the first choice
because it combines good performance with strong theatébiendation. In [SS02] it
is proven that the RBF-kernel is equivalent to the dot prodfielements belonging to
an infinite dimensional space. To show the capacity of thi& ttet us illustrate it with
the example in Figure 2.7. As can be seen, there does noaayistyperplane that can
perfectly classify all training samples.

05F @

—os}

Figure 2.7: Example of a two-class problem with no lineausoh

If we try to adjust a straight line to separate this probldme,result seen in Figure
2.8 would be obtained.

The solution to the problem in Figure 2.7 with a Gaussian &ewould look like
in Figure 2.9.
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Figure 2.8: Two-class problem with the best adjusted hylpag

Figure 2.9: Solution for a two-class problem with Gaussiarr€!l (Elephant in a
snake-solution)



Chapter 3

Support Vector Machines in a
Decision Tree

The classification time of a Support Vector Machine (SVM)haét non-linear kernel
[BGV92] depends on the number of resulting Support Vect8kss|) in the model, and
in complex models, the number of SVs can be considerablgldfg test dataset is to
be classified with such a model, the classification can besievy.

However, we observed, that many large scale problems caly éasdded in a
majority of rather simple subproblems and only a few diffimies. Following this
assumption, we propose a classification method based oe avtrese nodes consist
mostly of linear SVM. This way, each node in the decision tsecontain a decision
hyperplane, and the classification will depend only on thmiper of nodes. The clas-
sification is then calculated with the dot product of a testgl@ with the orthogonal
vector to the corresponding hyperplane of each node.

In Section 3.1 the theoretical basis for this classifier averg while Section 3.2
describes the proposed algorithm in detail.

3.1 Theoretical Approach

In our work, we propose a linear approximation of a contirsifunction for classifi-
cation. The training samples are represented in a feataees@ Hilbert space, that
is, a space with a norm that can be induced by a dot producs Sgace is divided
in regions defined by linear inequalities (hyperplanes)s bhings several advantages,
one of these is that the transformed space is known sincethieigriginal one; the
tuning of parameters can be avoided and the number of hygrepiheeded to linearly
approximate the classification function is far less thanrthmber of needed support
vectors.

With this aim, a decision tree is built. Each node corresgdnd hyperplane that
can classify a specific region. Each hyperplane in the trémised in function of
the previous hyperplane. For each node, a linear SVM isddago that the resulting

14
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hyperplane is able to identify a region of the feature spdoeravonly samples of one
class lie.

3.1.1 Zero Solution in SVM

If we have two classes, defined as in Definition 2.1, a SVM ugimtrained so that it
will make the least possible mistakes in both classes. Wgictassical approach, the
importance of errors in each class can be tuned by adjusi;gdlues ofD; and D»
which are the weights for clag§ and class, respectively.

To achieve this, a first constrained problem is solved in otodound the SVM
that classifies perfectly one chosen class, say @#asand make the least errors in the
other.

In the case that clasé, is to be perfectly classified, intuitively, to achieve thas,
big value forD; and a very small value fab, would be proposed. But it can be faced
that the resulting solution of the SVM with these parameitetise zero solution.

The zero solution can occur if the center of gravity if cl& lies in the convex
hull of class%;, and D, is big enough. This follows as consequence of the following
general theorem.

Theorem 1 (Zero Solution) Let classs), and classsj, be defined similarly as in Def-
inition 2.2. If the convex hull of clas%} intersects the convex hull of the other
classéz, thenw = 0 is a feasible solution for the primal Problem 2.4 fif; >
max;eq, {\i } - D, where); are such that

P = Z )\'Lx’ia
1E€ECk

for a pointp that belongs to both convex hulls.

Proof

It has to be noticed thatife ¢}, andj € ¢ theny; - y; = —1; similarly, if i € €},
andj € % theny, - y; = 1. Without loss of generality, let clas§, = 47 and class
¢ = ©a, then the dual problem can be written as follows

maximize Zie‘é o; + Zie% o; + Zié%ﬂ,jé%’z Qi <Xi, Xj)

— 32w (X Xg) — 500 ieq, it (X, X;)

subject to Zie(bpl ;Y + Zie%’z a;y; =0
0<a; <D;foralli e ¢,
0<a; <Dyforallj € .

If p belongs to the convex hull of both classes, then, it can bitemras follows

P = Z Aix; and pP= Z Aij,

i€61 JEC
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with \; > 0foralli € 61, Ai = 1and\; > Oforall j € 62, 3
Leta, = \iDs < Ds foralli € %, anda, — A, Dy < maxjecgl{])\ }D1 < D2
forall j € 4, then

dicw, WYi i, WYi = Dicq, NMD1 =D e, AiD1
= D1 Zze‘(o”] )\ Dl Ejeclapz /\j
= Di—D
= 0

Therefore; = \;D; forall i € € anda; = A\;D; for all j € % is a feasible
solution for the dual problem. If we calculate the veatowith these values, we obtain:

w Zie% QX Yi + Zje% QXY
Zie(bpl )\iDlxi — ZjE(@ /\jD1Xj
D1 Zie(bpl )\ixi — D1 ZjE(@ /\ij
Dip — D1p

0.

Finally, we conclude thaw = 0 is a feasible solution for the primal Problem 2.2.
O

Bennett and Bredensteiner [BCSTWOO] proved that Problén 2VM, has also
another dual problem that can be seen in terms of the condex hu

When a solution exists, a geometric interpretation of Rraob®.2 can be reduced
to the problem of finding the two closest points of the two @atulls and then,
finding the line segment between the two points. Finally,attbogonal plane to the
line segment that bisects it, is chosen to be the separdtng (isee Figure 3.1).

Figure 3.1: Convex Hull interpretation for the SVM solution
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But a solution not always exists for Problem 2.2, therefd*mblem 2.4 was
introduced allowing some mistakes.
Under this approach, Problem 2.4, C-SV Classifier, leadbéogeometric inter-

pretation of finding the closest points of the two reducedresulls according td,
andDs (see Figure 3.2).

05

05

Figure 3.2: Reduced Convex Hull interpretation for the CvB8blution

This reduced convex hull will be still around the center odgty of the original
convex hull. And in the case that the center of gravity of€léisis inside the convex
hull of class?, if D is big enough, the zero solution will be still a feasible $ioin.
This is resumed in the following corollary.

