
Contents

1 Introduction 2

2 Background 4
2.1 Classification . 4

2.1.1 Support Vector Machines 4
2.1.2 Data Preprocessing . 15
2.1.3 Model Selection . 16

2.2 Decision Trees . 16

3 Support Vector Machines in a Decision Tree 17
3.1 Theoretical Approach . 17

3.1.1 Zero Solution in SVM . 17
3.1.2 Reduction of Possibility of the Zero Solution 20

3.2 Description of the Algorithm . 21
3.2.1 Decision Tree with Linear SVM Nodes 23
3.2.2 Search of the Best Hyperplane 25

4 Implementation Details 29
4.1 Quadratic Problem . 29

4.1.1 Sequential Minimal Optimization (SMO) 30
4.1.2 QP Speeding up Techniques 32

4.2 Construction of the Decision Hyperplane 32
4.2.1 Orthogonal Vector . 32
4.2.2 Threshold . 33

4.3 Heuristics Used . 35
4.3.1 Greedy Technique . 35
4.3.2 Avoiding the Zero Solution 35
4.3.3 Change of Sign of w . 35
4.3.4 Perpendicular Hyperplanes 35
4.3.5 Reduction of Usless Hyperplanes (Pruning) 36

5 Experiments and Comparisons 40
5.1 Description of the Datasets . 40
5.2 Results and Comparisons . 40

5.2.1 USPS Data . 43

CONTENTS 1

Chapter 1

Introduction

Support Vector Machines (SVMs) are extended methods of machine learning
used to classify objects from different classes whose features can be represented
as vectors x in a Hilbert space H. The proposed solution by this classifier is
a hyperplane in a transformed space –induced by the use of a kernel function–
which has the biggest distance to both classes. By using the Lagrange function
with the primal problem, a dual problem can be induced with the Lagrange
multipliers as the only features. The training of this classifier through the
dual problem leads to a quadratic programming (QP) problem. The resolution
method for the quadratic function has been extensively analyzed and it can be
handled even for very big problems by the used of SMO1 .

On the other side, work on evaluation still has to be done to improve the
classification time after the training. This work is focused on an improvement
of this evaluation time.

If a non-linear kernel was used to solve the problem, normally we would
expect to obtain a large number of support vectors depending on the problem
complexity. These support vectors are the basis of the classification step. This
step consists on the Kernel function (particularly, for the linear kernel, the dot
product) of each support vector with the new sample data and then a weighted
sum of these results.

One of these machines was applied for the classification of 3D reconstruction
of cell nuclei in blood. Normally, an image can contain, for example, 3 125 000
voxels (250 × 250 × 50), and from each voxel, more than 30 features can be
obtained. A trained machine for this problem has between 400 to 1 000 support
vectors which makes the classification of a whole new image very slow, since
O(25 600) multiplications are needed to classify 1 voxel. There are some works
already done to enhance the SVM evaluation speed like for example:

Direct reduction of number of SVs. Burges and Schölkopf in [BS97] proposed
a method tu approximate w by a w′ which can be also expresed by a list
of vectors associated with corresponding coefficients alphai. However, the
method for determining the reduced set is computationally very expensive.
Later, Downs, Gates and Masteres [DGM01] a method to identify and
discard unnecessary SVs –those SVs who lineary depend on other SVs–

1As implemented by Chih-Chung Chang and Chih-Jen Lin in [CL05]

2 Introduction

3

while leaving the SVM decision unchanged. A reduction in SVs as high
as 40.96% was reported.

Indirect reduction of number of SVs by reducing the size of the QP problem.
This method called RSVM (Reduced Support Vector Machines) was pro-
posed in [LM04]. In [LL03] it was shown where this method was suitable.

Reduction of the number of vector components. In [LHL05] a reduction of the
feature space is proposed.

The aim of this work is the reduction of the classification time by linear
approximation of the function in the transformed feature space. This approx-
imation is done by a decision tree whose nodes are conformed by support vector
machines with linear kernels. The advantage of using only linear kernels is that
the feature space is known since it is the original one and the classification can
be done only by making the single dot product with the vector orthogonal to
the hyperplane –which can be easily calculated– and the comparison with the
intersection value of the calculated hyperplane, that is, if we have 80 straight
lines, we need O(2560) multiplications. An important feature in this approach
is that the new classifier generalize nearly as good sa a SVM with Radial Basis
Function (RBF) kernel. In many cases the evaluation speed is significantly im-
proved because the number of nodes (evaluating hyperplanes) is considerably
smaller than the number of needed support vectors. Another important feature
of this new proposed method is that the constrained optimization problem is
written in a different way as usual such that no parameters need to be tunned
like in the classical problem with the kernel trick.

