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Arbeit an seinem Lehrstuhl zu schreiben.

Mario Emmenlauer danke ich für seine tatkräftige Unterstützung bei comput-
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Chapter 1

Introduction

1.1 Motivation

In many fields of application we face the problem of segmenting an image into seman-
tically coherent regions. For instance, to investigate the distribution and movement
of cells in bio-molecur images, it is indispensable to first locate the cells. Or, in
medicine we are interested in extracting anatomical structures from CT or MRT im-
ages. These are solely two examples for the diverse range of applications that extends
from biology, medicine, face recognition to the evaluation of satellite data. Usually
human experts are entrusted with evaluating and segmenting the images but the
ever-growing number of images compels us to develop automatic solutions. Thus, we
search for efficient segmentation algorithms that deliver accurate results, even if the
image exhibits complex detailed structures and is afflicted by measurement noise.

Over the past years, many researches proposed segmentation methods for various
scenarios. However, only few can cope with strong measurement noise and three-
dimensional image data. Also, they often operate locally which means that they do
not incorporate global constraints to guide the segmentation result. But there are
also promising segmentation approaches that overcome many of these pitfalls. One
example are methods that rely on probabilistic graphical models. We do not attempt
to promote them as the holy grail of image segmentation but they often perform
surprisingly well on problems that shipwreck competing segmentation methods. In
comparison to point-based, edge-based or region-based methods they can model global
constraints and are less sensitive to noise.

The most common form of probabilistic graphical models are Markov random
fields that offer two types of potentials to model the image constraints. Data poten-
tials encode the similarity between the search segmentation image x and the observed
image y, whereas smoothness potentials between neighboring pixels of x allow us to
encode prior knowledge about the image. For each pixel of x we store the probabili-
ties for all its possible labels, i.e. the semantic region to which it can pertain. Once
we have modeled all potentials, we can solve our segmentation problem by inferring
the most likely combination for x that best suits our constraints.

Unfortunately, it is an NP hard problem [4] to exhaustively explore all possible
pixel combinations for x. Thus, for complex images we have to resort to approximate
inference algorithms, such as Monte Carlo chain (MCMC) methods, graph cuts, or
message passing algorithms. For a long time MCMC methods have been the common
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1.2. OUTLINE OF THE THESIS 6

choice for inferring on Markov random fields. They draw samples from the image
for approximating the unknown probability function of P (x|y). The problem is that
they converge very slowly since many samples are required to obtain a good estimate.
Since the invention of more efficient inference algorithms, such as graph cuts and
message passing algorithms, they are no longer state-of-the-art. Whether to advo-
cate graph cuts or message passing algorithms, is hard to say. Both algorithms are
probably on a par but as the graph cuts algorithm is restricted to certain potential
structures we prefer message passing algorithms. The most popular variant is the
belief propagation algorithm (BP). It is very fast and performs well on many graphs.
However, for graphs with many cycles it suffers from poor convergence accompanied
with unpleasant accuracy. Recently, Yedidia et al. [39] proposed a derivate of this
algorithm called generalized belief propagation (GBP) that enhances the performance
and stability of BP. A problem is that the algorithm is fairly slow and therefore lim-
ited to applications with simple graphs. Also, we found only two propositions [19]
[27] to accelerate the algorithm. Both techniques require a beneficial structure of the
smoothness potential function for sparing redundant label configurations. But as we
like to retain flexibility for the potential functions, we can hardly benefit from these
techniques.

In this thesis, we present four acceleration techniques that do not restrict the
potential functions and still promise significant speedup gains. We call them (1) hi-
erarchical initialization, (2) active message technique, (3) caching and multiplication,
and (4) acceleration for map estimate. The first technique is an adaption of the multi-
grid BP reported by Felzenswalb et al. [8]; the other three are novel to the best of
our knowledge.

The techniques are experimentally evaluated on synthetic data and one real-world
segmentation problem from biology.

1.2 Outline of the thesis

The next chapter gives an overview of image segmentation and discusses the ideas and
properties of various segmentation methods. We shall prefer a segmentation approach
that is based on probabilistic graphical models which we elucidate in chapter 3. A
very promising graphical model for computer vision are Markov random fields. They
support a range of efficient inference algorithms that we shall investigate in the forth
chapter. Among them are the propagation (BP) algorithm and its advanced derivate,
the generalized belief propagation algorithm (GBP). The GBP algorithm stands out
for its accuracy and flexibility, but is computationally expensive. As we pursue to
accurately solve a complex segmentation problem, we decide to focus on speedup
techniques for GBP which we present in chapter 5. Their potential is indicated by
experimental results in chapter 6 and in the last chapter we conclude.



Chapter 2

Image segmentation

2.1 Segmentation methods

In computer vision, an important task is to partition an image into regions that
represent information of interest. Commonly referred to as image segmentation, this
process plays an important role in many fields of applications, e.g. in medical imaging,
face recognition, machine vision, or object location within satellite data. The typical
approach consists of two steps.

1) We define a homogeneity criterion which has to be similar among elements of
the same region and different among elements of adjacent regions [26]. The
homogeneity criterion is motivated either directly from the data (e.g. pixel
intensity, color or texture) or from prior knowledge about the image and the
application.

2) Within this constrained solution space we apply a segmentation method that
meets our requirements as accurately and efficiently as possible.

Unfortunately, many segmentation problems are mathematically ill-posed which
makes it impossible to derive a unique solution. The ambiguity merely stems from
two phenomena: On the one hand, images are mostly degraded by measurement
noise. Photoelectric interactions and nonlinear responses to incident radiation in
detectors or amplifiers [1] as well as a low resolution and poor lighting conditions
may significantly distort the information content of the data. On the other hand,
it is hard to appoint a unique solution because optimality succumbs our subjective
interpretation.

Nevertheless, a variety of segmentation techniques has been introduced over the
past years, which we may categorize as point-based, edge-based, region-based, and
model-based methods. Note that this classification does not lay claim to be complete,
but rather reflects a selection of popular approaches. We shall discuss them briefly to
point out alternatives and motivate our final algorithm choice. For a concise overview
the reader may read [36].

2.1.1 Point-based methods

As objects are often characterized by a constant reflectivity of their surface, a widely
used technique are threshold methods that distinguish objects from their background.
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2.1. SEGMENTATION METHODS 8

They associate each pixel with a segment if its value exceeds the threshold. Gener-
ally, methods based on thresholds are fast and simple, but also sensitive to intensity
variation in the background and low signal to noise ratios. To some extent we can
overcome these shortcomings by introducing a spatially varying threshold that in-
creases the performance on non-uniform backgrounds. The idea is to introduce a
second threshold that crops noise with high intensity values. We commonly refer to
this approach as hysteresis thresholding.

Related to the thresholding technique are methods which rely on classifiers, such
as k-nearest neighbor, maximum likelihood or support vector machines. Their strength
is that they also work on multi-channel data. However, we cannot use them for spatial
modeling and we have to train them manually.

In contrast unsupervised learning algorithms, also known as clustering methods,
do not have to be trained manually. As an example, let us inspect the idea of fuzzy
connectedness methods comprising three fundamental steps: First, they define a fuzzy
affinity among all image points. Second, they compute the fuzzy connectedness as
the strongest path with respect to the weakest affinity link between any two points.
Finally, segmentation boils down to aggregating all pixels into the same segment that
exceed a preset threshold. But also fuzzy connectedness, as well as other clustering
techniques, such as k-means or expectation-minimization, are not the silver bullet
because they still show great deficiencies in modeling spatial structures.

2.1.2 Edge-based methods

Thus far we have experienced segmentation methods that unite pixels to regions based
on their similarity. An alternative is to solve the dual problem. We can specify the
contour or boundary of a region by locating pixel discontinuities, i.e. neighboring
pixels of differing intensity. The idea is to first employ an edge detecting operator
to obtain a coarse guess for the segmentation result. Afterwards we can refine the
result by combining edges to chains that hopefully correspond to the contours of the
regions. Within the last decades various edge-based segmentation algorithms have
been devised, mainly differing in the way they combine edges and the amount of prior
knowledge they require.

A very simple approach for instance are methods based on edge image threshold-
ing. As the name might indicate, these algorithms neglect all pixel discontinuities
that fall below a certain threshold. Yet the drawbacks of this simple approach are
the same as for thresholding methods: the choice of the optimal threshold and the
sensitivity to image noise and intensity variations. More sophisticated algorithms
are edge relaxation methods that improve the segmentation quality by correlating the
confidence in an edge to the support of neighboring edges. Another approach are bor-
der tracing methods proceeding in two steps: First, they try to locate a likely border
point of the image, and then they trace the border by recursively searching for the
most probable border point in the neighborhood. Unfortunately, all of these edge-
based methods have in common that they are heavily affected by poor edge detection
results due to measurement noise in the image data. A more detailed overview of the
presented methods can be found in [16].

If we know the shape and size of the object, we can simplify the segmentation
problem to an object search within the image. One prominent candidate for detecting
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simple shapes, such as lines, circles, and ellipses, is the Hough transform. The basic
idea shall be exemplified by the linear Hough transform for line location. We can
express all possible lines going through an image point with coordinates (x0, y0) by the
parametric equation r(θ) = x0 cos θ + y0 sin θ. Transformed into parameter (Hough)
space (r, θ) we get a sinusoidal curve that represents all lines going through image
space coordinates (x0, y0). Hence, if we superimpose the curves associated with two
points, the intersecting point of the curves marks the parameters of the image line
going through both points. Similar to the linear version of the Hough transform, we
can apply the same principle to other shapes described in analytic equations. There
is even a modification to the algorithm called the Generalized Hough transform that
extends the algorithm to arbitrary objects that we cannot describe analytically. It
aims to correlate locations and orientations of potential image features to parameters
in the Hough space. When the image is denoised in a preprocessing stage, the Hough
transform is an efficient and relatively robust method to detect parameterized objects.
However, a severe limitation of the algorithm are the memory and computation cost
for objects with several parameters. In practice we are therefore confined to simple
shapes such as lines, circles and ellipses. For further information the interested reader
is referred to [13].

2.1.3 Region-based methods

Opposed to edge-based methods the class of region-based methods exploit the sim-
ilarities of pixels to construct segmentation regions of maximum homogeneity. The
criterion for homogeneity can be derived from the image data, such as the intensity
value, the color, the texture, the shape or from the model by using semantic infor-
mation. Region growing methods for instance start at an image point (seed point)
and subsequently merge neighboring points with its region provided that they meet
the homogeneity criterion. A popular representative of region growing methods is
the splitting and merging method. Inhomogeneous image regions are initially split
into subregions and then merged to bigger regions as long as they accord with the
homogeneity criterion.

An alternative to region-growing methods are watershed methods. If we relate the
intensity values of an image to altitudes, we can interpret the image as a topographic
map. In this map region edges are associated with local maxima, intuitively called
watersheds, whereas low-gradient region interiors correspond to catchment basins.
The basic idea of watershed algorithms is to fill the catchment basins with water,
thereby assigning all flooded points within a catchment basin to the same segment.
Unfortunately, in noisy and highly detailed images this method often ends up in
oversegmentation with possibly thousands of catchment basins. To alleviate this
undesired behavior we can fall back on seeded watershed methods where we exclusively
flood previously marked catchment basins. But which regions do we mark beforehand
and when do we merge regions? Hitherto these questions have not been answered in
general.

2.1.4 Model-based methods

The probably most powerful, yet intricate methods for image segmentation rely on
deformable models or probabilistic graphical models. The philosophy behind de-
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formable models is to create dynamic models whose shape evolves under the in-
fluence of internal and external forces until it hopefully fits to the desired seg-
ment. More formally, we search for a contour C that minimizes the energy function
E(C) = λEdata+(1−λ)Eprior, where Edata denotes external forces that are computed
from the image data to drive the curve or surface towards the desired position, and
where Eprior stands for internal forces or prior knowledge that is computed to smooth
the shape.

The general representation of the contour is either polygonal, parametric or im-
plicit. The polygonal form is the simplest but requires many points to model the curve.
In parametrized form, we typically adopt to the edges of an image by defining a curve
or “snake” c(s) = (x (s) , y (s)), where the parameter s varies over a certain interval,
e.g. [0,1]. Some problems of snakes are their inability to nestle against concavities
within object boundaries and their difficulties in locating borders when initialized too
far away from them. Also, snakes are per definitionem closed and not allowed to cross
[36]. A remedy against this problem are level sets, an implicit representation. Level
sets are iso-surfaces of a function φ, i.e. a surface that is defined by φ(x) = c for
some constant c. Remarkably, the function φ also implicitly defines a hyper-surface1

S which encloses an image region. More formally, we can write S := ∂R, where
R := {x|φ(x) < 0} and ∂ denoting the boundary of region R. When we search for
a segmentation, formalized as S, rather than modifying S directly as for the case
of parametric representations, we alternate our function φ which implicity affects S.
With level sets we can define partial differential equations that describe the change
of φ during iterations and solve them with finite difference methods. The merits of
this approach are that it is straightforward to implement and can handle topology
changes, intersections and superpositions. But they are expensive both in computa-
tion time and memory. Further information on this topic can be found under [36]
and the study of [22] who compare parametric and implicit methods for deformable
models.

Segmentation methods based on probabilistic graphical models strike a different
path. They treat image points as random variables of segment labels and infer their
probability values according to Bayesian decision theory. The fundamental approach
of Bayesian decision theory is to quantify the costs of wrong and correct segmen-
tation decisions in an attempt to minimize the expected loss of our final decision.
An intuitive way of representing and visualizing the obtained joint probability dis-
tributions are graphical models, among which Markov random fields are probably
the most prominent. They clarify dependencies and conditional independence among
random variables and support efficient inference and learning algorithms. In other
words, graphical models allow us to answer the following two questions: What is the
most likely segmentation setting of the underlying random variables? And what are
the marginal posterior probabilities over the random variables? The former question
leads us to the maximum a posteriori (MAP) estimate, whereas the later drives us to
the minimum mean-square error (MMSE) estimate. At this point we can recognize an
interesting link between methods based on probabilistic graphical models and those
depending on deformable models. In Markov random fields for instance, we can define
node potentials that correlate to the probabilities of the random variables and edge

1a surface in Euclidean space with dimension greater than three
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potentials that correlate to prior knowledge we like to incorporate. If we associate
the potentials with energies, the minimization of the total energy according to the
MAP estimate bears astonishing similarity to the energy minimization problem for
deformable models.

2.1.5 Discussion

Particularly for noisy and highly detailed data, both model-based approaches seem to
deliver more plausible segmentation results than thresholding, edge-based or region-
based methods. Deformable models are notorious for requiring both high computation
and memory cost, whereas approaches integrating probabilistic graphical models re-
quire some hyperparameters to be set for modeling the potential functions. These
can be either set manually or learned by algorithms.

To make this clear we do not regard one segmentation method as the ultimate
solution for arbitrary segmentation tasks. Nonetheless, in this thesis we like to con-
centrate on segmentation methods that are potentially accurate for large biological
and medical images degraded by measurement noise. Comparing the presented seg-
mentation approaches, we decide to focus on probabilistic graphical models, as the
literature offers many efficient and well understood algorithms for inferring an ap-
proximate, sometimes even exact solution to a non-convex optimization problem. In
contrast to methods using deformable models, we expect them to minimize the en-
ergy equation problem similarly well but cheaper with respect to computation and
memory cost.



Chapter 3

Probabilistic graphical models

Probabilistic graphical models are a widespread technique for both understanding
and formalizing probability distributions over random variables. The structure of
graphical models tells us how the random variables represented by nodes depend
on each other via edges. The weight of edges typically captures the probability
of a set of variables. Thus, graphical models permit us to encode qualitative as
well as quantitative relations among random variables in a compact form. From the
viewpoint of image segmentation, two other aspects of probabilistic graphical models
play a vital role.