Corollary 1 (Zero Solution with Gravity Center) If the center of gravity of class,
s, IS inside of the convex hull of clag§, then, it can be represented as

So = Z NiX; and So = Z mLQXj

1€EC JECS

with \; > 0 foralli € 61 and)_, ., \i = 1.
If additionally D1 > \,q0 Dama, Where,, ... = max;e, {\;}, thenw = 0 is a
feasible solution for the primal Problem 2.2.

Proof
Let class%) and classé, be as in Definition 2.1, then the dual problem can be



Fast Support Vector Machine Classification of very largabBats 18

written as follows

maximize 3o, i+ Yicq, Ot Dicw, jew, it (X X5),

=3 2 e Qi(XisX) — 530, ieq, i (X, X;),

subject to Zie% oy + Zie% a;y; = 0,
0<a; <Dforalli e %,
0<a; <Dyforallj € 6,

Leta; = A\;Damo < ApaeDoms < D1 foralli e 61 andaj =Ds for aII] € 6,
then,

Zie%ﬁ Q;Yi + Zje% oY; = Zie%ﬁ AiDamg — Zg‘e% Dy
Dama Y icq, Ai — Damg
Damo — Doma

0

Thereforen; = A\;Damo for all i € € anda; = Do for all j € 65 is a feasible
solution for the dual problem.
If we calculate the vectow with these values, we obtain:

W= Zie% QX Yi + Zje% QXY
Zie‘é )\iDQmQXi — Zje%”z DQXJ'
Doma ) e Nixi — Damasy
Damgsy — Damigss

= 0.

Finally, we conclude that = 0 is a feasible solution for the primal Problem 2.2.
O

Any reduced convex hull produced by a C-SV problem will stilhtain the gravity
center of the class. Therefore, for the case where the graegitter of class; is
in the convex hull of clas¥, (see Figure 3.3), if a non-degenerate solution wants to
be found, the convex hull of class, must also be reduced enough (i.&), must
decrease). The resulting hyperplane can then be adjustiedhgithreshold parameter
to have no errors in the hard class.

3.1.2 Reduction of Possibility of the Zero Solution

In order to reduce the classification time, the SVM with nimedr kernel will be sub-
stitute with a decision tree of linear support vector maehinThe tree will first target
an area in the feature space that can be clearly assigneast{ ¢} < {2,1} by a lin-

ear classifier. This will be achieved by finding the hyperplaith the widest margin
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Figure 3.3: Reduced Convex Hull interpretation for the CvB3blution

that made no errors in clags= {1, 2} and that makes the least possible mistakes in
classk.

For this, and to decrease the number of trivial solutionsx(zector) that are in the
approach, the following new problem will be introduced

Problem 1 (H1-SVM: Hard Margin for 1 class (Primal Prob.)) Let
2 classes be defined as in Definition 2.1, we will be interestesblving the following
problem:

inimi 1 2 (lxs
minimize 7(w) = 3|[W[* = Xice; vi((xi, W) +0), 3.1)
subject to yi({x;, w) +b) > 1forall i € €, (3.2)

wherek = 1 andk = 2, or k = 2 andk = 1.

Analyzing this problem more precisely, it can be seen thaff¢lasible solution of
this optimization problem is the one that classifies colyeddt the samples in class
(becausey; ((w,x;) +b) > 1forall i € ¢ is a constrain) with no slack variables. On
the other hand, from all the vectors that satisfy this caodjtthe search vector is the
one that has a balance between the size of the margin andfigenof misclassified
samples of clas%i.. As before, this problem can be transformed into the foliayvi
dual problem which is a special case of the original problemens all thex;, for one
class are equal to one.

Problem 1 (H1-SVM: Hard Margin for 1 class (Dual Prob.)) Letthe two classes be
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defined as in Definition 2.1. The H1-SVM for 1 class is baseteifailowing problem

manllglize W((X) = ZZI oy — % ZT]’:I Qi0GYi Y <X1‘,Xj>, (33)

acR™ ?

subject to 0<o; <, 1 € G, (3.4)
aj = 1, 5¢€ (5157 (35)
S ey =0, (3.6)

wherek = 1 andk = 2, or k = 2 andk = 1.

With this new definition of the SVM problem, the zero solutzam only occur with
a linear combination of the vector samples of the hard cl&thout loss of generality,
if the hard class is class,

w = iaiyixi (3.7)
=1
= Z ;X — Z ;X5 (38)
IS 1€EG2
= Z ;X — Z X; (39)
1€61 1€EC2
(3.10)

if we definez; = ) ., x; and|¢1| > (n — 1) = dim(z;) — 1, then, there exist
{a;},i € €1, a; # 0 such that

w = Z a;x; —z; = 0. (3.12)
1€E61

So, the number of zero solutions that are feasible in the Wit$roblem 1 is
a subset (strictly smaller) than the number of zero solgtionthe original C-SVM
Problem 2.5.

3.2 Description of the Algorithm

The aim is to build a tree which nodes are SVMs. At each stepg@mn defined by a
hyperplane is labeled with a class until the whole spacebisiéal.

To illustrate this and the further description of the algfum, let us consider the
example in Figure 3.4.

This example can be found at the dataset web-page of the LMB&W+ library
[CLO5a] under the name dfourclass The problem has 2 features and therefore it
can be represented in 2D. Clagsis represented with green triangles and clésss
represented with blue circles.

This example has clearly a non-linear solution, so a SVM Wtussian Kernel
was used. The graphical representation of the solutiondé@aidepicted in Figure 3.5.
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Figure 3.5: Solution for the fourclass with a SVM (Gaussiamiel)

The classification function corresponding to the found hmglame in the trans-
formed space is marked with a solid red line, the existinggimabetween the two
classes can be seen with the spotted red lines. The thickas@we the needed sup-
port vectors for the classification. As can be seen, thesa laigepercent of the training
data, therefore a large evaluation time for classificatiew points is needed.
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3.2.1 Decision Tree with Linear SVM Nodes

The speedup of the classification of a dataset is done by thstrewtion of a deci-
sion tree whose nodes are hyperplanes obtained with thengaof a support vector
machine with linear kernel.