The Chapter 2 gives an introduction to the necessary basic theory of sup-
port vector machines (SVMs), constrained optimization theory, and presents
decision trees. The Chapter 3 introduces some theoretical and numerical prob-
lems to substantiate the construction of the new classifier, and at the end of the
chapter the new proposed algorithm is described. Chapter 4 makes a detailed
description of the implementation with the most fundamental changes to previ-
ous implementations. Chapter Exp shows the results that were obtained after
using this new methodology for many different classification problems.

Several issues arise from this proposed method, these are overview in Chapter
??. Finally, Chapter ?? presents the Conclusions of the work.

Chapter 2

Background

Consider a machine (or living organism) which receives a set of inputs {x1, x2, ..., xm}.
This input, which will be called the samples or data, could correspong to an im-
age on the retina, the pixels in a camera, or a sound waveform. It could also
correspond to less obviously sensory data, for example the words in a news stoy,
of the list of items in a supermarket shopping basket. All this data will be
represented in vectors {x1,x2, ...,xm} ∈ R

n.
These objects can be subgrouped (or an output parameter can be assign)

accordingly to particular characteristics. The aim is to build a machine able
to distinguish to which group belongs each sample (or to assign an appropiate
parameter to the input).

2.1 Classification

One can distinguish a particular set of machines that belong to the kind of
supervised learning. Here, a sequence of outputs y1, y2, ..., ym is also given that
represent the corresponding labels to each sample (in classification) or a real
number (in regression). The goal of the machine is to learn to produce the
correct output given a new input.

Our interest will be focused in the classification theory, particularly, in a
method called Support Vector Machines (SVMs). This machine has become
very popular because, in general, satisfactory results can be obtained as with
other machines and it has a robust mathematical background.

The theory developed in this chapter is focused on support vectors machines
and decision trees, nevertheless, this approach leads to several other interesting
theoretical issues that will be analyzed in later chapters.

2.1.1 Support Vector Machines

The first interest will be focused in a two-class problem with samples xi and
labels yi = ±1 for i = 1, ..., m. A standard definition for these two classes will
be handled through this document.

In a classification problem, we can start by differentiating two classes, but
it is possible to extend a two class classifier to a multi-class problem by using
techniques like

4 Background

2.1 Classification 5

One vs. One If there are n classes, (n
2
) two-class classifiers are pairwise trained

for this problem. For classification, vectors are tested in all models giving
a probability (points) of belonging to a class, finally, it will be labeled as
the class that has more points.

One vs. Rest If there are n classes, n two-class classifiers are trained, where
one class is differentiated from all the others. New samples are tested in
all models and the results are compared.

There are many different methodologies, Multiclass gives a comparison and
resume about them.

The following discussion will be centered in a two class problem.

It will be assumed that the set of features of each sample x belongs to a
Hilbert space denoted by H, that is, this is a vector space with a dot product
〈x, y〉, with x, y ∈ H such that a norm can be induced by ‖x‖ =

√

〈x,x〉.

Two-Class SVM

In the next paragraph, a general notation for a two class problem will be de-
scribed. This will be used along the whole document to make easier the descrip-
tion of the problem and implementation of the classifier.

Definition 2.1 (Positive and Negative Class) Let m1 and m2 be two na-
tural numbers that fulfill m = m1 + m2, m1 > 0, m2 > 0 and C = {1, ..., m},
without loss of generality we can define:

Class 1 (Positive Class) of size m1, with index C1 = {1, ..., m1}, conformed
by the set {xi}, i ∈ C1, gravity center s1 = 1

m1

∑

i∈C1
xi, yi = 1 for all

i ∈ C1, and for some later applications, a penalization value D1 is defined
and Ci = D1 ∀i ∈ C1.

Class 2 (Negative Class) of size m2, with index C2 = {m1+1, ..., m1+m2},
conformed by the set {xi}, i ∈ C2, gravity center s2 = 1

m2

∑

i∈C2
xi, yi =

−1 for all i ∈ C2, and for some later application, a penalization value D2

is assigned to this class and Ci = D2 ∀i ∈ C2.

Having two classes, we say that they are linearly separable if there is a
hyperplane of the form P : {x ∈ H|〈w,x〉 + b = 0}, w ∈ H, b ∈ R that can
perfectly divide the two classes. The vector w is a vector orthogonal to the
hyperplane P and 〈w,x〉 is the length of x along the direction of w.

We will be interested in finding the canonical hyperplane with respect to
xi, i ∈ C defined as the hyperplane with the pair (w, b) ∈ H × R if it is scaled
such that

min
i=1,...,m

‖〈w,x〉 + b‖ = 1. (2.1)

That is, the canonical hyperplane is the one whose minimal distance to the
samples equals 1

‖w‖ .

To illustrate that, let’s consider the following two class example depicted in
Figure 2.1:

6 Background

Figure 2.1: Example of a two class problem

Figure 2.2: Possible dividing hyperplanes for a two class problem

Without loss of generality, let the green triangles represent the class 1 (C1)
and the blue circles represent class 2 (C2). The following hyperplanes in Figure
2.2 are all valid functions to divide them:

If the objective is to divide the two classes with a plane, we would like to
do it with the plane that has maximum distance (margin) to both classes, i.e.,
a maximum distance between the two classes. In the shown example in Figure
2.1, the desired hyperplane would look as in Figure 2.3.