1) Conditional independence: We can observe conditional independence relation-
ships between variables directly from the graphical model without evaluating
probability distributions. Recall that a hidden variable X is conditionally in-
dependent of variable Y given an observed variable V if and only if

P (X|Y, V ) = P (X|V ).

If p(X,V ) > 0, we can also say that these variables are conditionally indepen-
dent if they satisfy

P (X,Y |V ) = P (X|V )P (Y |V ).

The shorthand notation of conditional independence isX ⊥⊥ Y |V . The ability of
graphical models to encode this property is important because we can simplify
the graph structure and accelerate inference and learning algorithms working
on this model.

2) Efficient inference algorithms: Graphical models support efficient algorithms
for inferring joint and marginal probability distributions, such as graph cuts
and message-passing algorithms.

In general, we differentiate three main kinds of graphical models: directed acyclic
graphical models, undirected graphical models and factor graphs. In the following we
review their basic ideas in order to compare their suitability for image segmentation
problems. A nice overview of probabilistic graphical models can be found under [11].

12
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Figure 3.1: Three kinds of graphical models (from [11])

3.1 Graphical Models

3.1.1 Directed acyclic graphical models

In a directed acyclic graphical model (DAG model) all edges are directed and form a
graph without cycles. Figure 3.1(a) depicts a small example graph which corresponds
to the factorization of the joint probability distribution:

P (A,B,C,D,E) = P (A)P (B)P (C|A,B)P (D|B,C)P (E|C,D)

Generally, the DAG model factorizes a probability distribution into a subset of nodes
according to:

P (X1, . . . ,Xn) =

n
∏

i=1

P (Xi|Xpa(i))

where pa(i) denotes the parents of node i, i.e. the set of nodes that have an outgoing
edge to i.

This means that DAG models allow us to express the joint probability distribu-
tion as a product of conditional probability distributions. Since it might be obscure
how conditional independence carries over to DAG models, we shortly restate the
definition.

In a DAG model, we say that X and Y are conditionally independent of V if V
d-separates (dependency separates) X from Y , i.e. if every undirected path between
X and Y is blocked by V. We say that a path is blocked by V if there is a node W
on the path such that either

1) W has converging arrows along the path (→ W ←) and neither W nor its
descendants are observed (in V), or

2) W does not have converging arrows along the path (→ W → or ← W →
or ←W ←) and W is observed, i.e. W ∈ V.

In Figure 3.1(a) for instance A ⊥⊥ B is true since all paths are blocked. However,
(A ⊥⊥ B|C) is false since A→ C ← is not blocked [11].
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3.1.2 Undirected graphical models

Undirected graphical models contain as the name suggests undirected edges and allow
cycles in contrast to DAG models. A joint probability distribution can also be written
as a factorization over subsets of variables:

P (x) =
1

Z

∏

j

ψCj
(xCj

)

where x = (x1, . . . , xS), and
Cj ⊆ {1, . . . , S}

are subsets of the set of all variables, and xCj
≡ (xi|i ∈ Cj). The subsets Cj are

also called cliques, i.e. any two elements of Cj are neighbors of each other. Without
loosing generality we typically assume that Cj are maximal cliques to gain a unique
factorization.

Associated with each clique Cj is a potential function ψ(xCj
). As these functions

can be arbitrary as long as they are nonnegative, we need a normalization constant
Z to ensure that P (x) integrates to 1. In the context of Gibbs distributions, Z is
commonly known as the partition function. It equals the sum (or integral for the
continuous case) of the joint probability distributions P (x) pertaining to all possible
settings of x. More formally, we define it by:

Z =
∑

x

∏

Cj

ψCj
(xCj

)

Hence, for the example graph of figure 3.1(b) we can state the joint probability
distribution as:

P (A,B,C,D,E) =
1

Z
ψ1(A,C)ψ2(B,C,D)ψ3(C,D,E).

The conditional independence relationship in undirected graphical models is straight-
forward. We say that X is conditionally independent of Y given V if every path
between X and Y contains some node V ∈ V. Consequently, a variable X is condi-
tionally independent of some Y given its neighbors:

X ⊥⊥ Y |ne(X), ∀Y /∈ {X ∪ ne(X)}.

In our example E is conditionally independent of B if we observe C and D.

3.1.3 Factor graphs

Factor graphs represent bipartite graphs with the following two types of nodes: Vari-
able nodes x with the usual connotation and factor nodes f(·) corresponding to po-
tential functions in undirected graphical models. In figure 3.2 we see a small factor
graph example. The circles in the graph label variable nodes, whereas filled dots
stand for factor nodes. The factor nodes depend on all connected variable nodes and
are suitable to compose the joint probability distribution. For the example we obtain:

P (A,B,C,D,E) =
1

Z
f1(A,C)f2(B,C,D)f3(C,D,E)
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Figure 3.2: Factor graph with pairwise potentials (from [11])
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Figure 3.3: Problems with undirected graphs and factor graphs (from [11])

The corresponding general equation is

P (x) =
1

Z

∏

j

fFj
(xFj

)

where Fj is defined analogous to Cj for undirected graphical models.
The same applies to conditional independence. In factor graphs, we say that X

and Y are conditionally independent of V if every path between X and Y contains
some node V ∈ V. A path is a sequence of neighboring nodes, i.e. nodes that share
a common factor. One might be tempted to consider factor graphs as an alternative
notation for undirected graphical models, but there are some significant differences:

1) Expressiveness: Factor graphs are more expressive than undirected graphical
models since they can depict a more constrained subspace of probability dis-
tributions. In figure 3.1(b) we see an undirected graphical model and in 3.1(c)
and 3.2 two factor graphs. They all share the same neighbors and therefore
represent the same conditional independence relationship. Nonetheless, figure
3.2 differs from 3.1(c) in stating that all factors are pairwise functions. The
undirected graph in 3.1(b) cannot model these subtleties.

2) Unique representation: Factor graphs are also advantageous because they dis-
ambiguate the representation for a probability distribution. In contrast to undi-
rected graphical models, factor graphs exhibit a unique representation. We no
longer have to agree on exclusively considering maximal cliques.
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Figure 3.4: Expressive power of directed and undirected graphs (from [11])

Directed graphical models show their strength when it comes to explicating causal
generative models. In figure 3.3 for instance, two nodes R and S are marginally inde-
pendent, i.e. conditionally independent on the empty set, but conditionally dependent
given G. Neither undirected graphical models nor factor graphs manage to represent
these dependency relationships. Another helpful property of DAG models is that
they factorize joint probability distributions by conditional probability distributions.
In other words, we do not have to bother with computing the normalization constant
Z as in undirected graphical models and factor graphs.

However, also directed graphical models have significant deficiencies. As figure 3.4
highlights, the expressive power of directed graphical models is limited. No matter
how we direct the edge in the graph, two non-adjacent parents will share a common
child. This means that under the definition of conditional independence these nodes
depend on each other in DAG models, although they are independent in undirected
graphs. Also, we can always construct an undirected graphical model out of a DAG
model that may drop some independence relationships but covers the same probability
distribution. We only have to connect all the parents of a common child and convert
directed into undirected edges. We call this process moralization.

The decisive argument against DAG models, however, is the requirement to be
acyclic. For many segmentation problems this is too restrictive, since we typically
model images as grid graphs where each pixel or voxel corresponds to a random
variable and is connected to its four neighbors in 2D, respectively six neighbors in
3D.

While both factor graphs and undirected graphical models seem to be legitimate
choices for modeling images in segmentation problems, we merely stick to Markov
random fields, a special subclass of undirected graphical models. Markov random
fields impose further constraints on the probability function that are important for
efficient inference algorithms, such as graph cuts or message-passing methods. They
shall be introduced shortly but let us first get a notion of the labeling problem, a
generalization of the image segmentation problem.

3.2 The labeling problem

As the image segmentation problem can be regarded as a special case of the labeling
problem, we like to present its general notation. It is commonly used in many com-
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puter vision problems and rests on a series of basic definitions that we have to clarify
before we can state the labeling problem. We present the concepts site, image, image
feature, configuration and label.

Similar to [35] and [32], let

S = {1, . . . , n}

be a set of n sites, where a site s represents an element of a pixel (voxel) grid. Then
we define an image

x = (g, l)

on S which is nothing else but an array of image features, e.g. intensities, edges,
boundaries, or labels. In this example, g corresponds to the pattern of intensities,
and l to a label configuration. Note that a pattern or synonymously a configuration
x = (xs)s∈S refers to a collection of quantities xs. Consequently, the set of all patterns
g = (gs)s∈S of intensities gs ∈ G is G = GS . A label configuration or labeling is written
as l = (lu)u∈U with labels lu from a set

L = {l1, . . . , lk}

of k labels and the space of label configurations is L = LU . With these definitions we
can denote the set of all images x by X = G × L, or alternatively as X =

∏

s∈S Xs

where Xs is the finite space of states xs.
Let us assume that image x = (g, l) is generally hidden to the observer. If we only

observe the pattern of intensities g correctly, we take the observed image

y = g

as a starting point to infer x. In other words, we face a labeling problem, since we
search for the proper label from the label set L of each site s based on the image
features of y.

Note that the labeling problem merely appears in the disguise of queries like
P (X|Y = y), where we ask for the quantities of the random variable X given the
observed image value y for variable Y . We prefer this notation since it is more
compact than specifying all image features. We will, however, convert to explicitly
naming the image features when we feel it is appropriate.

3.3 Markov random fields (MRF)

3.3.1 Definition of MRFs

A Markov random field (MRF), also known as Markov network, is defined as a random
vector X = (Xs)s∈S on the probability space (X, P ) with respect to a neighborhood
system ∂, that fulfills two requirements for all x ∈ X:

1) Positivity : The probability distribution P on X has to be strictly positive:

P (x) > 0
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(a) 4 neighbors (b) 8 neighbors (c) 6 neighbors (d) 26 neighbors

Figure 3.5: Typical neighborhood systems for a Markov random field. (a) and (b) show
first- and second-order neighborhood system in 2D. (b) and (c) depict the same for 3D.

2) Local Markov property :

P (Xs = xs|Xt = xt, t 6= s) = P (Xs = xs|Xt = xt, t ∈ ∂{s})

where the neighborhood system ∂ is a collection

∂ = {∂{s} : s ∈ S}

of sets with the conditions

1) s /∈ ∂{s}

2) s ∈ ∂{t} if and only if t ∈ ∂{s}

Based on the neighborhood definition, we call sites t ∈ ∂{s} neighbors of s, which we
may often denote as s ∼ t.

The second property of the definition for MRFs states that the image features of
a site s only depend on the image features of its neighboring sites. Thus, it vastly
accelerates the examination of conditional independence relationships. In figure 3.5
we see a selection of widespread neighborhood systems in computer vision.

3.3.2 Equivalence to Gibbs Random Fields

Markov random fields can either be expressed by their joint probability distribution or
according to the local Markov property by local conditional distributions. In practice,
we stick to the former possibility since the Hammersley-Clifford theorem paves the
way for specifying the joint probability distribution by a Gibbs distribution. More
precisely, the theorem shows the equivalence of Markov random fields and Gibbs
random fields.

We formally define a Gibbs random field as a random vector X = (Xs)s∈S on the
probability space (X, P ) that fulfills two requirements for all x ∈ X

1) Positivity : The probability distribution P on X has to be strictly positive:

P (x) > 0

2) Gibbs distribution: Its complies to the Gibbs (Boltzmann) distribution:

P (x) =
1

Z
e−βE(x)
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where Z denotes the partition function used to normalize P (x)

Z =
∑

x

e−βE(x)

and

β =
1

kT
.

T is the temperature, commonly assumed to be 1, k is the Boltzmann’s constant
and E(x) denotes an energy function.

If we restrict the potential functions ψC(xC) of a clique C to be strictly positive, we
can define them by an exponential term of the Gibbs distribution:

ψC (xC) = exp (−βE (xC))

3.3.3 Definition of the energy function

The Gibbs distribution is primarily influenced by the energy function E(x) which in
turn can be expanded to a sum of potentials

EA(x) =
∑

A⊂S

UA(x).

We say that a family {UA : A ⊂ S} of functions on X is a potential if and only if it
satisfies

1) U∅ = 0

2) UA(x) = UA(y) if xs = ys for each s ∈ A.

In the context of image segmentation, the subset A is equivalent to cliques Cj as
proposed for undirected graphical models. If we restrict our attention to cliques of
size two, we obtain an important specialization of the energy function

E(x) =
∑

s∼t

Ust(xs, xt).

Let us also assume that the potentials can be parameterized in linear form:

Uw
C = −〈w, Vc〉

where parameter w signifies a weight function for the potentials. Then our energy
function transforms to

E(x) = −
∑

s∼t

wstVst(xs, xt).

Transferred to our labeling problem, we may express the energy function of the joint
probability function P (x, y) as

E(x, y) = −
∑

s

wsVs(xs, ys)−
∑

s∼t

wstVst(xs, xt).
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The first term may be interpreted as the data energy Edata

Edata(x, y) =
∑

s

Uw
s (xs, ys) = −

∑

s

wsVs(xs, ys)

which assigns costs relative to the deviation from the image data. The term is for
instance reasonable when we like to denoise an image prior to the image segmentation.
We can model this task with a Markov random field by interpreting the label, the
quantity to be estimated, as the hidden pattern of intensities that is constrained by
the data energy to stay as close as possible to the observed pattern of intensities.

The second term may be regarded as the prior energy Eprior defined by

Eprior(x) =
∑

s∼t

Uw
st(xs, xt) = −

∑

s∼t

wstVst(xs, xt).

As it is independent of the observed image y, it is suited to encode constraints that we
have prior to the recorded data. For many vision problems, we will model the prior
energy as a smoothness term that rewards smoothness and penalizes discontinuities
among neighboring labels. We therefore prefer the term smoothness energy and shall
use it throughout this thesis. Its notation is Esmooth [35] [32].

Combining both energy terms with the energy function of our labeling problem,
we gain an intuitive form that shall encounter us throughout this thesis:

E(x, y) = Edata(x, y) +Esmooth(x)

3.3.4 Design of the energy function

We only obtain satisfactory solutions to vision problems if we carefully design an
energy function that reflects the constraints of the problem. An improper energy
function will almost certainly fail in delivering accurate results, regardless of which
minimization technique we apply to the energy equation.

For both the data energy and the smoothness energy we often choose among
the same popular candidates: (1) the everywhere smooth prior, (2) the piecewise
constant prior and (3) the piecewise smooth prior. They shall be briefly reviewed for
the smoothness potential function since they give us a platform for developing more
specialized energy functions.

Everywhere smooth prior

The everywhere smooth prior [32] rewards label configurations that are smooth every-
where. In other words, it heavily penalizes discontinuities of an image. Unfortunately,
the optimal solution of the prior tends to oversmooth discontinuities. An example for
this prior is a non-decreasing function depending on the label difference between two
neighboring sites. We denote it by

Uw
st(xs, xt) = −wstVst(|xs − xt|) = wst|xs − xt|.

An example graph for the potential function Ust is depicted in figure 3.6. We typically
use this metric for vision problems like stereo matching and image denoising [28].
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Ust(xs, xt)

xs − xt0

Figure 3.6: Graph of Ust(xs, xt) for a everywhere smooth prior
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(b) Potts model

Figure 3.7: Graphs of Ust(xs, xt) for two piecewise constant priors.

Piecewise constant prior

The piecewise constant prior [32] rewards label configurations that consist of areas
with constant labels. It represents a very simple prior that is theoretically able to
consider discontinuities for its optimal solution. For many vision problems, however,
this prior is inept of encoding all needed constraint between neighboring labels. Two
examples that enjoy great popularity in computer vision are the Ising model for binary
segmentation problems and its generalization to more labels, the Potts model.