1=1
((wi,x> +bz) X he; >0

i=1+1
(Wi, x) +b;) X hei >0

labelx = —hc;
=141+ 1
(Wi, x) + b;) X he; >0
labelx = —hc;
t=14+1
(<W7;,X> +bi) X he; >0

labelx = —he;

labelx = —hc; labelx = he;
Figure 3.6: Decision tree with linear SVM

To obtain the decision tree, at each stdpaed class 4. is chosen (in a greedy way,
see Chapter 4). Then a SVM is trained so that the resultingitpygne will correctly
distinguish all points belonging to clags, that is, all the samples;,i € %, will lie
on one side of the hyperplane and all points on the other Sitteeglane will belong
to the non-hard clasgj;,. The number of samples is then reduced by leaving out the
training samples of clasg;, that were correctly classified with this SVM. This process
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is repeated with the reduced problem until the sampleddeftng all to the same class.
The classification then takes places by identifying at eamterif the sample be-
longs to the non-hard class 2 being labeled with it, or kegpiith the evaluation to
the next node. This is depicted in the diagram 3.6.
In the fourclass example, the class 1 (green triangles)yihénd class at the first
step, the line (hyperplane) obtained by solving Problemth Wward clasd will look
like in Figure 3.7.

1801
[ 4
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140
120 :
100

80

! ’
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0 20 40 60 80 100 120 140 160 180 200

Figure 3.7: First hyperplane for Problem 1 fourclass(hard class = triangles)

On Figure 3.8 the region which has exclusively samples fygtato the non-hard
class is depicted in cyan and it all will be labeled as class

Next, the problem is reduced by leaving out the samples it the previously
marked region. For thimurclassexample, the new problem to solve is the one in Figure
3.9.

This procedure is repeated stepwise with the new sampleesparking the “safe”
areas (i.e. areas where samples of only 1 class were foumdakard class.

Figures 3.10, 3.11 and 3.12 show which hyperplane found lgeithm at each
step of the tree. A region in cyan represents the solution@®Pavith the positive class
(greentriangles) as the hard class, that is, all the elesmetiie cyan region are labeled
as negative samples. Similarly, A region in yellow représéme solution of a QP with
the negative class (blue squares) as the hard class, thltie elements in the yellow
region are labeled as positive samples.

Each time that a hyperplane was chosen, the samples betptigirthe non-hard
class were removed and the QP for the remaining samples a&s $be space can be
step-wise labeled by considering the region that is on the i the hyperplane where
only samples belonging to the non-hard class were found.
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Figure 3.8: First labeling after resolution of Problem 1flmurclass
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Figure 3.9: Reduced problem for next classification step

At each step, the algorithm chooses the hyperplane thatethrce the most the
problem, therefore, it can happen that the same class ieplasthe hard class for
consecutive nodes in the decision tree.
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Figure 3.10: Second and third plane for tbarclassproblem
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Figure 3.11: Fourth and fifth plane for tifieurclassproblem
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(a) Sixth plane (b) Seventh Plane

Figure 3.12: Sixth and seventh plane for fbharclassproblem

By repeating this procedure, new regions are labeled urgirémaining samples
belong all to the same class. The algorithm will label the lwhemaining region
containing these samples with the class they belong.

200
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Figure 3.13: Final solution for the fourclass problem

Picture 3.13 depicts the final solution of the algorithm foe fourclass problem
and how the space was divided according to the decision tree.
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3.2.2 Search for the Best Hyperplane

As seen in the theoretical approach, two QP problems aredmmasl. One is the ap-
proach given by Boser, Guyon and Vapnik [BGV92] with a largeglization value for
the hard class. The second one is the new approach where alassds defined and
the objective is to find a hyperplane with the maximum margid the least possible
mistakes on the non-hard class.

Once the QP Problem 2.5 or Problem 1 have been solved, thetidireof the
orthogonal vector can be calculated as.

w = Z Qi YiX (3.12)
i=1

The rest is to find the threshobdbf this hyperplane, equivalent to the intersection with
the axes of it.

It has to be taken into consideration that the searched higer is one that makes
no mistakes in the hard class and makes the less possibkkessh the other class.
The usual way of calculating the threshold in 2.22, cannolobger used to define
the hyperplane. Instead, the threshold is calculated higraag to b; the minimum
(maximum) value ofiw,x;) for all i € 41 (: € %) and then, for those samples
belonging to the non-hard class that are correctly clagsifiee maximum (minimum)
value of (w,x;) for all i € €, (i € 61) is assigned td, and the threshold is set to
b= %(bl + bg) That is,

for hard class =1

minice, (W, X;) + MAT{jeEs N (w,x;)<0} (w,x;)

b = . (3.13)

for hard class = -1

h = Maxjce, <Wa Xj> + miZ{ie%”l/\(w,xi}>0} <W7 Xi> (314)

In Figure 3.14 the calculation of the threshold is depictedr this example, the
hard class is the positive class (the green triangles). #rogonal vectosw is given,
the green hyperplane es the one withas threshold; this has the characteristic that all
samplesin class 1 are correctly classified, except for tes tratw, x;) = b1, i € €.
From this threshold, the nearest hyperplane is search batthie least possible errors
in class%s is gotten; this is represented with the blue hyperplane thitesholdb,.
Finally, b is calculated as the average of these two values.

The proposed solution for Problem 2.7 can be seen in Figl® &s usual, the
yellow area represents the positive class and the cyanepeasents the negative class
with the assigned probability accordingly to the hyperpltrat is classifying that area.
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Figure 3.14: Search of threshdldor non-linear problem
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Figure 3.15: Final solution for problem in Figure 2.7 (MexticHat solution)

3.3 Non-Linear Extension

In order to classify a sample, one simply runs it down the Swé&. When using
only linear nodes, we already obtained good results, butls® @served, that first
of all, most errors occur in the last node, and second, thett @l only a few samples
will reach the last node during the classification procedtires motivated us to add a
non-linear node (e.g. using RBF kernels) to the end of ttee tre
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linear SVM: ((wo, x) + bg) X hecg > 0

||nearSVM ((wg,x) + bg) X hcg >0
labelz = —hcl

non-linear SYM

labelz = > a;y;k(zy, @) + bap
A%

labelz = —hco

Figure 3.16: SVM tree with non-linear extesion

Training of the extended SVM-tree is analog to the origirzelec First a pure linear
tree is build. Then we use a heuristic (tradeoff betweerameeclassification depth and
accuracy) to move the final, non-linear node from the lasengalthe tree. It is very
important to notice, that the final non-linear SVM has to laéned on the entire initial
training set, and not only on the samples remaining aftetaselinear node. Other
wise the final node is very likely to suffer from strong oveirfig. This way the final
model will have many SV, but since only a few samples will fettte final node, the
average classification depth will hardly be effected as &pegements showed.