It has to be noticed that for xi, i ∈ C1 and xj , j ∈ C2, such that 〈w,xi〉 = +1
and 〈w,xj〉 = −1, we have 〈w, (xi − xj)〉 = 2 and therefore

〈
w

‖w‖
, (xi − xj)〉 =

2

‖w‖
(2.2)

w

yi = +1

yi = −1

{x |〈w, x〉 + b = +1}

{x |〈w, x〉 + b = 0}

{x |〈w, x〉 + b = +1}

Figure 2.3: Hyperplane with maximal margin for a two class problem

2.1 Classification 7

With the previous equation, we can conclude that the distance of the closest
vector to the hyperplane is 1

‖w‖ , then, finding the hyperplane with the maximum

distance is equivalent to maximize the norm of the orthogonal vector w that
corresponds to the hyperplane that can divide the two classes.

Constrained Optimization Theory

A general constrained optimization problem is defined as follows
[chapter]

Problem 2.2 (Constrained Optimization Problem)

minimize
x∈H

f(x), (2.3)

subject to ci(x) = 0, i ∈ E , (2.4)

ci(x) ≥ 0, i ∈ I (2.5)

where E comprehends the indexes for the equality constraints and I are the
indices for the inequality constraints.

By analyzing the first-order Taylor series to the objective and constraint
functions, some conditions can be derived.

Starting at a feasible point x, if we move in direction d to retain feasibility
with respect to the function ci(x) = 0, we require that ci(x + d) = 0; that is,

0 = ci(x + d) ≈ ci(x) + ∇ci(x)T d = ∇ci(x)T d. (2.6)

Hence, the direction d retains feasibility with respect to ci, in first order,
when it satisfies

∇ci(x)T d = 0. (2.7)

Similarly, a direction of improvement must produce a decrease in f , so that

0 > f(x + d) − f(x) ≈ ∇f(x)d,

or, in firsts order,

∇f(x)T d < 0. (2.8)

If there exists a direction d that satisfies both 2.7 and 2.8, we conclude that
improvement on our current point x is possible. It follows that a necessary
condition for optimality for the problem 2.2 is that there exist no direction d
satisfying both 2.7 and 2.8.

The only way that such a direction cannot exist is if ∇f(x) and ∇c1(x) are
parallel1, that is, if the condition ∇f(x) = αi∇ci(x) holds at x, for some scalar
αi. If this condition is not satisfied, the direction defined by

d = −

(

I −
∇ci(x)∇ci(x)T

‖∇ci(x‖2

)

∇f(x)

satisfies both conditions 2.7 and 2.8. By introducing the Lagrangian function

L(x, α) = f(x) −
∑

i

αici(x). (2.9)

1see [NW99] for a detailed explanation

8 Background

and noting that ∇xL(x, α) = ∇f(x)−
∑

i αi∇ci(x), we can state the necessary
condition as: At the solution x∗, there is a scalar α∗

i such that

∇xL(x∗, α∗) = 0. (2.10)

This observation suggest that we can search for solutions of the constrained
problem 2.2 by searching for stationary points of the Lagrangian function. The
scalar quantity αi in 2.9 is called a Lagrange multiplier for the constraint ci(x) =
0.

An inequality is said to be active at point x if its evaluation at this point
reaches the equality. The active set A(x) in a constrained problem at any
feasible x is the union of the indices of the equality constrains E with the indices
of the active inequality constraints, that is,

A(x) = E ∪ {i ∈ I|ci(x) = 0} (2.11)

Attention has to be given to the properties of the constraint gradients. The
vector ∇ci(x) is often called the normal to the constraint ci at the point x, since
it is usually a vector that is perpendicular to the contours of the constraint ci at
x, and in the case of an equality constraint, it points toward the feasible side of
this constraint. However, it can happen that ∇ci vanishes due to the algebraic
representation of ci, so that the term αi∇ci(x) equals zero for all values of αi

and thus it plays no role in the Lagrangian gradient ∇xL.
Therefore, an assumption called a constraint qualification is done to ensure

that such degenerate behavior does not occur at the value of x in question. One
constraint qualification is the following:

Definition 2.3 (LICQ) Given the point x∗ and the active set A(x∗) defined
by 2.11, we say that the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients {∇ci(x

∗), i ∈ A(x∗)} is linearly
independent.

If the above condition holds, none of the active constraint gradients can be
zero.

With this, the optimality conditions for a general nonlinear programming
problem concerning the properties of the gradients (first-derivative vector) 2.4
can be provided.