The Ising model gained its merits in statistical physics for studying phase transi-
tions of magnetic systems. It assumes that each element is magnetically coupled to
its neighbors and can either take the value 1 if it is ferromagnetic or −1 if it is anti-
ferromagnetic. Remarkably, this model can be translated to many other systems that
share the same dimensions and the same symmetries [23]. For this reason, Ising mod-
els are attractive for explaining the behaviour of interacting sites in binary labeling
problems. We can formalize the Ising model as

Vst(xs, xt) = xsxt

where xs ∈ {−1, 1} and xt ∈ {−1, 1}. In figure 3.7(a) we see an example graph for
an Ising model.
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Ust(xs, xt)

xs − xt0

(a) Truncated linear model

Ust(xs, xt)

xs − xt0

(b) Truncated quadratic model

Figure 3.8: Graphs of Ust(xs, xt) for two piecewise smooth priors

The Potts model generalizes the Ising model to labeling problems with more than
two labels and can be formalized as

Vst(xs, xt) = 2δ(xs, xt)− 1

where δ is the Kronecker delta1. Figure 3.7(b) shows the graph of the potential
function Ust(xs, xt) for the Potts model.

Piecewise smooth prior

The piecewise smooth prior [32] rewards label configurations that comprise pieces of
smoothly varying labels. The basic idea is to set an upper bound for the penalty of
the everywhere smooth prior which allows us to obtain smoothed regions as well as
discontinuities in the optimal solution. We can formalize the prior as

Uw
st(xs, xt) = min(|xs − xt|k, Umax)

with k ∈ {1, 2} and Umax as the upper bound [28]. In figure 3.8(a) we see the
potential graph for k = 1, yielding the truncated linear model. For k = 2 we obtain
the truncated quadratic model which is depicted in figure 3.8(b).

3.4 Hierarchical Markov Random Field

For highly complex Markov random fields it becomes intractable to minimize the
corresponding energy. A natural resort is to solve the problem by a sequence of
reduced versions of the Markov random field. We start by determining the estimates
on the coarsest version and use it to guide the inference on the next finer image.
We commonly refer to such models as hierarchical Markov random fields (HRMF). A
hierarchical Markov random field comprises two parts: a pyramid of interdependent
Markov random fields and an observation field. Each hierarchy level is associated
with a simplification (often a scaled version) of the original Markov random field. In
the context of HRMFs we call the original Markov field observation field [17] [12].

1δ(xs, xt) takes the value 1 when xs = xt and 0 when xs 6= xt.
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HMRFs are constructed in a bottom-up approach. Each hierarchy node depends
on a specific block of the observation field insofar as its label and partition functions
are determined by the nodes of the block. Once we have initialized all nodes, we can
apply the inference algorithm from top to bottom. For each hierarchy level we solve
the energy minimization problem and project the result on the next finer level where
it can be refined with the help of additional image information. At the bottom of
the pyramid we obtain an approximate solution to the observation field. Again, we
incorporate missed image details and conclude with an approximation of the searched
estimates.

According to [25] we can differentiate two types of HRMFs: algorithm-based and
model-based [25]. The former refers to models the aforementioned models. That is,
coarser levels project their results to the next finer level, where we devise a more
refined version. A typical example is a multiscale Markov random field, which con-
structs a hierarchy of of differently scaled images. On the contrary, model-based
HRMFs alternate the node and edge structure of the model to include global hierar-
chical information during the inference algorithm. Thus, we change the neighborhood
system and the partition function of a node.

Several authors share the opinion that HMRFs often lead to much faster con-
vergence and improved accuracy. For example, deterministic relaxation algorithms,
such as ICM, feature more precise results on coarser hierarchy levels, because we face
less local minima to get stuck in. Even stochastic relaxation algorithms like simu-
lated annealing may perform better [17]. HMRFs may also simplify the modeling of
prior knowledge that does not directly affect the interaction between adjacent pixels.
Imagine we like to constrain the minimum size for a segmentation region. In flat
Markov random fields we would have to define large neighborhood systems which is
computationally intractable. With hierachy levels, though, we have a natural and
efficient representation for describing image variations of large scale [2].

Unfortunately, it is not obvious how to design and adapt a HRMF for a given
labeling problem. Of course, we can choose among conventional neighborhood sys-
tems, such as the quadtree model or an augmented pyramidal graph structure as in [2].
However, their structure also exhibits some major disadvantages. In quadtree models
for instance adjacent pixels may be associated with different nodes on a coarser level.
In augmented models which incorporate additional potentials to strengthen the affin-
ity among adjacent nodes we may no longer factorize the joint probability function.
A second problem is that we have to model meaningful transition functions within
and between the hierarchy levels. For complex segmentation problems it is already a
delicate matter to design suitable potential functions for the observation field.

In this thesis, we employ an algorithm-based approach in section 5.2 but solely for
initializing our observation field. The advantage is that we benefit from knowledge
about spatially distanced nodes while retaining our original labeling problem.



Chapter 4

Inference

In the previous section we argued that Markov random fields are a suitable repre-
sentation for the labeling problem, as they allow us to efficiently infer the hidden
image x based on the observed image y. In particular, we are interested in seeking
the “optimal” image x̂ where “optimal” usually refers to one of the following three
modes.

4.1 Estimates

4.1.1 The maximum a posteriori (MAP) estimate

The “optimal” estimate should comply with the observed image y and the a pri-
ori knowledge about the labeling problem. The Bayesian approach subsumes both
conditions in an elegant way [35] [10]. Following Bayes rule, we may interpret the
“optimal” estimate as the maximal posterior probability P (x|y):

P (x|y) =
P (y|x)P (x)

P (y)
,

where P (y|x) expresses the likelihood and P (x) stands for the prior distribution of
the hidden image x.

Neglecting the constant joint probability distribution of the observed image P (y),
we can thus define the MAP estimate x̂ by

x̂ = arg max
x∈X

P (x|y) = arg max
x∈X

P (y|x)P (x).

An important tie can be bound to the energy function of the conditional probability
P (x|y), respectively the joint probability distribution P (x, y). If we surmise that the
measurement noise at each site s is independent, we can write

P (y|x) =
∏

s∈S

P (ys|xs).

Let us also assume that the likelihood of y = gnoised given x = (g, l) obeys the Gibbs
distribution:

P (ys|x) =
1

Zs
· e−Edata(x,ys),

24
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where Zs denotes a normalizing partition function. Then maximizing P (x|y) is equal
to minimizing

E(x, y) = E(x) + Edata(x, y),

where we substituted the energy function E(x) that underlies P (x). As we discussed
in section 3.3.3, E(x) refers to the smoothness or prior energy Esmooth [32][35].

Thus, the MAP estimate of a probability distribution minimizes the corresponding
energy function.

4.1.2 Posterior minimum mean squares (MMSE) estimate

Another popular estimate is the posterior minimum mean squares estimate. It com-
putes the mean of the posterior distributions and is defined by

x̄ =
∑

x∈X

x · P (x|y).

4.1.3 Marginal posterior mode (MPME) estimate

If the context of a label is unimportant, we may compute the marginal posterior mode
estimate. It computes for each node xs the maximal probability distribution value
separately:

x̂s = arg max
xs∈Xs

P (xs|y)

4.1.4 Discussion

It is controversially discussed which estimate to prefer. The most popular candidate
is the MAP estimate which is supported by all inference methods of this section.
However, as [2] argues, the MAP estimate may be too conservative. It minimizes
the probability that any node will be misclassified although segmentation problems
nearly always produce misclassified nodes. Also, [29] reports that the MAP estimate
demonstrates clear artifacts such as stair-step effects on images, whereas the MMSE
estimate convinces with much smoother results. On the contrary, the MAP estimate is
legitimated by minimizing the corresponding energy function of the graphical model,
whereas the MMSE estimate lacks such a theoretical justification. Even worse, not
every inference algorithm may calculate the MMSE estimate. For instance graph cuts
(cf. section 4.2.2) can only compute the MAP estimate [29]. The third alternative, the
MPME estimate, on the other hand leads a shadow existence in computer vision since
it neglects the context of a node and we do not know any efficient inference method
to compute it. In the end, we follow the consideration of [35] who questions the
decisive importance of the estimate choice. Instead, we may influence our inference
result more effectively by amending our prior knowledge and the choice of parameters.
Under this perspective we favor the MAP estimate for the rest of this thesis, as it
is the standard and allows us to compare the performance of inference algorithms in
the result section.

Regardless of our preferred estimate, we have to accept, however, that its compu-
tation is an NP hard problem. More formally, we need exponential time to compute
the minimal tree-width triangulation of a graph [4]. Only in special subclasses we
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know methods that allow us to compute the exact estimate in polynomial time. For
instance, in trees we can apply a message passing algorithm called belief propagation.
In most vision problems, however, we are dealing with highly cyclic graphs, forcing
us to resort to approximate inference methods.

4.2 Approximate inference methods

In this section, we review prominent alternatives for approximating a hidden image
x based on an observed image y. We divide the methods into three categories: (1)
sampling (Monte Carlo) methods, (2) the graph cuts algorithm, and (3) message
passing methods. As the observed image y is fixed we may simplify the notation for
the joint probability distribution P (x, y) by writing P (x) instead. Please keep in
mind that we refer to the joint probability distribution, although we use the notation
for the prior distribution.

4.2.1 Sampling (Monte Carlo) methods

We face an intractable problem when evaluating the exact estimate of the posterior
distribution. The major obstacle is the partition function Z which is defined as
the sum over the probability distributions of all possible configurations. A popular
way of avoiding the computation of Z consists in drawing random samples from
the probability distribution, thereby approximating the exact distribution closer and
closer. We refer to this approach as sampling or Monte Carlo methods [25].

How do we know that Monte Carlo methods are guaranteed to converge against
the target distribution? In other words, why does the probability distribution PXm

of our samples, i.e. a chain of random vectors X1, . . . ,Xm, . . . , tend to PX with
increasing m? The answer is that Monte Carlo methods simulate invariant1 and
ergodic2 Markov chains3, which can be proven to converge against the same invariant
distribution, regardless of the initial distribution. For a formal proof of this statement,
see [35]. At this point we only like to develop a notion for the technical requirements
of Monte Carlo methods. We sense that we have to be cautious when designing Monte
Carlo methods since the transition probability has to satisfy various mathematical
properties.

Popular examples for Markov Chain Monte Carlo (MCMC) methods are the

1We say a probability distribution µ is invariant if it fulfills µP n = µ for every n ≥ 0. A sufficient
condition for invariance is the detailed balance equation

µ(x)P (x, y) = µ(y)P (y,x)

for all x, y ∈ X.
2A Markov chain is called ergodic if it is recurrent, non-null and aperiodic, i.e. we can return

to each state (recurrent), the expected time to return to each state is finite (non-null) and the
configuration set cannot be split in subsets that would be visited in a periodic way (aperiodic).

3A Markov chain is formally given by an initial probability distribution ν and transition proba-

bilities P1, P2, . . . on X. Thus, we obtain the probability of states x0, x1, . . . , xn at times 0, . . . , n,
respectively, by

P
(n)((x0, . . . , xn)) = ν(x0)P1(x0, x1) · · · · · Pn(xn−1, xn).
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Metropolis algorithm, Gibbs sampling, and simulated annealing. We shall briefly re-
view their underlying principles:

Metropolis algorithm

Again we assume that P (x) = P ∗(x)/Z is computationally infeasible for direct sam-
pling. Instead we introduce an easy-to-sample proposal distribution Q, i.e. a distri-
bution that satisfies

P (x) ≤ cQ(x)

for all values of x and a known constant c.
In the Metropolis algorithm, this proposal distribution depends on the current

state x(t) where the superscript t labels the sequence of states in the corresponding
Markov chain. The algorithm steps are straightforward: We start with an arbitrary
labeling x ∈ X. Then for each time step t we sample a tentative state x′ from the
proposal distribution Q(x′|x(t)) which is accepted with a specific probability as the
new state.

In contrast to very simple Monte Carlo methods, such as rejection sampling, the
Metropolis algorithm is suited for high-dimensional problems because our proposal
distribution Q(x) does not have to resemble P (x). The drawback of the algorithm,
however, is its long running time. Because each sample depends on the proposal
distribution of its predecessor, we have to calculate many samples to simulate random
walk behavior [23].

Gibbs sampling

Another widespread sampling technique for distributions over at least two dimensions
is Gibbs sampling. We can understand it as a special case of Metropolis sampling in
which we define the proposal distributions Q(x) as the conditional distributions of P :

P (xi|x−i),

where x−i denotes all the variables except i.
Thus, if the conditional distribution P (xi|x−i) is easy to sample from we typically

apply this method according to the following sampling scheme:

x
(t+1)
1 ∼ P (x1|x(t)

2 , x
(t)
3 , . . . , x(t)

n )

x
(t+1)
2 ∼ P (x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)

n )

...

The properties of Gibbs sampling are two-fold: On the one hand, this method is very
easy to implement which probably contributed to its popularity. On the other hand,
the algorithm also needs many computation steps until it behaves like a random walk
along the probability distribution which is especially unpleasant for small step sizes
[23].



4.2. APPROXIMATE INFERENCE METHODS 28

Simulated Annealing

The Achillis heel of the preceding sampling methods is that they are prohibitively
slow when simulating random walks. One famous technique to accelerate convergence
speed is simulated annealing [10]. The intuitive idea is to simulate the controlled cool-
ing (annealing) of a material towards a state of minimal energy. We account for this by
introducing a temperature variable T that controls the annealing process. Beginning
with a high temperature value, we seek for the lowest energy state whilst gradually
decreasing the temperature according to a cooling schedule. In the algorithm, we
take an arbitrary labeling as a starting point. A new sample is then accepted if it
leads us to a lower energy state. Otherwise we still accept with a certain probability
that depends on the temperature. As the temperature steadily drops, the acceptance
probability also decreases. Thus, the temperature progressively restricts the freedom
of movement in the probability distribution.

Theoretically, simulated annealing is able to find the global minimum of an energy
function. In practice, however, optimal cooling schedules converges too slowly. For
this reason we are forced to design sub-optimal schedules that are no longer guaran-
teed to converge against the globally optimal solution but at least do not get trapped
in the same local minimum [32].

In a nutshell, Monte Carlo methods are widely used to sample from joint probabil-
ity distributions, mainly due to its simplicity. Unfortunately, popular representatives,
such as Metropolis sampling and Gibbs sampling, suffer from slow equilibration and
are very sensitive to the initial labeling. Simulated annealing attempts to compen-
sate for these shortcoming by using the cooling schedule that regulates the selection
of samples. In practice, however, only suboptimal cooling schedules are feasible that
may find a solution close to the global minimum after a long running time. A drop of
bitterness is certainly that we need to adjust some parameters for simulated annealing
and that our approximation of the estimate is not reproducible.

4.2.2 Graph Cuts

The graph cuts algorithm [14] has proven to be a powerful tool for solving energy
minimization problems. It allows us to efficiently determine the exact MAP estimate
for binary labeling problems and results in an approximate solution for problems with
more than two labels. The central idea behind the algorithm is to reformulate the
segmentation problem as a min-cut problem which we can minimize in polynomial
time via the max-flow algorithm [9].