Chapter 4

Implementation Details

For the implementation, the library LibSVMTL [Rea04] wasdifted. This is a highly
customizable C++ Support Vector Machine library basedémnthe designed by Chang
and Lin [CLO5a].

This chapter summarizes specific details about the implesdeadgorithms. The
construction of the decision tree is straightforward; ¢fiere, we focus on solving the
resolution of the optimization problem and in obtainingltyperplane in each node of
the tree.

Section 4.1 deals with the QP problem and its resolutionti@ed.2 is focused on
obtaining the parametexg andb to define the hyperplane. Finally, Section 4.3 shows
the additional heuristics that were used.

4.1 Quadratic Problem

Each node in the decision tree consists of a hyperplane. &rpjgme can be defined
with a vectorw orthogonal to it and an offsét The problem of finding the hyperplane
with maximum margin and no errors in one class leads to ammigdtion problem
(Problem 2.4 or 1) which dual problem (Problem 2.5 or 1, retipely) results to be a
QP problem with the form:

Problem 1 (Constrained Optimization Problem)

minimize f(a) = 1a’Qa—eTa |
(a7
subject to Li<o; <Cy,
yTa =0.

If the problem hasn samples() is am x m matrix containing the kernel function
applied to each pair of samples, thats, = k(x;,x;); e is the vector of ones with
lengthm; L; andC; are the lower and upper bound, respectively, dor Finally,
y = (y1,...,ym)T is the vector containing the labels for sampies

Finding an optimum in the dual space, is equivalent to findingptimum in the
primal space. The solution of these QP problems, contamsptimal values for the

30
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dual variablesy;. With the help of the KKT conditions 2.10, the vectercan be later
calculated by:

w = Z Qi YiXi, (4.1)
=1

while the bias can be fixed according to the stated problem.

With the original approach of SVM (Problem 2.5) whelte = 0, if we use the
form or Problem 4.1, several simplifications to the resolutnethod (solver) could be
applied to speed it up. Therefore, some small adjustmentsdbe implemented in
the code of the LIBSVM in order to solve problems with # 0. This algorithm can
be found in [CLO5b] under the name Afgorithm 1.

For the resolution of th@wo-variable QP Subproblenthe next algorithm was
implemented. This consist only on a slight variation of thgodathm implemented
by Fan [FCLO5], Chang and Lin [CLO5b], where the lower bousdilowed to be
different from zero.

Algorithm 1 (SMO-iteration solution)

Used vari abl es:

Qi][j] = kernel evaluation of sanmple i, x[i] and sanple j, X[j]
y[i] = label for sanple x[i]

al pha = array of size m

di] =i-th element of the gradient of the objective function

L i | ower bound for al phali]

Cli upper bound for al pha[i]
PECy[i]r=y[il) {
delta = (-Gi]-gj])/mx{Qi][i]+Qj][j]1+2=Qi][j],0}
diff = alpha[i] - alpha[j]
al pha[i] += delta
al pha[j] += delta

if(diff > 0) {
if(alpha[j] < Lj) {
alpha[j] = L_j
al pha[i] =diff + Lj } }
el se {
if(alphali]l] < L_i) {
al phal[i] = L_i
alpha[j] = -diff + L_i } }
if(diff >Ci - Cj) {
i f(alpha[i] > C.i ) {
al pha[i] = C.i
alpha[j] = Cli - diff } }

el se {
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if(alpha[j] > Cj) {
alpha[j] = Cj
alpha[i] = Cj +diff } } }

el se {
delta = (Qi]-qj])/mx{Qi][i]+djI[i]-2xqi][j],0}
sum = al pha[i] + al pha[j]
al pha[i] -= delta
al pha[j] += delta
if(sum> C.i) {
if(alpha[i] > C.i) {

al pha[i] = C.i
al phal[j] = sum- Ci } }
el se {
if(alpha[j] < Lj) {
alpha[j] = L_j
al pha[i] =sum- L j } }

if(sum> Cj) {
if(alphal[j] > Cj) {

alpha[j] = Cj
al pha[i] = sum- Cj } }
el se {
if(alpha[i] < L_i) {
al pha[i] = L_i
al pha[j] =sum- L_i } } }

4.1.1 QP Speed-up Techniques

Two techniques were used to improve the resolution time@fQJR problem.

The first oneshrinking, was proposed in [Joa98]. This technique is used since for
many problems the number of free vectors (i.e. whiere< «; < C;) is small. The
shrinking technique reduces the size of the working prolétmout considering some
bounded variables. Near the end of the iterative procesqdhksible setl, where all
final free«; may reside in, is identified.

The other method used to reduce the computational time isatieéng. The ele-
ments ofQ);; are calculated as needed sifigés fully dense and may fit in the computer
memory. Only the recently useg;; are stored. Hence, the computational cost of later
iterations can be reduced.

This two methods were not modified from the original versiorthie LIBSVM
library and are explained in detail in [Joa98] and [CLO5b].

4.2 Obtaining the Decision Hyperplane

The aim of solving the QP problem is to go back to the primabknm 2.4 and obtain
the orthogonal vectow and the bia$ for the corresponding node in the decision tree.
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With this, a decision function with the forgign((w,x) + b) can be used to classify
new samples.

4.2.1 Orthogonal Vector

In the two-classDefinition 2.1, the hard class will be denote_d%ﬁand the non-hard
class as¢. Two different problems are solved witlh = 1,k = 2) and later with
(k=2,k=1).