[chapter]

Theorem 2.4 (First-Order-Necessary Conditions (KKT)) Suppose that
x∗ is a local solution of 2.2 and that the LICQ holds at x∗. Then there is a
Lagrange multiplier vector α∗, with components αi, i ∈ E ∩ I, such that the
following conditions are satisfied at (x∗, α∗):

∇xL(x∗, α∗) = 0, (2.12)

ci(x
∗) = 0, ∀i ∈ E , (2.13)

ci(x
∗) ≥ 0, ∀i ∈ I, (2.14)

α∗
i ≥ 0, ∀i ∈ I, (2.15)

α∗
i ci(x

∗) = 0, ∀i ∈ E ∪ I. (2.16)

The above conditions are often known as Karush-Kuhn-Tucker conditions,
or KKT conditions for short, and they have to be satisfied in order to find an
optimum for problem 2.2.

2.1 Classification 9

SVM Constrained Optimization Problem

The following problem, is a formal definition of the maximal margin hyperplane
problem that wants to be solved.

Problem 2.5 (SVM-Primal Optimization Problem) Let a class 1 and a
class 2 be defined as in Definition 2.1, the optimal margin hyperplane primal
problem is defined as follows

minimize
w∈H,b∈R

τ(w) = 1

2
‖w‖2, (2.17)

subject to yi(〈xi,w〉 + b) ≥ 1, i = 1, .., m, (2.18)

And the corresponding decision function would look like

f(x) = sign(〈w,x〉 + b) (2.19)

In problem 2.5, f(x) = τ(w), E = ∅ and I = C . Following [NW99] and as
in [SS02], the Lagrangian function can be defined together with the objective
function τ and the constraints in 2.18 as follows

L(w, b, α) =
1

2
‖w‖2 −

m
∑

i=1

αi(yi(〈xi,w〉 + b) − 1). (2.20)

One of the KKT conditions states that the gradient of the Lagrangian func-
tion must equal zero, that is,

∂

∂b
L(w, b, α) = 0 and (2.21)

∂

∂w
L(w, b, α) = 0. (2.22)

this leads to

m
∑

i=1

αiyi = 0 and (2.23)

w =

m
∑

i=1

αiyixi. (2.24)

The solution vector thus has an expansion 2.24 in terms of a subset of the
training patterns, namely those patterns with non-zero αi, called Support Vec-
tors (SVs). By the KKT conditions,

αi[yi(〈xi,w〉 + b) − 1] = 0 for all i = 1, ..., m, (2.25)

the SVs lie on the margin. All remaining training examples (x, yi) are irrelevant:
their constraint yj(〈w,xi〉 + b) ≥ 1 could just as well be left out, and they do
not appear in the expansion. Thus, the hyperplane is completely determined by
the patterns closest to it, the solution should not depend on the other examples.

By substituting 2.23 and 2.24 into the Lagrangian 2.20, one eliminates the
primal variables w and b, getting the following problem which is in practice
solved since it depends only on the sample vectors.

10 Background

Problem 2.6 (SVM-Dual Optimization Problem) Let class 1 and class 2
are defined as in Definition 2.1, the optimal margin hyperplane dual problem is
defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (2.26)

subject to αi ≥ 0, i = 1, ..., m, (2.27)
∑m

i=1
αiyi = 0. (2.28)

Using 2.24, the hyperplane decision function 2.19 can thus be written as

f(x) = sign

(

m
∑

i=1

yiαi〈xi,x〉 + b

)

(2.29)

Figure 2.4 shows a solution for the example in Figure 2.1, the yellow area
shows the points in the space that will be labeled as class 1 and the cyan area
shows the points that will be labeled as class 2. The distance from a point to
the dividing hyperplane is shown by the shadow, that is, if a point is closer to
the hyperplane, it has a lighter tone of yellow/cyan.

Figure 2.4: Two class classification problem with linear solution

Soft Margin SVM

Often, the problem can be an unfeasible problem because there does not exist
any hyperplane that can separate perfectly both classes. For such problems, the
C-SV classifier was introduced allowing some mistakes through slack variables
with a penalization in the objective function, leading to the following problem:

Problem 2.7 (C-SV Classifier Primal Problem) For a two class problem,
the primal optimization problem with slack variables is defined as:

minimize
w∈H,b∈R,ξ∈Rm

τ(w, ξ) = 1

2
‖w‖2 +

∑m

i=1
Ciξi, (2.30)

subject to yi(〈xi,w〉 + b) ≥ 1 − ξi, i = 1, .., m, (2.31)

ξi ≥ 0, i = 1, .., m. (2.32)

2.1 Classification 11

The definition here given can varies depending on the source it is taken.
Using again 2.23 and 2.24, the last problem can be converted into the following
dual problem

Problem 2.8 (C-SV Classifier Dual Problem) In a two class problem, the
optimal margin hyperplane dual problem with slack variables is defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (2.33)

subject to 0 ≤ αi ≤ Ci, i = 1, ..., m, (2.34)
∑m

i=1
αiyi = 0. (2.35)