Let us discuss the idea of graph cuts in more detail to better understand its
properties: We initiate the algorithm by manually selecting image nodes that pertain
to different labels. At the representation level, this relates to hard-wiring the manually
selected nodes to some novel label nodes called terminal nodes. Then it is clear that
a (multiway) cut on this model, i.e. a subset of edges that totally separates the
terminals, reflects a segmentation of the image. We also know that the pairwise
potentials defined on the edges correlate to the smoothness of adjacent image nodes.
This means that similar image nodes are modeled with high potential values, whereas
image disparities, such as segmentation boundaries, correspond to small potential
values. The quintessence is that the minimal cut through the Markov random field
should delineate a reasonable segmentation of the underlying image. Graph cuts
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exploits this insight very efficiently by computing the minimal cut with the help of
the max-flow algorithm, which is possible due to the celebrated max-flow min-cut
theorem [5].

The two most popular variants of the graph cut algorithm are the swap-move
and the expansion move algorithm. Both variants compute the labeling problem
iteratively. The swap move algorithm swap two label α and β of two subsets of nodes
until a swap move does not decrease the local energy level. The expansion move
algorithm, on the contrary, attempts to increase the set of nodes that share a specific
label α until an expansion move does not yield a lower energy level [28].

The complexity for the standard α-expansion variant is quadratic in the number
of nodes and linear in the number of labels. If the energy functions exhibit a simple
characteristic structure we may even achieve logarithmic complexity in the number
of labels [21]. Or, we may exploit in the max flow algorithm that the graph some-
times barely changes in successive iteration steps [18]. Experimental results have
proven that graph cuts clearly outperforms Monte Carlo methods both in speed and
accuracy. This also explains its popularity for many applications in computer vision,
such as image restoration, stereo and motion, image segmentation, or medical imag-
ing. A severe shortcoming of graph cuts, however, is its restriction to specific energy
functions. Boykov et al. [3] report that the expansion move algorithm requires the
potential function Vst to be a metric, while the swap algorithm demands that Vst

forms a semi-metric.

4.2.3 Message passing methods

A viable alternative to graph cuts are message-passing algorithms such as the Viterbi,
Forward-Backward, or the belief propagation (BP) algorithm. In numerous appli-
cations they demonstrate their potential to perform fast approximate inference on
graphical models. They all share the idea of sending messages between nodes for
finding the most likely configuration of hidden nodes. While the Viterbi and the
Forward-Backward algorithm are applied in the context of hidden Markov models
(HMM), we may employ Pearl’s belief propagation algorithm for Markov random
fields. Depending on the desired estimate, it comes in two flavours:

1) The max-product or equivalently min-sum algorithm for searching the MAP
estimate and

2) The sum-product variant for computing the MMSE estimate.

On the contrary, the graph cuts algorithm can only compute the MAP estimate, as
it attempts to minimize the energy function encoded in the graphical model. The
belief propagation algorithm is also less restricted in the choice of the energy function.
This plays a crucial role since we seek an inference algorithm that allows us to flexibly
design the graphical model for optimally reflecting our labeling problem.

Both inference approaches have in common that they are deterministic, i.e. they
reproduce their solutions for the same graphical model in the same starting configura-
tion. According to [29] the performance of both algorithms are comparable, although
the graph cuts algorithm constantly finds lower energy levels which manifests in
smoother results. In another study of [28] the standard belief propagation algorithm
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performed significantly worse than the graph cuts algorithm on many benchmarks.
Similar accuracy and convergency problems are reported by [24].

To overcome these deficits they propose a message passing variant called gen-
eralized belief propagation which they introduce in [39]. It demonstrates the same
flexibility as the belief propagation algorithm but is much more accurate and con-
verges more reliably. A severe problem, though, is its execution time. In the following
two sections we first introduce the standard belief propagation that is fundamental
to the generalized belief propagation algorithm. Afterwards we shall analyze possible
speedup techniques for the generalized belief propagation to obtain a flexible, fast
and accurate inference algorithm for solving complex labeling problems.

4.3 Belief propagation

The belief propagation algorithm is a message passing method that iteratively com-
putes the marginal probabilities of a graphical model. It delivers the exact solution for
undirected graphical models that are trees, i.e. graphs without loops, and approxima-
tions for loopy graphical models. It is important to note that the belief propagation
algorithm is not guaranteed to converge for general graphs and the precision seems
to vary with the cyclicity of the graph.

The conceptual idea behind belief propagation is straightforward. In the graphical
model, we iteratively send messages between nearby nodes to update beliefs. A belief
is simply the technical term for our approximation of the marginal probabilities,
whilst a message incorporates all the evidence to locally evaluate these beliefs. Let
us formalize this idea to sharpen our understanding of the algorithm.

We decide to explain the principal steps on pairwise Markov random fields, al-
though it is mathematically equivalent to formulate the algorithm for directed acylic
graphical models, factor graphs, or undirected graphical models. Recall from section
3.3.2 that we can write the joint probability distribution as

P (x) =
1

Z
e−βE(x)

where Z denotes the partition function

Z =
∑

x

e−βE(x)

with

β =
1

kT
.

T denotes the temperature, k the Boltzmann’s constant and E(x) the energy function,
expressed for a pairwise Markov random field as

E(x) = −
∑

s

wsVs(xs)−
∑

s∼t

wstVst(xs, xt)

= Edata(x) + Esmooth(x)

Without loss of generality, we may set β to 1 and write the joint probability function
P (x) in potential form:

P (x) =
1

Z

∏

s

φs(xs)
∏

st

ψst(xs, xt)
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Figure 4.1: A Markov random field with pairwise potential functions.

where we define a data potential function φs(xs) and a smoothness potential function
ψst(xs, xt) as

φs(xs) = exp (wsVs(xs))

ψst(xs, xt) = exp (wstVst(xs, xt)) .

Keep in mind that φs(xs) is a shorthand notation for φs(xs, ys). We subsume the
variable ys in the definition of φs(xs), since the observed image can be regarded as
fixed.

In figure 4.1 we see a square lattice pairwise Markov random field that consists of
connected filled and empty circles. The filled circles denote observed image nodes ys,
the empty circles indicate hidden image nodes xs. Connections between a filled and
an empty circle correspond to data potential functions, whereas connections among
filled circles are associated with smoothness potential functions.

Along each edge we can send messages mst(xt) from node s to node t that prop-
agate the likeliest label probabilities for t from the view of s. Formally, mst(xt) is
represented by a one-dimensional vector whose size equals the number of possible
labels. Thus, we can derive the computation formula for the belief at node s as the
normalized product of the data potential φs(xs) and all incoming messages mts(xs).

bs(xs) = kφs(xs)
∏

s∼t

mts(xs)

where k normalizes the sum of beliefs to 1. In figure 4.2(a) we can visually comprehend
which potential function and messages determine the belief of node s.

How do we compute the message mts(xs)? A common approach is to derive the
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s

(a) Single-node belief bs(xs)

s t

(b) Two-node belief bst(xs, xt)

Figure 4.2: Diagrammatic representations of the belief formula for single-node and two-node
beliefs. The arrows indicate messages that affect the corresponding hidden nodes. Undirected
lines denote potential functions (from [40]).

formula through the marginalization condition

bs(xs) =
∑

xt

bst(xs, xt)

The term bst(xs, xt) denotes a two-node belief (cf. figure 4.2(b)), which we can
compose analogously to one-node beliefs.

bst(xs, xt) = kφs(xs)φt(xt)ψst(xs, xt)
∏

u∈∂(s)\t
mus(xs)

∏

v∈∂(t)\s
mvt(xt)

where u ∈ ∂(s)\t stands for all neighbor nodes u of node s except node t. Note that
incoming messages have its source outside the region of belief nodes, since we try to
receive “outer knowledge” about the label probabilities of the belief nodes. For edges
within the belief region we take the values of the smoothness potential function.

Combining all three formulas, we gain the message update rule

mts(xs) =
∑

xt

φt(xt)ψst(xs, xt)
∏

v∈∂(t)\s
mvt(xt).

The formula reveals the equivalence to the sum-product algorithm where we also
summarize over products of potential functions and incoming messages. Even further,
the formula exhibits the fundamental idea behind behind belief propagation. At its
heart the algorithm simply changes the order of sums and products in the marginalized
distribution. Instead of marginalizing over an exponential number of joint probability
distributions we can as well multiply partial sums. Image that we like to compute the
marginalized probability of x1 in the directed chain graph that is depicted in figure
4.4.

∑

x2,x3,x4

P (x1, x2, x3, x4) = P (x1)
∑

x2

P (x2|x1)
∑

x3

P (x3|x2)
∑

x4

P (x4|x3).
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=
s ts t

∑

Figure 4.3: A diagrammatic representation of the message update rule mts(xs). The sum-
matoin symbol indicates that we sum over all possible labels for node t (from [40]).

x1 x2 x3 x4

Figure 4.4: A directed chain graph for four nodes.

If we assume that each image site can choose among k labels, we notice the striking
difference between both approaches. On the left hand side of the formula, we have
to calculate kn (here n = 3) different probability values. Yet, the reordering of sums
and products on the right hand side causes only n · k evaluations. Belief propagation
therefore reduces the computational complexity from exponential to polynomial in
the number of image nodes.

The message update rule, as it is stated above, computes the minimum mean-
square (MMSE) error. For obtaining the maximum a posteriori (MAP) estimate, we
have to perform a minor change to the message update rule. Instead of summing over
products, we have to calculate the component-wise maximum, yielding

mts(xs) = max
xt



φt(xt)ψst(xs, xt)
∏

v∈∂(t)\s
mvt(xt)



 .

This form is also known as the max-product algorithm. Alternatively, we may compute
the MAP estimate with the min-sum algorithm that computes the minimum of the
negative log probabilities:

mts(xs) = min
xt



Ut(xt) + Ust(xs, xt) +
∑

v∈∂(t)\s
mvt(xt)



 .

The min-sum formulation directly reflects the energy function E(x) and it may be
numerically more stable than the product variant. Nevertheless, we will use the max-
product form throughout this thesis because it did not reveal any severe numerical
sensitivities in our implementation and and we are accustomed to its notation.

We have gathered all ingredients to formalize the belief propagation algorithm:
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Algorithm 1 BP algorithm

Require: Positive thresholds ǫ and itermax.
1: for all messages mi do

2: mold
i ⇐ 1

3: for all single-node beliefs bi do

4: boldi = 1
5: end for

6: d⇐ 1000 ⊲ some big number
7: iter ⇐ 0
8: while (d ≥ ǫ) and (iter < itermax) do

9: for all messages mi do

10: Compute new message value mnew
i .

11: end for

12: d⇐ 0
13: for all single-node beliefs bi do

14: Compute new belief bnew
i with the help of messages mnew.

15: d⇐ d+ |bnew
i − boldi |

16: boldi ⇐ bnew
i

17: end for

18: for all messages mi do

19: mold
i ⇐ mnew

i

20: end for

21: iter ⇐ iter + 1
22: end while

23: for all nodes ni do

24: label(ni)⇐ arg maxk bi(k)
25: end for

26: end for
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The variable itermax in line 8 lets the algorithm escape from endless loops; the
variable ǫ defines a threshold for the difference of beliefs in line 15. Particularly
for graphs with tight loops, we may experience that the algorithm does not find a
solution because the message values circulate in loops without ever converging to a
fixed point. It is still obscure under which exact circumstances the belief propagation
fails to converge. We assume that the convergence behavior is probably related to
the similarity to trees but how precisely is still object to research. Thus, we rely on
empirical results. In [39] the authors analyzed the convergence behavior on a square
lattice Ising spin glass with randomly chosen potential function values. The results
indicate that the algorithm converges surprisingly often on two-dimensional images,
yet rather seldom in three-dimensional images. It is questionable to generalize these
results, as we cannot assume that real-world data contains purely random potential
functions. For this reason we like to contribute some empirical results about the
convergence behavior on biological images of two and three dimensions.

In line 10 we may ask ourselves which update scheme we shall apply to the message
update rules. Although it barely affects the accuracy, it is an important question as
it may have significant impact on the convergence speed of the algorithm. What are
the common choices for the update scheme?

1) Synchronous update scheme: In each round we carry an old and a new value
for each message. The old message value denotes the message value of the
previous iteration; the new message value refers to the newly computed value.
In a synchronous update scheme, we exclusively use old message values for the
computation of new message values. Once all new message values are computed,
we update all old message values with the new ones [29].

2) Asynchronous update scheme: In an asynchronous update scheme we propagate
messages in a pre-defined order and update each node immediately. Assume we
have a two-dimensional grid with standard four neighborhood. Then we can for
instance process the nodes along each direction separately while always using
the newest message values during the computation.

Another possibility is to interleave the update directions. Starting at the first
node of a row, we compute the messages from left to right until we reach the
last node of the row. Then instead of repeating the same pattern for the next
row, we traverse the same row in opposite direction. Once we return to the first
node, we have completed the row and move on to the next one. After all rows
have been processed, we use the analogous scheme for the columns [28].

According to [29] the asynchronous update scheme is significantly faster than the
synchronous version. We contribute this to the number of steps that we need to pass
a message within the image. In the synchronous version, a message update can only
cover one node per iteration, whereas in the asynchronous version updates can move
across the whole image in a single iteration [29].

In practice, we can also improve stability and convergence speed by interpolating a
message value between the old and the new message value. We model this compromise
through an inertia factor α that computes the new message value as

mnew = αmupdate + (1− α)mold
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where mupdate denotes the newly computed message value, mold the old message value
and mupdate the value that we finally assign as new message values [38].

The properties of the belief propagation algorithm are twofold. On the one hand
it is proven to efficiently compute the exact MAP and MMSE estimates in tree-like
graphical models. It can also be shown that the fixed points of the belief propagation
algorithm are equivalent to an approximate free energy, known as the Bethe free
energy in statistical physics. In numerous applications belief propagation delivers
satisfactory approximations in acceptable execution time. Examples are turbo codes,
free energy approximations, low density parity check codes, computer vision problems
or medical diagnosis [37].

On the other hand belief propagation demonstrates poor convergence for graphical
models with many tight loops and rather uniform potential functions. Even if the al-
gorithm tends to the stationary points of the Bethe free energy, we are not guaranteed
to obtain satisfactory results. For many images this approximation is rather imprecise
and therefore unsuited as a convergence goal. We generally assume that the belief
propagation algorithm delivers better results if it converges in a small number of steps
[24]. Some empirical results for the convergence behavior of belief propagation are
given in [24]. They report that the algorithm converged on two synthetic graphical
models named PYRAMID and toyQMR as well as on one real-world example called
ALARM, but failed to converge on the QMR-DT example, which is a large bipartite
network with noisy-ORs as partition functions. In [39] the authors experimented with
a square lattice Ising spin glass model of different lengths. They instantiated all data
and smoothness partition functions with random and independent values and expe-
rienced that standard belief propagation already fails to converge for grids of length
20. Considering the small size of this network, this result gives cause for concern. We
may conclude that belief propagation suffers from serious stability problems in many
real-world networks of large complexity, especially in the three dimensional case.

However, in the same paper the authors analyzed the performance of a modified
belief propagation algorithm which they baptized generalized belief propagation. In
comparison to belief propagation its results are very promising. On the spin glass
model of size 10 for instance this algorithm finds nearly the exact estimates, whereas
the belief propagation algorithm leads to completely exaggerated values. What is the
idea of the GBP algorithm?

4.4 Generalized belief propagation

The standard belief propagation algorithm features many attractive properties, such
as exact estimates in trees or fast execution time if it converges. But it also shows
poor convergence for many looopy graphs that manifest themselves in inaccurate
estimates. The source of error is the circular message flow that distorts good message
approximations by self-dependent probability values. However, [39] proposes a way
to alleviate this undesired behavior. The basic idea is to compute more informative
messages between node regions in addition to messages between single nodes. What
we obtain, is an algorithm that demonstrates improved convergence behavior and
delivers very accurate approximations to the exact estimates. It no longer tends to
the stationary points of the Bethe energy but is proven to approximate the fixed
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Figure 4.5: On the left we see a diagrammatic representation of the basic clusters; on the
right we see a possible region graph for the corresponding Markov random field.

points of the more precise Kikuchi energy [37]. The consistent name of the algorithm
is generalized belief propagation (GBP) [39]. Let us explore the modifications in detail.