The first problem solved is based directly on Problem 2.5 re/laevery large cost
is given to the errors on the hard class and a standard lowscgsten to the non-hard
class, in this way, the hyperplane will avoid misclassifmain the hard class:

mg)e(glgpnize W(a) = 2111 o; — % Zzljzl 0G0y (X, X5, (4.2)
subject to 0<a; <Ch, i€
0<a; <1, je%
Z;il a;y; = 0.

whereCy is a value large enough so that the resulting hyperplanecleisify the
samples in clasg, correctly.

The initial solution for this problemis settg, = 0 forall i € 7.

The next problem is based on the new approach proposed itelRrdb This prob-
lem is explicitly formulated so that the feasible solutiare the ones that does not
allow any misclassification in the hard class (in numerieatrs, this is equivalent to
assigning a very large cost on the errors in the hard classjtenhyperplane is then
adjusted to do the least possible errors in the other cldss.qliadratic problem takes
the next form:

mg)e(!llépnlze W((X) = Z?;l o — % Z?Zj:l Q0 Y Y <X1‘,Xj>, (43)
subject to 0<aq, i€ G
a5 = 1, j S (gfc
Z?;l aGY; = O

The initial solution for this problem is;; = 0 for all i € ¢}, anda; = 1 for all

J € Cf,;.
The solution of these problems will give the valuesdoon the optimal point. To
obtain the orthogonal vectev, the KKT Condition 2.10 is used:

m
W — E Oéiini.
=1

After solving these problems, four possible solutionsvoare obtained, two are
the solutions of Problem 4.2 after solving the problem wkite 1 and then foik = 2.
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The other two are the solutions obtained from Problem 4.3jragfter solving the
problem fork = 1 and then folk = 2.

Each hyperplane reduces the problem by removing the samixésssk that were
correctly classified. The hyperplane that reduces the prolthe most is finally as-
signed to the next node in the decision tree with the appatpthreshold. For the
classification step, all samplasthat have not been classified in a previous node, and
that satisfyy; ((w,x) + b) > 0 will be assigned to clask at this node of the tree. A
reduced problem is stated with the unlabeled samples.

The algorithm iteratively finds hyperplanes for the redusexblem and builds with
these the tree.

4.2.2 Threshold

The resolution of the QP problem is a vectoorthogonal to a hyperplane. The thresh-
old b is then calculated as in Equation 2.22:

b=3 (ielerLJZI?Ulg {batwh} o+ i IyUT3UIs {<Xi’w>}) ’ (4-4)
Iy = {ily; = 1,a; = Ci}; Iy = {ily; = —1,0; = 0}.

This cannot be used for the new implementation since thisleutated considering
a margin of error in both classes [KSBM99] and [KG02]. Our &ito find a threshold
that correctly classifies all the samples in the hard cladsnainimizes the number of
misclassified samples in the non-hard class. The followiggrghm was implemented
to calculate):

Algorithm 1 (Pseudo-code for Calculation of threshold) Calculation
of the threshold for the problem in Equations 4.2 or 4.3.

m = numnber of sanpl es

n = feature space size

x[i] = feature vector of sanple i

y[i] = | abel of sanple i

hc = hard class (1 or -1)

w = orthogonal vector to the found hyperpl ane

I NF

-1 NF

r i=0to m{

if ((y[i]l)*hc > 0) {
yG = x[i]" * w

ub
I'b
fo

if(y[i] > 0)
ub = m n{ub, yG
el se
Ib = max{lb,yG } }
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if (ub !'= INF)
rl = ub
el se
rl =1b

I NF
-1 NF
r i=0tom {
if ((y[i])xhc < 0) {
yG = (x[i]" = w - rl

ub
I'b
fo

if ( (y[ilxyG > 0) {
yG=yG+rl
if(y[i] > 0)
ub = m n{ub,yG
el se
Ib = mx{lb,yG } } }

if (ub !'= INF)
r2 = ub

else if (Ib I'=-1NF)
r2 =1b

el se
r2 =rl

r=(rl+r2)/2

returnr

4.3 Heuristics Used

35

Even though the optimization function is a quadratic fumttinumeric problems,
speed-up techniques and semi-positive definite matriaesnislead the algorithm to-
wards finding the global optimum. Several heuristics werglémented to assure the

convergence of algorithm.

4.3.1 Greedy Heuristic

At each step, Problem 2.5 and Problem 1 are solved for bo#scéisst, using clasg’

as the hard class and then cl&s The number of vectors that can be left out by using
each of these 4 solutions is counted. The selected hyperfdahe one that reduces
the problem the most. These make the algorithm a greedyitdgorThis heuristic is

illustrated in Figure 4.1.
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Figure 4.1: Greedy heuristic. The problem to be solved imddfivith the samples in
the white area (triangles = class 1, circles = class -1). Tdssiple solutions for the
next step are the red linesb, c andd. These were obtained with the methd@-SVM,
hard class=-1, {C-SVM, hard class=}, {H1-SVM, hard class=-1 and {H1-SVM,
hard class=}, respectively ¢ andc resulted the same hyperplane). Linevill be
added to the next node since it can correctly classify the masber of samples in the
non-hard class (class -1).

4.3.2 Avoiding the Zero Solution

As seen in Corollary 1, the zero solution can result if thet @fghe hard class is
significantly bigger than the cost of the non-hard class. @athod to avoid obtaining
trivial solutions, is to reduce the upper boudd, for the alphas in the hard clags,
is reduced until a solution different to the trivial one isifal. That is, if|w|| < tol,
thenC} is adjusted as follows:

Cr =Ck/f, (4.5)

wheretol is a number close to zero that states the tolerance of the abwectorw
and the factoyf > 1.

Another method to overcome the problem of the degeneratatiay is to set all
«; = 1fori € ¢; as described in Problem 1.

4.3.3 Change of Sign ofv

In several cases, the given hyperplane in not able to rethegeroblem. In this case, if
no sample could be left out, thenpw is used instead. This is equivalent to change the
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inequality direction for the classification. This is illusted in Figure 4.2
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Figure 4.2: Change of sign f. The direction of vectow points towards the positive
class. The line using this parameter (dashed line) can ass$i€y correctly any sample
in the non-hard class (positive class, represented wingtes). If the inequality is
changed, this line can reduce the problem for the next iterat

4.3.4 Perpendicular Hyperplanes

In the case were the given hyperplane cannot reduce thegmolilwas observed that,
the hyperplane was oriented in the direction of the distidlouof the samples. In such
cases, some of the orthogonal hyperplanes could reducedhiem.