For this problem, the decision function remains as in 2.29. We notice that
there is still missing the value of the threshold b, if there exist a solution for
problem 2.6, the hyperplane qould be placed in the middle of the two closest
points to each class. Nevertheless, for problem 2.8, the value of the α must be
taken into account; the calculation of b can be done as proposed in [KSBM99]
as following

b =
1

2

(

min
i∈I0∪I1∪I2

{〈xi,w〉} + max
i∈I0∪I3∪I3

{〈xi,w〉}

)

, (2.36)

where,

I0 = {i|0 < αi < Ci}, (2.37)

I1 = {i|yi = 1, αi = 0}; I2 = {i|yi = −1, αi = Ci}, (2.38)

I3 = {i|yi = 1, αi = Ci}; I4 = {i|yi = −1, αi = 0}. (2.39)

Non-Linear SVM

If the sample vectors are not linear separable, there exists no hyperplane that can
perfectly divide them. To overcome this problem, feature-vectors are mapped
into higher dimensional space mathcalH by the use of some non-linear function

Φ(x) : R
d → H (2.40)

Φ is chosen in a way such that the classes can be separated in H by the
trivial SVM decision function.

The linear case was developed in a Hilbert space H. In order to make
generalizations of this method, the dot product 〈x,x′〉 can be expressed in terms
of the kernel k evaluated on input patterns x, x′ in a transformed space induced
by Φ(x) = x,

k(x,x′) = 〈x, x′〉 = 〈Φ(x), Φ(x′)〉. (2.41)

This substitution, which is referred to as the kernel trick, is used to extend
the method to transformed spaces with nonlinear Support Vector Machines in a
new space H called the linearization space because in the new space, the samples
are divided with an hyperplane (i.e. a linear function).

The kernel trick can be applied since all feature vectors in 2.19 and 2.26 only
occurred in dot products. The vector w then becomes an expansion in feature

12 Background

space, and therefore will typically no longer correspond to the Φ − image of a
single input space vector. We obtain a decision function of the form

f(x) = sign

(

m
∑

i=1

yiαi〈Φ(x), Φ(xi)〉 + b

)

(2.42)

= sign

(

m
∑

i=1

yiαik(x,xi) + b

)

(2.43)

with the threshold b calculated similarly as in 2.36, but considering that now
we have applied Φ to the original samples,

b =
1

2

(

min
i∈I0∪I1∪I2

{k(xi,w)} + max
i∈I0∪I3∪I3

{k(xi,w)}

)

, (2.44)

where the index Ik are defined as in 2.37, 2.38 and 2.39.

The following quadratic problem is the one formulated with the kernel trick

Problem 2.9 (C-SV Kernel Trick in Classifier) In a two class problem,
the optimal margin hyperplane dual problem in the transformed Hilbert space
induced by k(x,x′) (with slack variables) is defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyjk(xi,xj), (2.45)

subject to 0 ≤ αi ≤ Ci, i = 1, ..., m, (2.46)
∑m

i=1
αiyi = 0. (2.47)

To illustrate how this trick is used, we’ll consider a one-dimensional example
that looks like in Figure 2.5. This has no linear solution.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.5: One-dimensional two class problem with no linear solution

By making a simple quadratic transformation: xi → (xi, x
2

i), the samples
can be represented in a bigger space (in this case 2D-space) as in Figure 2.6.

In this new space, a linear solution does exist and looks like in Figure 2.7.

This leads to a generalization of the optimization problem by changing the
kernel k(xi,xj), and in means of calculation, this is reduced to stored this
ordered pairs in a kernel matrix with the dot product in the transformed space,
since the last one can be calculated in the original one.

2.1 Classification 13

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

Figure 2.6: Quadratic transformation

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

Figure 2.7: Dividing hyperplane in the new space

Kernel Design

Starting from a finite space X = {x1, x2, ...xr}, a kernel-function is represented
by a symmetric r × r matrix which holds Kij = k(xi, xj).

Using eigenvalue decomposition K can be rewritten as2 K = UV UT

with the r × n matrix U = (uT
1
),uT

2
, ...,uT

r , satisfying UUT = In and V =
diag(λ1, ..., λn), λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0.

The kernel function Φ : X → k ⊆ R
n is now expressed as

Φ(xi) = V
1
2 (2.48)

mathbfui (2.49)

This results in the Gram-Matrix:

Gij = (Φ(xi), Φ(xj))K = V
1
2 (2.50)

mathbfuiV
1
2 (2.51)

mathbfuj = uT
i V uj = Kij (2.52)

this shows that in fact, the only restriction on kernels is that theis eigenvalues
have to satisfy λ ≥ 0. Thus, K has to be semi positive definite. In general, a K
is a kernel iff K holds

∑m

i,j=1
αiαjK(xi,xj) ≥ 0.