The first variation emerges during the initialization. In contrast to the standard
BP algorithm, the GBP algorithm expects us to mark basic clusters that are necessary
for defining message update rules between group of nodes. Unfortunately, it is an
art to choose the optimal cluster size [33]. The problem is that the basic clusters
should encompass as many cycles as possible, but must not be too large since the
GBP algorithm grows exponentially with the second largest cluster size. In practice,
cluster sizes larger than four may already be infeasible. An example for basic clusters
is depicted in figure 4.5. The clusters tightly capture the smallest loops of the graph
and are still of reasonable size. Having defined a set of basic clusters, we continue
the construction process by determining sub-regions. For any two basic clusters we
compute the intersection and define non-empty sets as sub-regions. In 4.5 for example
45 is a subregion of the basic clusters 1245 and 4578. Then we intersect sub-regions
to gain the next generation of clusters. We repeat this pattern recursively until the
intersections equal single nodes. In example 4.5, we obtain for instance the final
cluster 5 out of 45 and 56.

For visualizing the intersection dependencies among all these regions, we use a
succinct representation called region graph. A region graph is a directed acyclic graph,
where vertices correspond to node regions and edges are only permitted between a
region P and a direct sub-region C if C contains all or a subset of the nodes in P .
We say that P is a parent region of C because a directed edge leads from P to C.
Conversely, we denote C as a child region of P . If there is a directed path from a
region A to C, A is called an ancestor region, whereas a region D that is reached
from C through a directed path is named descendant region.

Finally, a region graph has to satisfy a technical requirement called region graph
condition. Suppose we like to estimate the marginal probability of a large region, e.g.
the entire graphical model, which is as we know intractable for complex networks.
Then the idea of the GBP algorithm is to define feasible sub-regions that altogether
cover the large region. But as the sub-regions probably overlap, we cannot simply
calculate the sum. We have to ensure that each variable of the large region is only
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considered once. For this reason we associate a weight or counting number with each
region R such that we fulfill the region graph condition

∑

R∈RG(s)

cR = 1 for all s ∈ S

where RG(s) denotes the set of regions containing variable s [33].
In figure 4.5 we see a Markov random field and one suitable region graph. We

observe that it represents each cluster generation in a distinct level and connects a
region R to a sub-region S if S arose from an intersection step between R and another
node [39].

We can distinguish three ways of representing messages and beliefs, each showing
different strengths:

1) The region graph: The region graph is a good choice for understanding which
messages enter belief regions and have influence on certain message computa-
tions.

2) Diagram of the graphical model : A diagrammatic representation of a graphical
model is suited to visualize message and belief dependencies for grid graphs
with consistent neighborhood systems.

3) Formulas: The belief formula and the message update rule are necessary for a
mathematical sound and compact description of the GBP algorithm. However,
formulas may be inappropriate for illustrating the idea behind the algorithm.

With these three representation types at our disposal we like to comprehend how the
GBP algorithm composes the message update rule. As in the BP algorithm we derive
the general formula by combining the marginalized condition

bR(xR) =
∑

xA\xR

bA(xA)

with the belief expressions bR(xR) and bA(xA), where region A has to be the parent
of region R in the region graph.

We consider belief at a region R to be proportional to the product of local data
and smoothness potential functions, multiplied by messages entering region R from
outside and messages that lead from not-descendant regions of R into descendant
regions of R. Only this composition of messages is proven to minimize the free
energy of the region graph. The formal definition of beliefs is written as

bR(xR) = kψR(xR)





∏

P∈P(R)

mP→R(xR)









∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)





where k normalizes the sum of beliefs to 1 and ψR(xR) denotes all potential functions
included in region R. The variable P(R) describes the set of regions that are parent of
region R (according to the region graph representation), D(R) is the set of descendant
regions, and E(R) ≡ R ∪ D(R) comprises region R and all its descendant regions.
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Figure 4.6: On the left we see a diagrammatic representation for a single-node belief region,
highlighted with a gray background. Its formula is b5 = k φ5m25m45m65m85. The right figure
depicts the corresponding region graph. Blue directed edges denote messages between single
nodes.

Consequently, P(D)\E(R) denotes the set of all parent regions of D except R or any
of R’s descendant regions [38].

After substituting the belief expressions into the marginalized condition, we re-
trieve the message update rule:

mP→R(xR) =

∑

xP\R

(

ψP\R(xP\R)
∏

(I,J)∈N(P,R)mI→J(xJ )
)

∏

(I,J)∈D(P,R)mI→J(xJ)

where N(P,R) denotes the set of all connected pairs of region (I, J) such that I is
not in E(P ) while J is in E(P) but not in E(R). The set D(P,R) stands for the set
of all connected pairs of regions (I, J) such that I ∈ D(P ) but not in E(R) whlie J
is in E(R). Note that we can precompute N(P,R) and D(P,R) for improving the
execution time of the GBP algorithm. Figure 4.6 to 4.9 may clarify the ideas of both
formulas.

We should remark that it is possible to construct GBP algorithms that minimize
the same free energy by relying on alternated region graphs. For example, we could
introduce arcs in the region graph that lead from grandparent regions to its grand-
children. Even for the same region graph we can retrieve different versions of the
GBP algorithm. For our definition of the region graph, we could choose among at
least three variants that all propose slightly different formulations for the belief equa-
tion and the message update rule: the parent-to-child algorithm, the child-to-parent
algorithm, and the two-way algorithm. We decided to present the parent-to-child al-
gorithm because its definition does not contain any region counting numbers, just as
our formulation of the BP algorithm [38].

We may ask ourselves how much we gain by evaluating these more intricate defi-
nitions of the belief equation and the message update rule. Concerning the accuracy
and stability, we can claim that the GBP algorithm clearly outperforms the BP al-
gorithm. On tree-like graphs, the algorithm finds the exact estimate, just as the BP
algorithm; on cyclic network the GBP algorithm even converges in less iterations to
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Figure 4.7: On the left we see a diagrammatic representation for a two-node belief region. Its
formula is b45 = k φ4φ5ψ45m25m65m85m1245m7845. The right figure depicts the corresponding
region graph. Green directed edges denote messages between edges, i.e. two-node beliefs.
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Figure 4.8: On the left we see a diagrammatic representation for a four-node belief region.
Its formula is b1245 = k φ1φ2φ4φ5ψ14ψ25ψ45m65m85m3625m7845. The right figure depicts the
corresponding region graph.

approximative estimates and generally with much higher probability. The precision of
the estimates is no coincidence. As [37] proves, the fixed points of the GBP algorithm
correspond to the minima of the Kikuchi energy, which is a better approximation to
the free energy than Bethe. Again, we observe that a more accurate approximation
of the underlying free energy coincides with an improved stability of the algorithm.

Unfortunately, we cannot guarantee that the algorithm converges. Although the
literature [24] [41] suggests that it should be reliable enough for most vision problems,
it may fail to converge. In these rare cases, we can exploit that the GBP algorithm
may iterate forever while the minima of the Kikuchi/Bethe free energy deliver a
fairly accurate estimate for the exact free energy. Prominent examples for algorithms
that directly minimize the free energy are: CCCP [41], UPS [31] or the double-loop
algorithm [15]. What are their major ideas?

The concave convex procedure (CCCP) decomposes the free energy into concave
and convex parts to formulate discrete update rules that iteratively decrease the free



4.4. GENERALIZED BELIEF PROPAGATION 41

7 8 9

4 5 6

1 2 3

1245 2356 4578 5689

12 14 25 45 23 56 36 47 78 58 69 89

1 2 4 5 3 6 7 8 9

Figure 4.9: In the upper figure we see a diagrammatic representation of the GBP mes-
sage update rule for a cluster message. The source belief region of the message is depicted
in light gray, whereas dark gray indicates the target belief region. The red directed edge
denotes the cluster message m4512 which leads from edge 45 to edge 12. Its formula is
m4512 = φ1φ2φ4φ5ψ12ψ14ψ25ψ45m74m65m85m3645m7845. Below it we have depicted the com-
plete region graph as it is commonly constructed in the GBP algorithm.

energy. Very similar is the proceeding of the unified propagation and scaling algorithm
(UPS). Both algorithms are guaranteed to converge against the extremum of the
Bethe free energy and are more likely to converge against the Kikuchi energy than
the standard GBP algorithm. The main difference between both approaches lies in
the convergence rates [30]. A third alternative is the double-loop algorithm. It tries to
solve our non-convex constrained optimization problem by minimizing convex bounds
on the Kikuchi free energy. According to the authors this method yields dramatic
speed-ups compared to the very slow CCCP and UPS algorithm. Nevertheless, we
will follow the standard GBP algorithm, as it converges for most the problems and
more importantly its runs faster than the very slow double-loop algorithm.

This argument carries even more weight when stating that speed is the major
drawback of the GBP algorithm. In contrast to the BP algorithm, we have to perform
a vast number of additional computations per iteration. Consider the complexity of
two- and three-dimensional images represented as Markov random field in standard
form.
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1) 2D image: If we represent an image of size w × h by a two-dimensional grid
graph with standard four neighborhood and assume basic clusters of size four,
we have to evaluate

4⌊w − 1⌋ · ⌊h− 1⌋
messages between edge-like node regions in addition to 4wh−2w−2h messages
between single nodes. This means roughly twice as many messages as in the
BP algorithm.

2) 3D image: In a three-dimensional image w × h × d, we even have to calculate
the values of

4 (w⌊h− 1⌋⌊d − 1⌋+ ⌊w − 1⌋h⌊d − 1⌋+ ⌊w − 1⌋⌊h − 1⌋d)

edge messages apart from the 6whd−2wh−2wd−2hd message values between
single nodes. Hence, nearly three times as many messages as in the standard
BP algorithm.

Even worse is that each evaluation of the belief expression and the message update rule
makes reference to messages between groups of nodes. Unlike messages between single
nodes, we cannot represent them through vectors. We have to use matrices whose
number of dimensions equals the size of the largest intersection region in the region
graph. The matrices that are related to edge messages are of size k2 where k denotes
the number of possible labels. Of course, it is possible to reduce the computational
costs if the message values correspond to special matrices, e.g. symmetric or uniform
matrices, but for non-trivial networks we generally struggle with unbearable execution
times.

We can summarize that the standard form of the GBP algorithm converges fairly
reliably to accurate approximations of the estimates and can be flexibly adjusted to
our vision problem. However, it is computationally too expensive for many applica-
tions. The decisive question is if we can accelerate the GBP algorithm.

In the literature, we have spotted only two papers, [27] and [19], that focus on
speedup techniques for the GBP algorithm, and both are guided by the same idea:
The most common pairwise potentials can be divided into compatible pairs of labels
whose values are label-dependent and incompatible pairs of labels that all take the
same value. As the number of compatible pairs of labels nc is usually much smaller
than the number of incompatible labels ni, we gain a speed-up of nc/ni by not com-
puting redundant incompatible labels. Shental et al. [27] suggests this approach for
the Ising model, and Kumar et al. [19] for the more general robust truncated model,
comprising the piecewise constant prior and the piecewise smooth prior.

To motivate further acceleration techniques, we may briefly review recent work for
the similar BP algorithm. Felzenswalb et al. [8] present three acceleration techniques
for grid graphs and require the pairwise potential to be the Potts model, the linear,
or the quadratic truncated model. They first observe that each message update rule
can be expressed as a min convolution [7] which allows them to reduce the complexity
from quadratic to linear in the number of possible labels. Thus, the concept resembles
the approaches of [27] and [19]. Second, they manage to halve the number of message
updates. Similar to a checkerboard pattern, they divide the grid graph into two sets
of nodes and alternate the message updates for each set. And third, they attempt to
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initialize the message close to a fixed point for reducing the number of iterations until
convergence. Their idea it to apply the BP algorithm in a coarse-to-fine multi-grid and
initialize the messages of finer levels with the approximations of the next coarser level.
A nice property of all three techniques is that they deliver the same approximations
as the standard form of the BP algorithm. In [20] the authors generalize the first
technique to belief propagation on arbitrary Markov random fields. [34] proposes a
coarse-to-fine multi-grid in which edges within a level are partly replaced by edges
between levels. The disadvantage of this approach, however, is that it changes the
minimization problem and does not necessarily lead to the same solution.

In this thesis, we attempt to apply four different acceleration techniques, from
which three are novel and one is an adaptation of an available methods.



Chapter 5

Speedup techniques

5.1 Overview

In this chapter, we discuss four algorithmic ideas for accelerating the standard GBP
algorithm: (1) hierarchical initialization, (2) following active messages, (3) caching
and multiplication and (4) acceleration for MAP estimate. The first technique is
adapted from a paper of Felzenswalb et al. [8] which covers speedup techniques for the
standard BP algorithm; the remaining three techniques are novel to our knowledge.

With the exception of the second technique all approaches assume that the under-
lying graphical model is a two-dimensional grid with a four-connected neighborhood
system, respectively a three-dimensional grid with six neighbors. This may sound like
a severe restriction, but for many computer vision problems it is not. Grid graphs
are the common representation for images and four- respectively six-connected neigh-
borhood systems which we shall use throughout this chapter are widespread as well.
Likewise, we do not care that the forth technique is solely effective on labeling prob-
lems for which we search the MAP estimate, since it is our preferred choice (cf. section
4.1.4).

Apart from these limitations the techniques incorporate some very pleasant prop-
erties. For instance, they all work on arbitrary energy functions. Unlike [19] and [27]
we do not require that the energy function exhibits a beneficial structure. Thus, we
may flexibly design the energy function that best suits our labeling problem and can
still expect to benefit from significant speedups. Another advantage is that all tech-
niques are fully compatible to each other, i.e. we can exploit them simultaneously.
The reason is that they either leverage distinct parts of the GBP algorithm, or they
neatly complement each other. To make this more explicit, we may briefly describe
each technique with the help of the specialized GBP algorithm for grid graphs:

1) Hierarchical initialization: Instead of initializing messages with uniform values,
we hope to gain significant speed-ups by adapting the multi-grid approach of
[8] for two-and three dimensional grid graphs with standard four-connected,
respectively six-connected neighborhood system. The technique exclusively af-
fects line 1-3 of the algorithm.

2) Following active messages: Our first novel approach is directed towards reduc-
ing the number of visited messages in each iteration. We attempt to compute

44
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Algorithm 2 GBP algorithm for grid graphs

Require: Positive thresholds ǫ and itermax.
1: for all messages mi do

2: mold
i ⇐ 1 ⊲ (1) Hierarchical initialization

3: end for

4: for all single-node beliefs bi do

5: boldi = 1
6: end for

7: d⇐ 1000
8: iter ⇐ 0
9: while (d ≥ ǫ) and (iter < itermax) do

10: for all edge messages mi do ⊲ (2) Active message technique
11: Compute new message value mnew

i ⊲ (3) Caching and Multiplication,
⊲ (4) Accelerating MAP estimate

12: end for

13: for all cluster messages mi do ⊲ (2) Active message technique
14: Compute new message value mnew

i . ⊲ (3) Caching and Multiplication,
⊲ (4) Accelerating MAP estimate

15: end for

16: d⇐ 0
17: for all single-node beliefs bi do

18: Compute new belief bnew
i with the help of messages mnew.