The use of these perpendicular hyperplanes in the decigien+in a greedy way—
increased the classification rate and the generalizatidityalExperimentally, it was
observed that this heuristic was not frequently used. Itweasl when the morphology
of the problem had to be changed to be able to go further (bhenvthe algorithm got
stuck).

An additional degree of greediness was implemented withitburistic. This con-
sists on having the option of considering also the orthobjoyizerplanes together with
the original hyperplane that result from the QP problem astcbnly when it get stuck.
Again the chosen hyperplane is the one that reduced thegunable most.

This heuristic is illustrated in Figure 4.3.
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Figure 4.3: Searching perpendicular hyperplanessto The direction of vectomw
points towards the positive class. The possible solutidasi{ed lines) can not classify
correctly any sample in the non-hard class (positive clegzesented with triangles)
for both inequalities. Instead, a perpendicular line (with) is used.

4.3.5 Reduction of Useless Hyperplanes (Pruning)

The algorithm stops building the tree after all the sampglbeen left out (or, when
all the remaining samples belong to the same class). At tdeoéithe algorithm,
several hyperplanes are useless in the classification kiterenyperplanes were more
general than these. If some hyperplanes deeper in the aletisie are used before,
previous ones could be left aside. The size of the tree woaildduced (and therefore
the classification time). Figure 4.4 shows an example ofdase.

An algorithm was implemented to “clean” the {e{lwl-, bi)}, where eacliw;, b;)
corresponds to the hyperplane at nadiethe decision tree. The accuracy in the train-
ing set is measure by classifying it without a specific nodier{img from the last one).
If the accuracy does not decrease, the node is removed fr@netd. An extension of
this technique could be done by allowing a degree of error.

Algorithm 1 (Decision Tree Pruning) Implemented algorithm to prune the obtained
decision tree.

Used vari abl es:

w = two-di nensional array, wWi] contains the hyperplane in node i
rho[i] = threshold for node i

hard_cl ass_vector[i] = hard class for node i

reached_errors = nunber of errors with the original decision



Fast Support Vector Machine Classification of very largabBats 39
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Figure 4.4: Pruning, useless lines are removed from the Tree classification in the
space will be slightly changed, normally generalized

tree, w thout reduction

x[j] = sanple ]

ylijl | abel for sample j

Classify(w, rho, hard_class_vector, x) = function that classifies
sample x with the decision tree that can be formed with:
w, rho and hard_cl ass_vector

function erase(i) = erase elenment i of the vector

function insert(i,obj) = insert obj at position i
w_t emp= W 0]

rho _temp = 0

hcv_temp = 0

for (int i=wsize - 1; i>=0; i--) {

errors =0

wtemp = Wi
rho_tenp = rho[i]
hcv_tenmp = hard_cl ass_vector[i]

w. erase(i)
rho. erase(i)
hard_cl ass_vector. erase(i)



Fast Support Vector Machine Classification of very largabBats 40

for (int j=0; j<prob-> ; j++) {
x_class = O assify(w, rho, hard_cl ass_vector, x[j])
if (y[j]l*x_class <=0)
errors++ }
if ( errors > (reached errors) ) {
w.insert(i,wtenp)
rho.insert(i,rho_tenp)
hard_cl ass_vector.insert(i,hcv_tenp) }
if (wsize()==1)
break }

To get an idea of how these heuristic were appliedfdeclassProblem [TKH96]
was solved. Table 4.1 shows for each hyperplane in the dadise if the hyperplane
was obtained by solving the C-SVM (c) of the H1-SVM (h) Prabjéf the sign of the
inequality was changed which class was the hard class angef@endicular plane
had to be used at any point.

Line Solver | Hard | Sign of Use of a
Number| used | Class w perpendicular hyperplang
1 h -1 1 no
2 c 1 1 no
3 h 1 1 no
4 h 1 1 yes
5 h 1 1 no
6 h -1 1 yes
7 c -1 1 no
8 h -1 1 no
9 h -1 1 no
10 h 1 1 yes
11 c 1 1 no
12 c 1 1 no

Table 4.1: Used heuristics for tiieurclassexample

It can be observed that the H1-SVM could find in several octesbetter hyper-
planes than the C-SVM. The signwfwas never changed and in just a few cases where
the algorithm got stuck, the used of perpendicular hypegsavas needed.

After the pruning process, line number 9 and 5 were removed, the final tree
had depth 10.



Chapter 5

Experiments and Comparisons

5.1 \Verification of the Approach

In order to show the validity and classification accuracywfalgorithm we performed
a series of experiments on standard benchmark data-selss Beries of experiments
The data was split into training and test sets and normal@ednimum and maximum
feature values (Min-Max) or standard deviation (Std-DeW)e used One-Vs-One
multi-class algorithm.

Tables for each example are presented with the number afirésathat each
dataset contains, the number of training and testing sampded, the number of
require SVs or hyperplanes, depending on the method; tiguanid classification tirte
(hh:mm:ss.00); finally the classification accuracy is shown

Speedup comparison with similar works is difficult to statee most publications
(see related work) used datasets with less than 1000 samgiese the training and
testing time are negligible compared to the size of out @dtas

5.1.1 DNA Dataset

This dataset contains features of a DNA sequence [BJ]. &plitctions are points on
a DNA sequence at which ‘superfluous’ DNA is removed durirgggtocess of protein
creation in higher organisms. The problem posed in thissgia to recognize, given
a sequence of DNA, the boundaries between exons (the patite @NA sequence
retained after splicing) and introns (the parts of the DNéusmce that are spliced out).
This problem consists of two subtasks: recognizing exdamimboundaries (referred
to as El sites), and recognizing intron/exon boundariess{i&s). (In the biological
community, IE borders are referred to a “acceptors” whilé&iders are referred to as
“donors”.)

1These experiments were run in a computer with a P4, 2.8 GHAGrid Ram.