This is stated by Mercer theorem:

2where here UT denotes the transpose of U

14 Background

Theorem 2.10 (Mercer Theorem) K(xi,xj) = 〈Φ(xi), Φ(xj)〉 iff for arbri-
trary g(x) with

∫

g(x)2dx < ∞ holds:
∫

K(xi,xj)g(xi)g(xj)dxidxj ≥ 0. (2.53)

If x ∈ R
n there were several proposed kernels, which details can be read in

[SS02]:

Homogeneous

k(x,x′) = 〈x,x′〉 (2.54)

Polynomial

k(x,x′) = 〈x,x′〉d (2.55)

Gaussian

k(x,x′) = exp

(

−
‖x− x′‖2

2σ2

)

(2.56)

Sigmoid

k(x,x′) = tanh(κ〈x,x′〉 + ϑ) (2.57)

All these kernel functions are transformation of the original space to an-
other one of maybe different dimension (possibly infinite), where a linear so-
lution exist. The classifying function can still be represented in the original
space, however, this will not be anymore an hyperplane, but a function with a
curvature.

The Gaussian function, also known as Radial Basis Function (RBF) is nor-
mally the first choice because it combines good performance with strong the-
oretical foundation. In [SS02] it is proven that the RBF-kernel is equivalent
to the dot product of elements belonging to an infinite demensional space. To
show the capacity of this trick, let us illustrate it by adding some more negative
samples to the Figure 2.1, as it is shown in Figure 2.8. As it can be seen, there
does not exist any hyperplane that can perfectly classify all training samples.

Figure 2.8: Example of a two class problem with no linear solution

If we try to adjust a straight line to separate this problem, the result seen
in Figure 2.9 would be obtained.

2.1 Classification 15

Figure 2.9: Two class problem with the best adjusted hyperplane

Figure 2.10: Solution for a two class problem with Gaussian Kernel

The solution to the problem in Figure 2.8 with a Gaussian kernel would look
like in Figure 2.10.

The samples that are filled out represent the support vectors. The solid red
line represents the decision hyperplane and the margin between both classes is
marked with the spoted red lines.

2.1.2 Data Preprocessing

In general the data cannot be used as it was gotten originally. It can happen
that the values of one vector dimension differs significantly in magnitude with
other dimension. This can mislead the classifier causing that the training of the
machine is basically based in the dimension with bigger values. Therefore, some
prepsocessing is needed before feeding the data to the machine.

16 Background

Normalizing the Data

Normalization is a process of scaling the numbers in a data set to improve the
accuracy of the subsequent numeric computations. For a sample xij in a set
{xi}, with xi ∈ R

n, there are several ways of doing this:

Standard deviation . The dataset is center at zero mean and scaled it to have unit standard
deviation,

xij =
xij − µxi

σxi

(2.58)

where µxi
and σxi

is the mean and the standard deviation of the vector
xi.

Min-max . The dataset is linearly scaled to a specific minimum min∗ and maximum
max∗ value,

xij =
max∗ − min∗

max{xi} − min{xi}
(xij − min{xi}) + min∗ (2.59)

2.1.3 Model Selection

The results of a classifier depend on the training samples and a set of training
parameters. In the case of the SVMs, these parameters are the cost Ci for
outliers and parameters like γ in the Gaussian or the degree in the polynomial
kernel.

Since these parameters can be changed to adjust the model, the task of
finding the best model is called model selection.

The first concern is how to measure a model. In an intuitive way, this
question is easy to answer: a good model always gives a correct classification
result even with samples that have never been seen. This ability is called the
generalization ability. If the training error is driven to a very small value, but
when the new data is presented to the network the error is large, then the
model has overfitting. A theoretical approach to the generalization ability was
introduced with the Vapnik-Chervonenkis dimension (VC dimension) [VC79] as
a measure of it.

2.2 Decision Trees

Chapter 3

Support Vector Machines in
a Decision Tree

Support vector machines are used to classify feature vectors. The usual choice
is the RBF kernel since in terms of generalization capacity, when a RBF kernel
is used to train a SVM, the results can be very satisfactory, this method was
run with several databases which contents differs from each other substantially1.
More over, the training of this machine can be done with reasonable computer
time, with the SMO technique.

Unfortunately, as explained before, the classification time depends on the
number of resulting support vectors. It can occur that many of the training
sample vectors contribute to the representation of the function in the original
space. Several examples where run, and it was observed that this set was relative
big in respect to the number of training samples.

3.1 Theoretical Approach

In this thesis a linear approximation of a continuous function to classify is
proposed. The space will be divided in regions defined by linear inequalities
(hyperplanes). This gives many advantages, one of these is that the transformed
space is known since it is the original one; the tuning of parameters can be
avoided and the number of hyperplanes needed to linearly approximate the
classification function is far less than the number of needed support vectors.

With this aim, a decision tree was built. Each node corresponds to a hyper-
plane which can classify a specific region.