19: d⇐ d+ |bnew
i − boldi |

20: boldi ⇐ bnew
i

21: end for

22: for all messages mi do

23: mold
i ⇐ mnew

i

24: end for

25: iter ⇐ iter + 1
26: end while

27: for all nodes ni do

28: label(ni)⇐ arg maxk bi(k)
29: end for
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only “active” messages, i.e. messages that have not converged yet. The algo-
rithm comes in two different flavors: First, we present a conservative heuristic
that guarantees the same solution as the standard form of the GBP algorithm.
Second, we design a heuristic that trades accuracy for speed and can be ad-
vantageous if we are not interested in the exact probabilities for each label of a
node. The technique aims at line 10 and 13 of the algorithm.

3) Caching and multiplication: We introduce a novel technique that pre-calculates
interim message products used by multiple messages and optimizes the product
order of message update rules. Consequently, the technique pertains to line 11
and 14.

4) Acceleration for MAP estimate: The last novel technique also affects the mes-
sage update rules in line 11 and 14. In contrast to the preceding technique,
though, it concentrates on the inner workings of the multiplication operation.

In the rest of this chapter, we describe the idea of each technique in more detail and
provide some theoretical estimates about the expected speedup. Admittedly, this is
not always possible but our complexity considerations may contribute to understand
and interpret the experimental results at the end of this thesis.

5.2 Hierarchical initialization

The first step of the GBP algorithm is the initialization of messages to random or
uniform values. We observe that both choices are suboptimal because they are far
apart from the fixed points, which reduces the convergence speed of the GBP algo-
rithm. Thus, we could accelerate the GBP algorithm, if we initialized the message
values to better approximations of the stationary points.

One approach for obtaining a good approximation stems from Felzenswalb et al.
[8]. They describe a multi-grid approach for the standard BP algorithm that we like
to adapt for the GBP algorithm. The basic idea works in two principle steps: (1) We
construct a hierarchy of increasingly coarsened versions of an image. (2) Starting at
the coarsest level l, we run the GBP algorithm until it converges and use its estimates
to initialize the messages at the next finer level l− 1. This strategy is repeated until
we reach level 0 where we can hopefully initialize the messages close to the fixed point.

The GBP algorithm benefits from a multi-grid Markov random field by allowing
messages to travel much faster over long distances. Depending on the hierarchy level,
messages can proceed in various step sizes, which is not possible for mono-grids. [17].
Willsky [34] for instance extends the Markov random field by potential functions to
coarser hierarchy levels, thereby a hierarchical Markov random fields to

5.2.1 Hierarchical initialization in 2D

Let us define the algorithm more rigorously for a two-dimensional grid graph. We
denote the sites of level i by Si where S0 = S stands for the original grid. Each
node k on level i refers to a block bik on level 0 with size 2i × 2i. The intuition is
that each labeling of a node on level i is tantamount to associating all nodes of the
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(a) level 0 (b) level 1

Figure 5.1: Diagrammatic representation of the first two hierarchy levels. The highlighted
regions indicate the nodes on the respective level and simultaneously blocks bk that comprise
the contained nodes of level 0. The bold edges are updated before the normal edges during
the propagation update scheme.

corresponding block with the same label. Let us define the set of blocks on level i by

Bi = {bi1, . . . , bini
}, ni =

n

4i

where n denotes the number of labels on the original grid. In figure 5.1, we can see
an example for the two finest hierarchy levels of a multi-grid. The gray circles in the
background indicate the blocks.

The energy function on hierarchy level i that shall be minimized by the GBP
algorithm is given by

E(xi) = Edata(x
i) + Esmooth(xi)

= −
∑
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k

wBi

k V Bi

k (xB
i
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where xi denotes the image at resolution level i. The pivotal question is how we define
the data potential V Bi

k and the smoothness potential V Bi

kl at each hierarchy level.
In accordance to the proposition in [8] we define the data potential of block bik as

the sum of the data potentials for all nodes contained in the block:
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This is equivalent to computing the product of the corresponding data partition func-
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This means that the data potential of the block is set to the probabilities of observing
the same label for all its contained nodes. We remark that the summation of the data
potentials can be recursively done from bottom to top, i.e. we solely have to sum
over the corresponding four data potentials of the next finer level [8].

The smoothness potential on level i typically depends on the block size ǫ and the
potential candidate that we choose for the labeling problem. For example, we can
model the smoothness potential that varies with the difference of the labels with a
linear truncated model depending on ǫ:

V Bi

kl (xB
i

k − xB
i

l ) = min

(

ǫVkl

(

xB
i

k − xB
i

l

ǫ

)

, d

)

where we divide by ǫ to reflect the smaller influence between distanced blocks and
multiply with ǫ to model the number of neighboring sites along the boundary. The
variable d represents a pre-defined truncation factor [8].

Note that it is generally task of the computer vision specialist to model the
smoothness potential for each hierarchy level.

So far, we discussed how we model potential functions of the message update
rule in the GBP algorithm. The next step is to propose an advantegeous message
propagation scheme from coarse to fine levels. In the case of two-dimensional grid
graphs we proceed in five steps:.

Algorithm 3 Message propagation scheme on 2D grid graphs

1: Copy the edge message estimates between two blocks to all messages that connect
these blocks on the next finer level.

2: Propagate the cluster message value between four blocks at level l to level l − 1.
3: Compute the residual edge messages where we ignore message terms that have

not been initialized yet.
4: Compute cluster messages at the border of blocks where we ignore message terms

that have not been initialized yet.
5: Compute the residual cluster messages.

The advantage of the update scheme is that we can incorporate more and more
initialized message terms in the message update rules. We consecutively guide the
initialization from the known message values of the upper level to unconfigured mes-
sages of the current level. Figure 5.1 may help to examine the proceeding. We begin
with edge messages in bold and cluster messages that are situated in regions with a
complete bold border. Next we compute the residual edge messages. And finally, we
devote ourselves to cluster messages which are surrounded by exactly two bold edges.

Let us analyze the complexity of the multi-grid approach. Except for the finest
hierarchy level we abort the GBP algorithm after a couple of iterations. As an aid to
orientation, we expect that the GBP algorithm needs less iterations than the standard
BP algorithm, which is reported to deliver a sufficient approximation within five to
ten iterations [8]. The memory cost for the additional hierarchy levels amounts to
less than 1

3 of the number of nodes in the finest level, since we can estimate

l
∑

i=0

ni <

∞
∑

i=0
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∑

i=0

1
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4
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where l denotes the number of hierarchy levels.

5.2.2 Hierarchical initialization in 3D

Felzenwalb’s multi-grid technique also scales to three-dimensional images if we slightly
adjust the size of the blocks and the message propagation scheme. As before, each
node k on level i is associated with a block bik on level 0, but with alternated size
2i × 2i × 2i. We can express the set of blocks on by

Bi = {bi1, . . . , bini
}, ni =

n

8i

The energy function and the considerations on the partition functions can be reapplied
without change from the two-dimensional case. However, we have to modify the
second step of the message propagation scheme:

Algorithm 4 Message propagation scheme on 3D grid graphs

1: Copy the edge message estimates between two blocks to all messages that connect
these blocks on the next finer level.

2: Propagate the cluster message value between four blocks at level l to level l − 1.
3: Compute the residual edge messages where we ignore message terms that have

not been initialized yet.
4: Compute cluster messages at the border of blocks where we ignore message terms

that have not been initialized yet.
5: Compute cluster messages within blocks.

We attempt to initialize the messages as close as possible to the stationary points.
As depicted in figure 5.2, we proceed by using as many initialized incoming messages
as possible in the message update rules. As for the two-dimensional case bold edges
are initialized before normal edges. With regards to cluster messages we first initialize
cluster messages that are enclosed by bold lines, for instance the green region. Then,
we pass on to the adjacent cluster regions, colored in yellow and finally compute
cluster messages within blocks, such as the red region.

5.3 Active-message technique

5.3.1 Exact variant

The active-message technique is a strategy to steadily reduce the number of computed
messages per iteration. The fundamental observation is that the convergence test of
the standard BP and the GBP algorithm is determined by a decreasing number
of belief differences. Messages differ in the number of iterations that they need to
stabilize at their equilibrium. Thus, the idea of the algorithm is to save message
computations that are considered to be stable and to proceed solely with changing,
i.e. active messages. The criterion for distinguishing active from inactive messages
is a simple threshold τ . Empirical results show that it is wise to choose a value close
to zero since even small message differences may add up significantly over several
iterations, enough to corrupt the estimates.



5.3. ACTIVE-MESSAGE TECHNIQUE 50

Figure 5.2: A diagrammatic representation of the hierarchical initialization in a three-
dimensional grid graph. The gray regions correspond to blocks in the observation field,
respectively nodes on the next coarser level. Bold edges indicate messages that are evaluated
before normal edge messages. The green cluster message is an example for the type of cluster
message that is preferably evaluated. Second are messages that are bordered by two bold
lines, depicted in yellow. Finally, we calculate cluster messages within blocks, such as the red
region.

Can we be certain that this strategy tends to the same solution as the standard
GBP algorithm? The answer is no. As we consider all active messages to be a subset
of the active messages in the preceding iteration, we do not capture messages that
change outside the candidate set after one or multiple iterations. Sometimes, the
number of missed active messages is rather small and does not significantly influence
the estimates from our technique but until now we have not discovered the exact
circumstances under which this is the case. One step, however, is certainly necessary
if we guarantee the same result as the standard GBP algorithm: We have to run the
standard GBP algorithm after our technique converged.

Let us express the active-message technique in pseudo-code notation (cf. algo-
rithm 5).

5.3.2 Approximate variant

In labeling problems we are generally not interested in the exact probabilities of
each possible label. It suffices to search for the label with the highest probability.
This means for the active-message technique that we can relax the selection criterion
for active messages, provided that the algorithm ultimately votes for the same label
configuration. Opposed to the exact variant we can consider messages to be inactive
that change more than τ but do not affect the label of the involved nodes. Conversely,
messages between stable labels are neglected in future iterations. But how do we
formulate a heuristic that reliably and efficiently predicts as many inactive labels as
possible?

We have the label history and the probabilities for each node at our disposal. As
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Algorithm 5 Active-message technique (exact variant)

1: Run the standard GBP algorithm for two iterations to gain a candidate set A of
active messages.

2: while (d ≥ ǫ) and (iter < itermax) do

3: for all active messages mA
i do

4: Compute new message value (mA
i )new

5: dAi ⇐ |(mA
i )new − (mA

i )old|
6: if dAi < τ then

7: Remove mA
i from A.

8: end if

9: Compute beliefs that depend on active messages and update the belief
difference d analogous to the standard GBP algorithm.

10: end for

11: end while

12: Run the standard GBP algorithm until it converges.

we strive for maximal speedup, it is important that the heuristic is based on label
information that is as recent and local as possible. It would be too expensive if we
first have to construct a long label history for each node to decide if the label has
converged to its final value. Also, we attempt to perform the selection as fast as
possible, constricting our label and probability evaluation to a small neighborhood.

Another open question is the selection of active messages flowing into or from an
active belief region. This section can be considered as an outline of this acceleration
technique. We have not yet found a reliable heuristic.

5.4 Caching and Multiplication

5.4.1 Caching and multiplication in 2D

If we assume that the graphical model equals a two-dimensional grid graph with a
four-connected neighborhood system, we can explicitly compute the method for the
grid graph. This spares us to laboriously traverse the region graph for computing the
incoming messages in the belief and the message update formula.

Thus, for single-node beliefs we obtain the following (static) formula:

bs(xs) = kφsmasmbsmcsmds

where we use shorthand notation mas ≡ mas(xs) and φs = φs(xs). According to
figure 5.3, the variables a, b, c and d denote the neighbors of s. To save time we do
not compute beliefs for multi-node regions. In practice, we did not encounter any
notable effects on the convergency of the algorithm.

The message update rule for edge messages, i.e. messages between two single
nodes, is

msu(xu) = max
xs

(φsψsumasmbsmcsmbdsumcesu)

where we abbreviate ψsx = ψsx(xs, xu). Figure 5.4 shows a diagrammatic represen-
tation of the involved messages and potentials.
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Figure 5.3: A diagrammatic representation of the messages that influence the single-node
belief at site s in a two-dimensional grid.
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Figure 5.4: A diagrammatic representation of all edge messages (in red) that are contained
in the same two-node belief region R = {s, u}. Note that the cluster messages from edges to
edges are identical in both figures.

Cluster messages

The message update rule for cluster messages, i.e. messages between two pairs of
nodes, unfolds as

mstuv(xu, xv) =
maxxsxt (φsφtψstψsuψtvmasmcsmbtmdtmabstmcesumdftv)

msumtv

Figure 5.5 depicts the potentials and messages that compose a cluster message.
If we apply these hard-coded formulas, we consider only values of incoming mes-

sages whose source and target nodes lie in the grid graph. Compared to the standard
form, we avoid the initial recursive traversal of the region graph and need less memory,
since we do not have to store references from a messages to its dependent messages.

If we scrutinize the messages that are computed within the same two- or four-
node region, we notice that some messages appear repeatedly. This can for instance be
observed in figure 5.5 which shows the four possible cluster messages within a basic
cluster. Each cluster message computation involves four of the eight surrounding
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Figure 5.5: A diagrammatic representation of all cluster messages (in red) that are contained
in the same four-node belief region R = {s, t, u, v}. Blue edges stand for edge messages in the
nominator, whereas dashed edges are those in the denominator of the corresponding message
update rule. Green messages denote as usual cluster messages that influence the value of the
red cluster message. We can observe that messages appear within several figures.

edge messages and three of the four surrounding cluster messages. Remarkably, the
selection of the messages is not arbitrary but follows a simple pattern. Let us analyze
how the message update rule is composed for a cluster message mstuv, where s and t
are source nodes, and u and v are target nodes. Data potentials φ are only defined
for the source nodes of mstuv, while pairwise potentials ψ necessitate that at least one
involved node is a source node. Similarly, incoming edge messages lead from outside
the basic cluster to a source node of mstuv, while incoming cluster messages demand
that at least one of its source nodes has to be a source node of mstuv.

Thus, the message update rule contains for each source node the product of all in-
coming edge messages and the data potential. We constitute the source node products
as

Ps = φsmasmcs

and
Pt = φtmbtmdt.
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Each product involves 2k multiplications, where k is the number of possible labels.
We continue to group factors in order to save operations. The product of the

pairwise potential and the corresponding cluster message can be computed in k2

operations, yielding

Pst = ψstmabst

Psu = ψsumcesu

Ptv = ψtvmdftv

Substituting the expressions into the message update rule, we obtain

mstuv(xu, xv) =

∑

xs,xt
PsPtPstPsuPtv

msumtv

The grouping of the nodes allows us to formulate an efficient algorithm for computing
the four messages within a basic cluster.

Algorithm 6 Caching and Multiplication

1: We pre-compute the products at each node of the basic cluster using the same
scheme as in Ps and at each edge of the basic cluster using the same scheme as
in Pst.

2: for all cluster message within the basic cluster do

3: Select the two products for the source nodes and all products for the edges
except the one that connects the two target nodes.

4: Calculate the message by first marginalizing each product and then multiply-
ing in the same order as in the above formula.

5: end for

Note that the speedup not only consists of evaluating eight instead of twenty
products. The major contribution stems from the order in which we marginalize and
multiply. To clarify this point let us compare the number of multiplications in stan-
dard order to the number of multiplications in the optimized order. In each case we
first marginalize each nominator term and then perform the necessary multiplications.

After the marginalization we obtain scalars for φs, φt, ψst and mabst and vectors
for ψsu, ψtv ,mcesu and mdftv . The number of multiplications for the standard order
adds up to

k2(8k2 + k + 2) = 8k4 + k3 + 2k2

We need two operations for multiplying the scalars φs, φt and ψst, k operations for
multiplying the intermediate scalar with ψsu, k2 operations for computing the outer
product between the intermediate vector with ψtv , and another k2 operations for
multiplying each subsequent term with the previous matrix. Altogether we have to
compute k2 different marginalizations.