41
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From the original dataset, two set were randomly createld tivié same proportion
of elements of each class. One third of the the observatiens used for the training
set and the rest as testing set.

DNA RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Min-Max) Kernel gl=0 gl=1 gl=0 gl=1
Nr. Features 180 180 180
Nr. Train Samples 1330 1330 1330
Nr. SVs or 798 3 3 266 266
Hyperplanes
Training Time 00:02.35| 00:01.84 | 00:03.74 1.28 0.63
Nr. Test Samples 1446 1446 1446
Classif. Accuracy 1354 1305 1305 1.04 1.04
Classification Time | 00:06.70| 00:01.86 | 00:01.81 3.6 3.7
Classif. Accurancy % 93.64 % | 90.25% | 90.25 % 1.04 1.04

Table 5.1: Results for the DNA dataset with the Min-Max nolireion method

DNA RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl1=0 gl=1 gl=0 gl=1
Nr. Features 180 180 180
Nr. Train Samples 1330 1330 1330
Nr. SVs or 881 3 3 293.67 | 293.67
Hyperplanes
Training Time 00:02.62| 00:02.11| 00:03.82 1.24 0.69
Nr. Test Samples 1446 1446 1446
Classif. Accuracy 1351 1315 1315 1.03 1.03
Classification Time | 00:06.78| 00:01.85| 00:01.71 3.66 3.96
Classif. Accurancy % 93.43% | 90.94 % | 90.94 % 1.03 1.03

Table 5.2: Results for the DNA dataset with the Std-Dev ndimaton method

It can be observed that with the H1-SVM the classificationd@de done almost 4
times faster than with the C-SVM.
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5.1.2 Faces Dataset

This dataset containing faces and non-faces images camubé fio Peter Carbonetto’s
homepage [Car]. The objective is to determinate if the imageface or not. From the
original dataset, two set were randomly created with theesproportion of elements
of each class. Two thirds of the the observations were ugetiédraining set and the
rest as testing set.

Faces RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl=0 gl=1 g1=0 gl=1
Nr. Features 576 576 576
Nr. Train Samples 9172 9172 9172
Nr. SVs or 1902 9 9 211.33 | 211.33
Hyperplanes
Training Time 31:53.67| 43:59.77 | 47:46.43 0.72 0.67
Nr. Test Samples 4262 4262 4262
Classif. Accuracy 4148 3926 3926 1.06 1.06
Classification Time | 03:05.80| 00:13.55| 00:14.51| 1371 12.8
Classif. Accurancy % 97.33% | 92.12% | 92.12 % 1.06 1.06

Table 5.3: Results for the Faces dataset with the Std-Dewnalaration method

Faces RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1

(Min-Max) Kernel gl=0 gl=1 g1=0 gl=1

Nr. Features 576 576 576

Nr. Train Samples 9172 9172 9172
Nr. SVs or 2206 4 4 551.5 551.5

Hyperplanes

Training Time 14:55.23| 10:55.70 | 14:21.99 1.37 1.04

Nr. Test Samples 4262 4262 4262
Classif. Accuracy 4082 3879 3879 1.05 1.05
Classification Time | 03:13.60| 00:14.73 | 00:14.63| 13.14 13.23
Classif. Accurancy % 95.78% | 91.01 % | 91.01 % 1.05 1.05

Table 5.4: Results for the Faces dataset with the Min-Maxadization method

With the new algorithm, the classification time was improwsate than 10 times,
although, the algorithm to solve the QP problem for the traystill has to be optimized
to solve linear problems.
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5.1.3 Fourclass Dataset

This is a 2D Dataset from the Proceedings of the 13th Intemmal Conference on
Pattern Recognition, Vienna, Austria [TKH96]. The test #meltraining samples were
randomly generated; one third of the population becameitrgisamples

Fourclass RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl1=0 gl=1 gl=0 gl=1
Nr. Features 2 2 2
Nr. Train Samples 287 287 287
Nr. SVs or 135 7 5 19.29 27
Hyperplanes
Training Time 00:00.30| 00:00.09 | 00:00.11 3.33 2.73
Nr. Test Samples 618 618 618
Classif. Accuracy 538 600 593 0.9 0.91
Classification Time | 00:00.18| 00:00.05 | 00:00.07 3.6 257
Classif. Accurancy % 87.06 % | 97.09 % | 95.95 % 0.9 0.91

Table 5.5: Results for the Fourclass dataset with the StdrAdemalization method

Fourclass RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Min-Max) Kernel gl=0 gl=1 gl=0 gl=1
Nr. Features 2 2 2
Nr. Train Samples 287 287 287
Nr. SVs or 150 16 8 9.38 18.75
Hyperplanes
Training Time 00:00.10| 00:00.18 | 00:00.11 0.56 0.91
Nr. Test Samples 618 618 618
Classif. Accuracy 498 573 596 0.87 0.84
Classification Time | 00:00.08| 00:00.05 | 00:00.05 1.6 16
Classif. Accurancy % 80.58 % | 92.72 % | 96.44 % 0.87 0.84

Table 5.6: Results for the Fourclass dataset with the Minx-Marmalization method

The classification time was considerably decreased (1%}imbile the classifica-
tion correctness was as well improved.
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5.1.4 Isolet Dataset

Dataset for Isolated Letter Speech Recognition [Rep]. €kednd the training samples
were randomly generated two third of the population wasrtgstamples

Isolet RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl=0 gl=1 gl=0 gl=1
Nr. Features 617 617 617
Nr. Train Samples | 155950 | 155950 155950
Nr. SVs or 35340 344 344 102.73 | 102.73
Hyperplanes
Training Time 07:13.75| 18:51.98 | 1:04:11.3| 0.38 0.11
Nr. Test Samples 1559 1559 1559
Classif. Accuracy 1499 1472 1472 1.02 1.02
Classification Time | 03:01.99| 00:32.85| 00:36.43 554 5
Classif. Accurancy % 96.15% | 94.42% | 94.42% 1.02 1.02

Table 5.7: Results for the Isolet dataset with the Std-Dewmatization method

Isolet RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Min-Max) Kernel gl=0 gl=1 gl=0 gl=1
Nr. Features 617 617 617
Nr. Train Samples | 155950 | 155950 | 155950
Nr. SVs or 22932 325 325 70.56 70.56
Hyperplanes
Training Time 12:46.70| 06:14.40 | 52:47.43 2.05 0.24
Nr. Test Samples 1559 1559 1559
Classif. Accuracy 1493 1496 1496 1 1
Classification Time | 03:16.56| 00:39.92 | 00:24.37 4.92 8.07
Classif. Accurancy % 95.77 % | 95.96 % | 95.96 % 1 1

Table 5.8: Results for the Isolet dataset with the Min-Maxmalization method

The classification time could be improved up to 8 times. Ingaris that the
classification accuracy obtained with a SVM with RBF-kercalild be reached.
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5.1.5 USPS Dataset

The USPS data is a database for handwritten text recognitieearch [Hul94], the

training set contains 7291 examples and the test set cari28id7 examples as pro-
vided.