3.1.1 Zero Solution in SVM

Usually, a SVM is trained so that it will make the least possible mistakes in
both classes. With the classical approach, the importance of errors in each class
can be tuned by adjusting the values of D1 and D2 which are the weights for
class C1 and C2 respectively, according to Definition 2.1.

1For details about the classification capacity in these exampels, some data is resumed in
the section of experiments

17

18 Support Vector Machines in a Decision Tree

So, each hyperplane in the tree is trained in dependence of the previous
hyperplane, to be able to identify a region of the feature space where only
samples of one class lie. To achieve this, a first constrained problem is solved in
order to found the SVM that classifies perfectly one chosen class (say class C1)
and make the least errors in the other.

This would lead to propose a big value for D1 and a very small value for D2.
A problem that can be faced is that with this proposal, the optimal solution
can be the zero solution is D1 and if the center of gravity if class C 2 lies in the
convex hull of class C1 is enough big as is proved in the following theorem.

Theorem 3.1 (Zero Solution) Let class 1 and class 2 be defined as in Defi-
nition 2.5. If the convex hull of one class (say, class Ck) intersects the convex
hull of the other (say, class Ck̄), then w = 0 is a feasible solution for the primal
problem 2.5 if D2 ≥ maxi∈C1

{λi} · D1, where λi are such that:

p1 =
∑

i∈C1

λixi

for a point p1 that belongs to both convex hulls.

Proof
It has to be noticed that, if i ∈ Ck, j ∈ Ck̄ ⇒ yi · yj = −1 and i ∈ Ck,

j ∈ Ck ⇒ yi · yj = 1, then the dual problem can be written as follows

maximize
∑

i∈C1
αi +

∑

i∈C2
αi +

∑

i∈C1,j∈C2
αiαj〈xi,xj〉

− 1

2

∑

i,j∈C1
αiαj〈xi,xj〉 −

1

2

∑

i,j∈C2
αiαj〈xi,xj〉

subject to
∑

i∈C1
αiyi +

∑

i∈C2
αiyi = 0

0 ≤ αi ≤ D1 for all i ∈ C1

0 ≤ αj ≤ D2 for all j ∈ C2

If p1 belongs to the convex hull of both classes, then, it can be written as
follows

p1 =
∑

i∈C1

λixi and p1 =
∑

j∈C2

λjxj

with λi ≥ 0 for all i ∈ C1,
∑

i∈C1
λi = 1 and λj ≥ 0 for all j ∈ C2,

∑

j∈C2
λj = 1.

Let αi = λiD1 ≤ D1 for all i ∈ C1 and αj = λjD1 ≤ maxj∈C1
{λj}D1 ≤ D2

for all j ∈ C2, then

∑

i∈C1
αiyi +

∑

j∈C2
αjyj =

∑

i∈C1
λiD1 −

∑

j∈C2
λjD1

= D1

∑

i∈C1
λi − D1

∑

j∈C2
λj

= D1 − D1

= 0

Therefore αi = λiD1 for all i ∈ C1 and αj = λjD1 for all j ∈ C2 is a feasible
solution for the dual problem.
If we calculate the vector w with these values, we obtain:

3.1 Theoretical Approach 19

w =
∑

i∈C1
αixiyi +

∑

j∈C2
αjxjyj

=
∑

i∈C1
λiD1xi −

∑

j∈C2
λjD1xj

= D1

∑

i∈C1
λixi − D1

∑

j∈C2
λjxj

= D1p1 − D1p1

= 0

and we conclude that w = 0 is a feasible solution for the primal problem
2.5.

�

In [BCSTW00], Bennett and Bredensteiner proved that problem 2.7 has also
another dual problem that can be seen in terms of the convex hull. When a
solution exist, a geometric interpretation of problem 2.5 can be reduced to the
problem of finding the closest points of the two convex hulls; then, constructing
the line segment between the two points. The plane, orthogonal to the line
segment that bisects the line segment, is chosen to be the separating plane.

Under this approach, problem 2.7 leads to the geometric interpretation of
finding the closest points of the two reduced convex hulls according to D1 and
D2. This reduced convex hull will still be around the center of gravity of the
original convex hull. And in the case that the center of gravity of class 2 is inside
the convex hull of class 1, if D1 is big enough, the zero solution will still be a
feasible solution no matter what value D2 has. This is resumed in the following
Corollary.

Corollary 3.2 [Zero Solution with Gravity Center] If the center of gravity of
class 2, s2, is inside of the convex hull of class 1, it can be represented as

s2 =
∑

i∈C1

λixi and s2 =
∑

j∈C2

1

m2

xj

with λi ≥ 0 for all i ∈ C1 and
∑

i∈C1
λi = 1.