In contrast, the optimized order requires

k2(k2 + k + 2) + k2 + 2k = k4 + k3 + 3k2 + 2k

operations for he product of the nominator terms and the pre-calculation of the
interim products.

Thus, the caching techniques may result in a speedup of factor 8 for cluster mes-
sages.
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Edge messages

For edge messages we can also use caching and optimize the order of multiplication.
In analogy to the product scheme for nodes in basic clusters, we can calculate the
product of a node in an edge region by

Ps = φsmasmbsmcs

where a, b and c denote the neighbors s, as figure 5.4 insinuates. The edge consists of
the remaining three terms

Psu = ψsumbdsumcesu

The message update rule consequently is written as

msu(xu) =
∑

xs

PsPsu

For the standard order we need
6k2

multiplications opposed to
k2 + 2k + 3

operations for the optimized multiplication scheme and the pre-calculation of the
interim products.

5.4.2 Caching and Multiplication in 3D

We can extend the caching and multiplication technique to three-dimensional grids
with a six-connected neighborhood system. The only difference is that the products
of nodes and edges involve more terms than in the two dimensional case. We start
with the explicit formula for single-node beliefs on these grid graphs:

bs(xs) = kφsmasmbsmcsmdsmesmfs

See figure 5.6 for checking the involved messages.
The message update rule for messages between single nodes is written out as

msu(xu) = max
xs

(φsψsumasmcsmdsmesmismabsumdfsumegsumijsu)

and is visualized in figure 5.7.
We calculate the message update rule between groups of nodes with

mstuv(xu, xv) =
maxxsxt (φsφtψstψsuψtvM1M2)

msumtv

where
M1 = masmesmgsmmsmbtmftmhtmnt

M2 = mabstmefstmmnstmacsumgisummosumbdtvmhjtvmnptv

The involved variables can be gleaned from figure 5.8.
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Figure 5.6: A diagrammatic representation of the messages that influence the single-node
belief at site s in a three dimensional grid.
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Figure 5.7: A diagrammatic representation of the messages that influence the edge message
from site s to site u.

How does the caching technique work on cluster messages? Again, we define
interim products on the source nodes of the cluster message:

Ps = φsmasmesmgsmms

Pt = φtmbtmftmhtmnt

Let us define the interim products on edges that contain at least one source node of
the cluster message

Pst = ψstmabstmefstmmnst

Psu = ψsumacsumgisummosu

Ptv = ψtvmbdtvmhjtvmnptv

If we combine the products with the message update rule for cluster message, we
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Figure 5.8: A diagrammatic representation of all messages that influence the red cluster
message from edge st to edge uv. Edge messages in the nominator of the message update rule
are depicted in blue. If they are in denominator they are dashed black. Green arrows refer
to incoming cluster messages.

obtain the same formula as for the grid graph in two dimensions.

mstuv(xu, xv) =
maxxs,xt (PsPtPstPsuPtv)

msumtv

In three dimensions, it turns out that the possible speed-up is even more drastic. The
standard order of the cluster messages causes

18k4 + 8k3 + 2k2

multiplications, whereas the optimized order only entails

k4 + k3 + 5k2 + 4k

multiplications.
The interim product over the source variable of edge messages is computed by

Ps = φsmasmcsmdsmesmis

and the corresponding product over the edge follows from

Psu = ψsumabsumdfsumegsumijsu

For the standard order we need
10k2

multiplications opposed to
k2 + 4k + 5

multiplications for the optimized order in

msu(xu) =
∑

xs

PsPsu
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5.5 Accelerating MAP estimation

Many computer vision problems can be stated as an energy minimization problem
which we can solve by searching for the MAP estimate of the corresponding Markov
random field. Thus, if we infer with generalized belief propagation, we have to use
the max-product or equivalently the min-sum formulation.

Let us focus on the update rule for cluster messages in max-product form. It
computes considerably slower than its edge message pendant, thereby offering a lot
of potential to save time. The GBP algorithm grows with the power of four in the
number of labels, whereas the computation of edge messages grows quadratic (cf.
section 5.4).

Recall that we can write the update rule compactly (and efficiently) as

mstuv(xu, xv) = (msumtv)
−1 max

xs,xt

(PsPtPstPsuPtv)

Until now we have analyzed in which order we should multiply the vectors and ma-
trices within the message update rule. In this section, we pursue the question if it is
necessary to exhaustively explore all possible label combinations for the maximum-
function. For the sum-product form it is clear that we have to visit each combination
once but for the maximum-function we suspect that we can do better.

In the spirit of [8] [19] [20], we may sort the terms by source variables xs and xt,
yielding

mstuv(xu, xv) = (msumtv)
−1 max

xs,xt

(PstMsuMtv)

where we define

Msu = PsPsu

Mtv = PtPtv

Consider that Pst, Msu and Mtv are all non-negative matrices, while msu and mtv

denote non-negative vectors. We observe that without Pst we could separate the
maximum-function into the product of two maximum-functions:

max
a,b

(a b) = max
a

(a)max
b

(b)

But as the third term Pst involves both source variables, this idea is not directly
applicable to our message update rule. Nevertheless, we are inspired by the idea of
separating the maximum function.

We may assume that the maximum message value is likely to consist of relatively
large factors Pst,Msu and Mtv . Thus, the basic idea is to start at the maximum values
for Msu and Mtv and then systematically decrease the factors until the product of
both factors and Pst is assured to be maximal.

One may be tempted to spare the effort and instead simply ignore Pst or take its
maximal value into account. However, as the following example indicates, this idea
would sacrifice too much accuracy of the GBP algorithm. We shall encounter this
example throughout this section to illustrate the fundamental ideas of the algorithm.

Let Pst be a s× t matrix, Msu be a s× u matrix and Mtv be a t× v matrix with
values

Pst =

(

1 4

2 1

)

, Msu =

(

1 3

2 2

)

and Mtv =

(

2 4

3 1

)

.
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Then we can compute the products of these three terms for all possible label combi-
nations of s and t:

T11 =

(

2 4

6 12

)

· 1 =

(

2 4

6 12

)

T12 =

(

3 1

9 3

)

· 4 =

(

12 4

36 12

)

T21 =

(

4 8

4 8

)

· 2 =

(

8 16

8 16

)

T22 =

(

6 2

6 2

)

· 1 =

(

6 2

6 2

)

where Tst denotes the product for the values s and t.
If we take the component-wise maximum of these products, we obtain the desired

value for the corresponding message:

max (T11, T12, T21, T22) =

(

12 16

36 16

)

,

Ignoring Pst would lead to the message value

(

6 8

9 12

)

, while multiplying it with the

maximal component of Pst yields

(

24 32

36 48

)

, which is as well fairly imprecise.

For this reason we inspect the idea of systematically decreasing the maximal values
of Msu and Mtv until the combined product with Pst is maximal.

In the first step, we sort Msu and Mtv column-wise, yielding Ssu and Stv, and
construct index matrices which associate an entry e in Ssu and Stv with the row
position of e in Msu, respectively Mtv . We denote these index matrices by ISM

su and
ISM
tv . Also, we introduce the converse matrices IMS

su and IMS
tv that specify at which

row a value of Msu or Mtv is stored in Ssu, respectively Stv. In our example, Msu

would lead to the matrices

Ssu =

(

2 3

1 2

)

, ISM
su =

(

2 1

1 2

)

and IMS
su =

(

2 1

1 2

)

where we implicit descending order in the columns.
Next, we sort Pst and group the indices slightly different to the above method:

We sort the whole matrix and convert it into vector form which makes ISM
su a vector

that contains both row and column position. The corresponding index matrix for
reaching the values in S from M is a matrix that contains vector indices. For our
example, we obtain

Sst =
(

4 2 1 1
)T

, ISM
st =

(

(1, 2) (2, 1) (2, 2) (1, 1)
)T

and

IMS
st =

(

3 1

2 4

)
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where the ordering of (1, 1) and (2, 2) is arbitrary.
This completes the construction phase and we can explore label combinations for

s and t that are likely to determine the maximal message value. As the columns of
ISM
su are independent of each other, we have to proceed for each combination of u and
v in separation. Theoretically, two possible combinations are suited to start with. On
the one hand, we can take the maximal value of Msu and Mtv , i.e. the entries of the
first row in Ssu and Stv, and multiply it with the corresponding entry of Pst. On the
other hand, we can begin with the maximal value of Pst and compute the product
with the corresponding entries in Msu and Mtv.

We prefer the former alternative, since it is computationally less expensive. The
problem of the latter approach is that we can just vaguely estimate how well a com-
puted product relates to other possible products. We have no sorting of the possible
products between Ssu and Stv and computing them would ruin most of the speedup
potential.

Thus, for each label of u and v we begin with computing

Ssu(1, uS) · Stv(1, vS) · Pst

(

ISM
su (1, uS), ISM

tv (1, vS)
)

.

where uS denotes the label index of u in Ssu and vS the label index of v in Stv. In
other words, they refer to the column position in these matrices.

Assuming that we like to evaluate the probability for the first possible label of u
and the first label of v, i.e. uS = vS = 1, we obtain for our example

Ssu(1, 1) · Stv(1, 1) · Pst

(

ISM
su (1, 1), ISM

tv (1, 1)
)

= Ssu(1, 1) · Stv(1, 1) · Pst (2, 2)

= 2 · 3 · 1
= 6

If Pst(1, 1) is equal to Sst(1, 1), we certainly found the maximal value and can
terminate. But let us assume that Pst(1, 1) differs from Sst(1, 1), as in the example
above. Then we can mark the temporary maximum combination in ISM

st as being
visited and maximal. The maximum value is stored in rmax. For the example this
yields:

ISM
st =

(

(1, 2) (2, 1) (2, 2)∗
√

(1, 1)
)T

where the asterisk denotes that the combination is temporarily maximal and the tick
that it has been visited. The new maximum product is

rmax = 6.

We know that any other combination of sS and tS
1 is smaller if its entry in

ISM
st is to the right of the asterisk position imax. Thus, if the number of unvisited

combinations ileft to the left of rmax is “fairly small”, i.e. ileft ≤ β for some pre-
set bound β, we solely have to check if any of this small number of combinations is
bigger than our current maximum. Our algorithm follows this enticing path to the
maximum value, but with a minor modification. Only in every second iteration we
pick one of the ileft combinations; during the intermediate iterations we follow the

1In analogy to the definition of uS and vS the variables sS and tS shall refer to the label index of
s and t in Ssu and Sst, i.e. the row positions in these matrices.
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Figure 5.9: A graphical depiction of the candidates for the next combination of sS and sT .
Visited combinations are marked with a tick on dark gray background. The light gray fields
with a c denote possible candidates for the maximal unvisited combination. White fields are
unvisited and are not eligible as the next possible combination.

previous scheme of determining sS and tS through Ssu and Stv. The advantage is
that we are guaranteed to terminate within 2 · ileft iterations but may succeed even
earlier when the following situation arises. Assume that the product of the maximal
unvisited combination in Ssu and Stv, multiplied with the maximal unvisited value in
Sst is not larger than our current maximum rmax. Then we can be confident that no
other unvisited combination exceeds rmax, and are safe to return it as the maximal
value. We shall see in a minute where this check is established in our algorithm.

How do we proceed if ileft is not larger than β? In this case we investigate the
next biggest combination of sS and tS in Ssu and Stv. Two candidates are eligible:
Either we multiply the next biggest value in Ssu with the current selection in Stv, or
we multiply the current selection of Ssu with the next biggest value in Stv. In our
example, we evaluate

Ssu(2, 1) · Stv(1, 1) = 1 · 3 = 3 < Ssu(1, 1) · Stv(2, 1) = 2 · 2 = 4.

We select the next biggest combination for sS and tS , which is (sS, tS) = (1, 2) in our
example, and multiply it with the largest unvisited value in Ssu to check if it is larger
than our current maximum. Suppose this is fulfilled. Then we calculate the product
of our combination and update rmax. In addition, we mark the new combination as
being visited and update ileft. If ileft is zero, we can return rmax. If not, we have
to check if it is smaller than β to possibly change the visiting pattern as explained
above. In the residual case, i.e. ileft ≥ β, we proceed for the current combination
analogous to the previous one: We search for the next biggest combination of sS

and tS . Possible candidates are the already computed (sS , tS) = (2, 1) and the next
two biggest values starting from the previous combination (sS , tS) = (1, 2) which are
(sS, tS) = (2, 2) and (sS , tS) = (1, 3). Figure 5.9 helps us visually comprehend the
set of possible candidates. All visited combinations are marked with a tick, possible
candidates are labeled with cand. We notice that all candidate nodes are adjacent to
the already visited combinations. Once we have ascertained the new combination of
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sS and tS , we follow the usual pattern that has been explained for (sS , tS) = (1, 2).
The algorithm terminates for a specific combination of uS and vS if either one of
the two checks (against rmax or ileft) fails, or if we exhaustively explored all possible
combinations of sS and tS .

On page 63 we can see the pseudo-code notation of the algorithm. It comprises
some additional variables that we omitted so far. In line 10 we detect the first
occurrence of the variable side which shall indicate the alternating pattern for gaining
the next combination for sS and tS . If it is zero, we express that ISM

su and ISM
tv

determine the next combination. Set to 1, we reverse the order and obtain the next
combination through the smallest unvisited index in ISM

st . The variable ifirst refers
to the maximal unvisited entry in Sst and as usual k denotes the number of possible
labels. Furthermore, we distinguish sS and tS from sM and tM . The former pair
denotes row and column position in Ssu and Stv, the latter pair refers to the unsorted
matrices Msu and Mtv . Both pairs are necessary to jump between the index positions
of the S-, P - and M -matrices.

In line 53, 54 and 58 we remain informal for not scattering the pseudo-code with
implementation details. Nevertheless, these lines deserve some further study. Variable
ileft shall only be updated to its precise value if we have found a new maximum and
infer from Ssu and Stv to Pst. The value is determined by the number of unvisited
combinations in ISM

st that are left to the current maximum index imax. In all other
cases, i.e. we infer from the opposite direction or i 6= imax, we decrease its value
by one. We typically keep track of the visited combinations in a union-find data
structure, e.g. a set, and additionally mark the position of visited combinations in a
vector. This ensures that lines 53 and 58 are single instructions and the update of
ileft is proportional to the number of visited combinations.

The return statement in line 23 is a technical detail to prevent redundant com-
putations of already visited combinations. It is not a check as in line 44 or 55 that
allows us to to skip unvisited combinations.
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Algorithm 7 Accelerating message update rule for MAP estimate

Require: β is set to a natural number.
1: Create a column-wise sorted matrix Ssu out of Msu and build two index matrices
ISM
su and IMS

su . Analogously, create Stv, I
SM
tv and IMS

tv .
2: Create a vector Sst which contains all entries of Mst in sorted order and construct

a corresponding index vector ISM
st and an index matrix IMS

st .
3: for all uS do

4: for all vS do

5: sS ⇐ 1 ⊲ Init variables
6: tS ⇐ 1
7: ifirst ⇐ 1
8: rmax ⇐ −1
9: imax ⇐ −1

10: side⇐ 0
11: ileft ⇐ k2

12: c⇐ (Ssu(sS , uS) · Stv(tS , vS), sS, tS)
13: cand.insert(c)
14: while ileft > 0 do

15: if side = 0 then

16: repeat

17: c⇐ maxc(1)(cand)
18: cand.delete(c)
19: sM = SSU(c(2), uS)
20: tM = STV (c(3), vS)
21: until ((sM , tM ) in ISM

st is unvisited) or (cand is empty)
22: if cand is empty then

23: return rmax

24: end if

25: prod⇐ c(1)
26: sS ⇐ c(2)
27: tS ⇐ c(3)
28: else if side = 1 then

29: sS = IMS
su (Ist (ifirst) (1), uS)

30: tS = IMS
tv (Ist (ifirst) (2), vS)

31: prod⇐ Ssu(uS , uS) · Stv(tS , vS)
32: sM ⇐ ISM

su (sS , uS)
33: tM ⇐ ISM

tv (tS , vS)
34: end if

35: if sS < k then

36: c⇐ (Ssu(sS + 1, uS) · Stv(tS , vS), sS + 1, tS)
37: cand.insert(c)
38: end if

39: if tS < k then

40: c⇐ (Ssu(sS , uS) · Stv(tS + 1, vS), sS, tS + 1)
41: cand.insert(c)
42: end if
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43: if prod · Sst(ifirst) ≤ rmax then

44: return rmax ⊲ Check rmax

45: end if

46: r ⇐ prod · Pst(sM , tM )
47: i⇐ IMS

st (sM , tM )
48: if r > rmax then

49: rmax ⇐ r
50: imax ⇐ i
51: end if

52: if i ≤ imax then

53: Mark (sM , tM ) in ISM
st as visited.