USPS RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl=0 gl=1 g1l=0 gl=1
Nr. Features 256 256 256
Nr. Train Samples 18063 18063 18063
Nr. SVs or 4522 102 99 44.33 45.68
Hyperplanes
Training Time 00:27.52| 00:35.26 | 02:37.48 0.78 0.17
Nr. Test Samples 7291 7291 7291
Classif. Accuracy 7030 6798 6816 1.03 1.03
Classification Time | 02:07.23| 00:29.75| 00:17.22 4.28 7.39
Classif. Accurancy % 96.42 % | 93.24 % | 93.49 % 1.03 1.03

Table 5.9: Results for the Usps dataset with the Std-Dev atization method

USPS RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Min-Max) Kernel gl=0 gl=1 gl=0 gl=1
Nr. Features 256 256 256
Nr. Train Samples 18063 18063 18063
Nr. SVs or 3597 49 49 73.41 73.41
Hyperplanes
Training Time 00:44.74| 00:22.70 | 02:09.58 1.97 0.35
Nr. Test Samples 7291 7291 7291
Classif. Accuracy 6986 6836 6836 1.02 1.02
Classification Time | 01:58.59| 00:19.99 | 00:20.07 5.93 5.91
Classif. Accurancy % 95.82% | 93.76 % | 93.76 % 1.02 1.02

Table 5.10: Results for the Usps dataset with the Min-Maxradization method

In the tables, it can be read that the classification timedtbalreduced between 4
to 7 times.
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5.2 Classification of very large Datasets

Due to the lack of available very large datasets (we consld&rsets with several mil-
lion samples to be very large), we performed our experimamison our own database
of cell nuclei features. This data holds the initial assuamtthat a large classification
problem can be split into mainly easy and only a few hard soitlpms.

5.2.1 Data

The experiments were performed on 3D volumetric data sasrgdlehicken embryo
chorioallantoic membrane (CAM) probes recorded by a cadflaser scanning micro-
scope (LSM). The CAM is a widely used model for angiogenessearch at cellular
level. An automatic localization and identification of théetent cell types is crucial.
Understanding angiogenesis has been found to be th e kegamient of many fre-
quent diseases, including cancer and heart ischemia. Theleswere prepared as
described in [K02] and treated with YoPro-1 and SMACy3 fluorescent markack a
recorded in two channels. Fig. 5.1 shows a typical xy-slicte YoPro channel with
most frequent cell types.

Figure 5.1: Sample data, cross section of a capillar y. @ptd with 3D reconstruc-
tion: 1. erythrocytefry),2. endoth elial cellEC), 3. pericyte PC), 4. fibroblast E
B), 5. macrophage\ ¢).
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5.2.2 Method

In total 32 gray scale invariants [ORB05, Feh04, SM95, BSthHt have already been
successfully applied to the recognition of pollen graingdlumetric data sets [RBS02,

RSBO02] were extracted and used as features.

Nuclei RBF H1-SVM | H1-SVM | RBF/H1 | RBF/H1
(Std-Dev) Kernel gl=0 gl=1 g1l=0 gl=1
Nr. Features 32 32 32
Nr. Train Samples 3372 3372 3372
Nr. SVs or 980 122 86 8.03 11.4
Hyperplanes
Training Time 00:00.98| 00:03.03 | 00:02.43 0.32 0.4
Nr. Test Samples 65536 65536 65536
Classif. Accuracy 64021 61480 62541 1.04 1.02
Classification Time | 01:01.70| 00:23.44| 00:17.41 2.63 354
Classif. Accurancy % 97.69% | 93.81% | 95.43% 1.04 1.02

Table 5.11: Results for the Nuclei dataset with the Std-Dmvalization method

Correctness Accuracy %

Error %

6073/6887 ( 88.18%)
498/539 ( 92.39%)
437/565 ( 77.35%)
657/896 ( 73.33%)

54876/56649 ( 96.87%

1009/58650 ( 1.72%)
1010/65000 ( 1.554%
786/64970 ( 1.21%)
195/64640 ( 0.3017%
142/8887 ( 1.598%)

total:

62541/65536 (95.43%

2995/65536 ( 4.57%)

Table 5.12: Summary of classification results for the Nudkgia, Std-Dev, greedy |

evel=0
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5.2.3 Non-linear Extension

In a final experiment, we compared the performance and acgwrfaa strictly linear
SVM-tree and one using the non-linear extension.

RBF-Kernel | linear tree| non-linear tree
H1-SVM H1-SVM
training time ~1s ~3s ~5s
Nr. SVs or 980 86 86
Hyperplanes
average classification - 7.3 8.6
depth
classifiaction time ~1.5h ~2 min ~2 min
accuracy 97.69% 95.43% 97.5%

Table 5.13: Comparison of the performance and accuracytot#yslinear SVM-tree
and one using the non-linear extension.
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5.3 Conclusion

We have presented a new method for fast SVM classificatiomp@oed to non-linear
SVM and speedup methods our experiments showed a very cibirgspeedup while
achieving reasonable classification results (loosing toly marginal when we apply
the non-linear extension compared to non-linear methd&gsg)ecially when our initial
assumption holds , that large problems can be split in m&asy and only a few hard
problems, our algorithm achieves very good results. Theuatdges of this approach
clearly lies in its simplicity since no parameter has to bestil
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