54: Update ileft.
55: if ileft = 0 then return rmax ⊲ Check ileft
56: end if

57: end if

58: Update ifirst

59: if ileft < β then

60: side⇐ 1
61: else

62: side⇐ 0
63: end if

64: end while

65: end for

66: end for

Let us simulate the algorithm for uS = vS = 1 and β = 2, while confining ourselves
to the essential steps. The notation is rather brief, but hopefully self-explanatory.

• sS = 1, tS = 1:

– sM = ISM
su (1, 1) and tM = ISM

tv (1, 1)

– Evaluate Ssu(1, 1) · Stv(1, 1) · Pst(sM , tM ) = 2 · 3 · 1 = 6

⇒ rmax = 6, ISM
st =

(

(1, 2) (2, 1) (2, 2)∗
√

(1, 1)
)T

, ileft = 2, ifirst = 1

– Check ileft < β ⇒ False

– Add candidates:

(sS , tS) = (2, 1) with value Ssu(2, 1) · Stv(1, 1) = 3 and

(sS , tS) = (1, 2) with value Ssu(1, 1) · Stv(2, 1) = 4

⇒ Next combination is (sS , tS) = (1, 2).

• sS = 1, tS = 2:

– sM = ISM
su (1, 1) and tM = ISM

tv (2, 1)

– Check Ssu(1, 1) · Stv(2, 1) · Sst(1) = 4 · 4 = 16 > rmax ⇒ True
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– Evaluate Ssu(1, 1) · Stv(2, 1) · Pst

(

ISM
su (1, 1), ISM

tv (2, 1)
)

= 4 · 2 = 8

⇒ rmax = 8, ISM
st =

(

(1, 2) (2, 1)∗
√

(2, 2)∗ (1, 1)
)T

, ileft = 1, ifirst =

1

– Check ileft < β ⇒ True ⇒ Alternating visiting scheme. Next (s, t) is
determined by maximal unvisited entries in Ssu and Stv .

– Check ileft = 0⇒ False

– Add candidates:

(sS , tS) = (2, 2) with value Ssu(2, 1) · Stv(2, 1) = 2

⇒ Next combination is (sS , tS) = (2, 1).

• sS = 2, tS = 1:

– sM = ISM
su (2, 1) and tM = ISM

tv (1, 1)

– Check Ssu(2, 1) · Stv(1, 1) · Sst(1) = 3 · 4 = 12 > rmax ⇒ True

– Evaluate Ssu(2, 1) · Stv(1, 1) · Pst (sM , tM ) = 3 · 4 = 12

⇒ rmax = 12, ISM
st =

(

(1, 2)∗
√

(2, 1)∗ (2, 2)∗ (1, 1)
)T

, ileft = 0

– Check ileft < β ⇒ True ⇒ Alternating visiting scheme. Next (s, t) is
determined by maximal unvisited entry in Sst.

– Check ileft = 0⇒ True ⇒ Return rmax = 12.

We may skip the evaluation of the residual combinations of u and v. To get an
impression of the speedup we highlight all visited combinations of s and t in Tuv. Note
that we label combinations additionally with < if they did not pass the maximum
check in line 19 of the algorithm, whereas we give the flag 0 to all combinations for
which ileft evaluates to 0.

T11 =

(

2 4

6 12

)

T12 =

(

120 4<

360 12<

)

T21 =

(

8 16

8 16

)

T22 =

(

6 2

6 2

)

Thus, the algorithm visits only 9 out of 16 combinations. We may argue that the
extra operations of the algorithm clearly predominate the speedup. However, these
extra cost are (nearly) constant in the number of visited operations and for any k > 6
the algorithm already seems to be worthwhile. Experimental results show that we can
often compute the best combination by inspecting a small number α of combinations.
The algorithm demonstrates complexity of k3 in the number of labels k, in contrast
to the standard algorithm which runs in k4. The reason is that the factors Ssu and
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Stv are heavily influenced by Ps and Pt respectively. As a reminder, we defined Ps

for cluster messages in 2D by
Ps = φsmasmcs.

Thus, Ps consists of one data potential function φs and two edge messages mas and
mcs which inform node s about its most likely probability values from the outward
perspective. At least the two messages often attribute relatively high probabilities
to a very small number of labels, whereas the majority of labels is considered to be
much less likely. This means for Ps and Pt that they contain a small number of large
values which raises the likelihood that any of these values emerges in the optimal
combination of s and t.

A nice property of the algorithm is that it easily extends to our three-dimensional
grid graphs. Recall that we also expressed them with the interim products Ps, Pt,
Psu, Psv and Pst which means that we can apply the algorithm without any change.
Also, the principal idea of the algorithm should translate to other Markov random
fields, although its outline may become more intricate and the speedup may vary
significantly.



Chapter 6

Experimental Results

6.1 Overview

In this chapter we evaluate the presented acceleration techniques on an image seg-
mentation problem from biology. We shall demonstrate the potential of generalized
belief propagation under realistic conditions but we also expose the attractiveness of
Markov random field approaches to labeling problems. We begin with a brief de-
scription of the image segmentation problem and explain how we set the data and
the smoothness potential functions in the corresponding Markov random field. After-
wards, we quantify the performance of our acceleration techniques on this real-world
example.

6.2 Image segmentation problem

As depicted in figure 6.1(a), we are given a cross section of a three-dimensional tissue
probe that has been recorded by a confocal laser scanning microscope (LSM) [6].
Our task is to segment the midpoints of the cells to visualize their distribution, which
might be interesting for tracking and analyzing relative cell movements over time.

In a fist step, we extract features with a Hough transform (cf. section 2.1.2)
for exploiting the characteristic shape of the cells. For differing radii and gradient
direction we obtain a set of features that we superimpose to better contrast possible
cell midpoints. Figure shows the result of summing the features from the Hough
transform where white dots indicate possible midpoints. We observe the challenge
of the data: It is degraded by noise and some point clouds correspond to cell mid
points whereas others lie in between. Many point-based, edge-based and region-based
approaches from the literature struggle on this problem because of the noisy data
and the lack of obvious local constraints for classifying the point candidates. Markov
random field approaches, though, offer an elegant representation for modeling the
affinity to the data and for encoding global a priori information. How do we model
the parameters for this example?

A straightforward approach is to decompose the problem into two subsequent
inference passes. In the first pass we aim at combining point clouds to coherent
regions and at “denoising” the image from the residual point candidates. For both
the data potential and the smoothness potential we use a piecewise constant prior.

67
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(a) Original image (b) After Hough transform 6.2

Figure 6.1: On the left we see the cross section of a tissue probe; on the right we see the
summed Hough transform features of the left image.

The data potential of image node xs is modeled by

Vs(xs) =







0 gs < τ/2

τ else

where the hidden image node xs = (ls, gs) and the observed image node ys = gs.
The parameter τ defines a threshold that we set to 90 for this example. For the
smoothness potential we use an Ising model. With these parameters we perform the
generalized belief propagation algorithm on the feature image. We use a first order
neighborhood system and restrict ourselves to cluster regions of size four. Figure 6.2
shows the result.

In the second pass, we process the intermediate image by defining a Markov
random field on a higher abstraction level. Instead of using pixels in a grid graph,
we model a general Markov random field that consists of coherent point regions as
nodes. Although our acceleration techniques are designed for grid graphs and can
thus not be applied, we shall complete the modeling of this example to illustrate the
potential of Markov random fields for labeling problems.

The data potential of the second pass is expressed as a truncated linear model

Vs(xs) = min(as, τ)

where xs = (ls, as) and ys = as. The image feature as shall denote the area of an
object region in pixels. The parameter τ is set to 255, the maximal value for 8 bit
gray level. It is motivated by the simple observation that large object regions are
more likely to express a midpoint of a cell than small regions.
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(a) Result from first pass against original (b) Result from first pass against image
after Hough transform

Figure 6.2: The result of the first pass is depicted on red. It is contrasted against the
original image and the Hough transform. Note that several point regions are erroneously
situated between cells.

The smoothness potential cannot be attributed to any of the three prior categories.
Depending on the prior information we shall assign one of the following three potential
functions to it:

V inc
st (xs, xt) =

(

−1 1

1 −1

)

V com
st (xs, xt) =

(

1 −1

−1 1

)

V neut
st (xs, xt) =

(

1 1

1 1

)

They reflect an incompatible, compatible, and a neutral smoothness potential.
Two local decision rules are used for classifying the candidate midpoints: For the

first rule we measure the distance between the midpoints of two object regions. If the
distance is below a certain threshold, which we set to 35 for our example, we consider
the two nodes as being incompatible. Otherwise, we apply a second rule. According
to figure 6.1(a) a distinctive feature of the original image data is the quite regular
distribution of the cells. Adjacent midpoints are oriented similar relative to their
closest neighbors. For this reason we evaluate for all neighbor nodes xs and xt the
dot product between all combinations of vectors ns and nt, where ns denotes a vector
between xs to any of its four neighbors and nt stands for a vector between xt and any
its four neighbors. If arccos (〈ns, nt〉) < α for any combination of ns and nt, we regard
the two nodes xs and xt as compatible. The threshold α is set to 5

3602π = 0.0873 in
our implementation. In all other cases the node pair is classified as neutral.
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(a) Result from second pass against origi-
nal

(b) Result from second pass against im-
age after Hough transform

Figure 6.3: The final result of this image segmentation problem is depicted. On the left we
contrast the result of the second pass against the original image; on the right we highlight
the result against the feature image from the Hough transform.

If we apply generalized belief propagation to the second Markov random field,
we obtain the images depicted in figure 6.3. Note that for instance the midpoint
surrounded by a white square has small data support but it is preserved due to its
geometric constellation with large data points. Of course, the result is not optimal as
we lose some correct midpoints from figure 6.2. We might therefore think of a third
constraint that rewards isloated data points with high confidence levels. Alternatively,
we can improve on the parameter values. They have been set in an adhoc fashion
and certainly not optimal. However, we can summarize that Markov random fields
offer a powerful tool to solve labeling problems.

6.3 Results

In this thesis, we presented four different acceleration techniques: (1) hierarchical ini-
tialization, (2) active message technique, (3) caching and multiplication and (4) the
acceleration for the MAP estimate. The first technique has been discovered by [8] who
formulated the approach for the standard belief propagation algorithm. Out of his
three acceleration techniques the multi-grid BP approach shows the most impressive
results. We have adopted the technique for the generalized belief propagation algo-
rithm by presenting to detailed propagation update scheme. However, we have not
encountered comparable speedups as [8]. One reason might be that we neglected the
smoothness potential design for each hierarchy level. We shall pursue this approach
in the future though.

The second technique called active message technique affects the running time of
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Figure 6.4: Energy of the image segmentation problem as a function of the running time.
Each dot stands for a completed iteration of the inference algorithm. Note the logarithmic
scale of the abscissa.

our algorithm unpredictably. For the above image segmentation problem we have
not gained any speedup whereas for other problem that consist of more homogeneous
regions we could approximately halve the running time. The challenge is to formulate
a general heuristic that balances accuracy and speed.

The caching and multiplication technique leads to tremendous speedups as figure
6.4 illustrates. We analyzed the energy of the underlying graphical model over time
and the result is striking. Our technique clearly improves on the standard implemen-
tation.

The forth technique acceleration of the MAP estimate similarly decreases the ex-
ecution time. In figure 6.5 we depict the running time as a function of the number
of labels k. As our biological segmentation problem differentiates solely two labels,
we were forced to evaluate the significance of this technique on another problem set.
We chose to compare the standard matrix multiplication1 with our proposed mul-
tiplication scheme by measuring the running time for multiplying random potential
functions of size k × k. For each value of k we computed 100 random smoothness
potentials and averaged the execution time. Thus, not only do our results reflect
the speed but also the flexibility of our technique. Figure 6.6 shows the ratio of the
running times for the standard generalized belief propagation and our acceleration
technique. We observe a linear dependence.

1We used the blitz++ library
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Chapter 7

Conclusion

In this thesis, we concentrated on developing acceleration techniques for the gener-
alized belief propagation algorithm of [39]. The accuracy, flexibility and convergence
behavior of this technique have been proven in several experiments. Also, the gener-
alized belief propagation is theoretically justified by approximating the Kikuchi free
energy. However, its execution speed has been a severe shortcoming.

For this reason we introduced four approaches to accelerate the algorithm. Two
of them, the caching and multiplication technique and the acceleration for the MAP
estimate, performed surprisingly well in our experiments. The other two techniques
have to be further developed in the future. For some labeling problems they lead
to speed-ups but a general reliable prediction is not yet possible. For the hierarchi-
cal initialization technique we already formulated a promising message propagation
scheme but we neglected the design of potential function throughout the hierarchy.
The active message technique lacks a sophisticated heuristic that encompasses sev-
eral eventualities when reducing message from active to passive. With some further
testing we are confident, though, to succeed with this technique.

Apart from acceleration techniques we also covered image segmentation prob-
lems. In the previous chapter we exemplified how Markov random fields can be easily
adopted to capture global constraints. The results are already encouraging although
we have not invested much effort in deriving highly specialized potentials. In combina-
tion with learning algorithms and the consideration of three-dimensional constraints
we are confident to obtain satisfactory solutions to a set of similar labeling problems.
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Notation

S The set of sites or locations

s ∈ S Site

gs Intensity value at site s

g Pattern of intensities

ls Label at site s

l Label configuration, labeling

xs Hidden image value at site s

ys Observed image value at site s

Xs Random variable

Xs State space

X =
∏

s∈S Xs Configuration space of sites s ∈ S
x Hidden image

y Observed image

k Number of possible labels (at any site s)

n Number of sites in S

∂ Neighbourhood system

s ∼ t s and t are neighbours

C The set of cliques

C ∈ C Clique

ψC Potential function of clique C

E(x) Energy function

Edata(x) Data energy

Eprior(x) = Esmooth(x) Prior (smoothness) energy

Uw
s (xs) Node (data) potential at site s in x with parameter w

Uw
st(xs, xt) Edge (prior, smoothness) potential at sites s

and t in x with parameter w

Vs(xs) Node (data) potential (if w is linear for Us)

Vst(xs, xt) Edge (prior, smoothness) potential (if w is linear for Ust)

φs(xs) Data potential function

ψst(xs, xt) Prior (smoothness) potential function
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Bi Set of blocks

bik The k-th block at scale i

xi
k The hidden image value of block k at scale i

bs(xs) Belief at site s of the hidden image x

msu(xu) Edge message from site s to site u in x

mstuv(xu, xv) Cluster message from the sites s, t to the sites u, v in x

Ps Interim product at site s

Pst Interim product at sites s and t
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