If additionally D1 ≥ λmaxD2m2, where λmax = maxi∈C1
{λi}, then w = 0

is a feasible solution for the primal problem 2.5,

Proof
Let class 1 and class 2 be as in Definition 2.1, then the dual problem can be

written as follows

maximize
∑

i∈C1
αi +

∑

i∈C2
αi +

∑

i∈C1,j∈C2
αiαj〈xi,xj〉

− 1

2

∑

i,j∈C1
αiαj〈xi,xj〉 −

1

2

∑

i,j∈C2
αiαj〈xi,xj〉

subject to
∑

i∈C1
αiyi +

∑

i∈C2
αiyi = 0

0 ≤ αi ≤ D1 for all i ∈ C1

0 ≤ αj ≤ D2 for all j ∈ C2

Let αi = λiD2m2 ≤ λmaxD2m2 ≤ D1 for all i ∈ C1 and αj = D2 for all
j ∈ C2, then,

20 Support Vector Machines in a Decision Tree

∑

i∈C1
αiyi +

∑

j∈C2
αjyj =

∑

i∈C1
λiD2m2 −

∑

j∈C2
D2

= D2m2

∑

i∈C1
λi − D2m2

= D2m2 − D2m2

= 0

Therefore αi = λiD2m2 for all i ∈ C1 and αj = D2 for all j ∈ C2 is a feasible
solution for the dual problem.
If we calculate the vector w with these values, we obtain:

w =
∑

i∈C1
αixiyi +

∑

j∈C2
αjxjyj

=
∑

i∈C1
λiD2m2xi −

∑

j∈C2
D2xj

= D2m2

∑

i∈C1
λixi − D2m2s2

= D2m2s2 − D2m2s2

= 0

and we conclude that w = 0 is a feasible solution for the primal problem
2.5.

�

Any reduced convex hull produced by a C-SV problem definition2 will still
contain the gravity center of the class. Therefore, for the case where the gravity
center of one class is in the convex hull of the other class and vice-versa, if a
feasible solution for the C-SV problem wants to be found, the convex hull of both
classes has to be reduced enough, giving some mistake in both classes during
the training. Numerically, the kernel matrix is not always positive definite,
therefore, the trivial solution (w = 0) can be found with other values of α 6= 0.

3.1.2 Reduction of Possibility of the Zero Solution

In order to reduce the classification time, the used support vector machine with
non-linear kernel will be substitute with a decision tree of linear support vector
machines. The tree will first target an area in the feature space that can be
clearly assigned to class k̄, k̄ = 2, 1 by a linear classifier. This will be achieved
by finding the hyperplane with the widest margin that made no mistakes in
class k, k = 1, 2 and that makes the least possible mistakes in class k̄.

For this, and to decrease the number of trivial solutions that are in the
approach, the following new problem will be introduced:

Problem 3.3 (Hard Margin for 1 class (Primal Problem)) Let 2 cla-
sses be defined as in Definition 2.1, we will be interested on solving the following
problem:

minimize
w∈H,b∈R

τ(w) = 1

2
‖w‖2 −

∑

i∈Ck̄
yi(〈xi,w〉 + b), (3.1)

subject to yi(〈xi,w〉 + b) ≥ 1 for all i ∈ Ck, (3.2)

where k = 1 and k̄ = 2, or k = 2 and k̄ = 1.

2for more details on this type of SVM, please see [SS02], [Cri] and [BCSTW00]

3.2 Description of the Algorithm 21

Analyzing more precisely this problem, it can be seen that the feasible so-
lution of this optimization problem is that one that classifies correctly all the
samples in class k (because yi(〈w,xi〉)) for all i ∈ Ck is a condition with no slack
variables. On the other side, from all the vectors that satisfy this condition, the
search vector is the one that has a balance between the size of the margin and
the number of misclassified samples of class Ck. As before, this problem can
be transformed into the following dual problem which is a special case of the
original problem where all the αk for one class are equal to zero.

Problem 3.4 (Hard Margin for one class (Dual Problem)) Let 2 cla-
sses be defined as in Definition 2.1, we will be interested on solving the following
problem:

maximize
α∈Rm

W (α) =
∑

i∈Ck
αi −

∑

i∈Ck,j∈Ck̄
αiyiyj〈xi,xj〉 (3.3)

− 1

2

∑

i,j∈Ck̄
yiyj〈xi,xj〉 −

1

2

∑

i,j∈Ck
αiαjyiyj〈xi,xj〉, (3.4)

subject to 0 ≤ αi, i ∈ Ck (3.5)

and
∑

i∈Ck
αiyi +

∑

i∈Ck̄
yi = 0. (3.6)

Or

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (3.7)

subject to 0 ≤ αi ≤ Ci, i ∈ Ck (3.8)

αj = 1, j ∈ Ck̄ (3.9)
∑m

i=1
αiyi = 0. (3.10)

where k = 1 and k̄ = 2, or k = 2 and k̄ = 1.

3.2 Description of the Algorithm

The aim is to build a tree which nodes are SVMs. At each step, a region defined
by a hyperplane is labeled with a class until the whole space is labeled. To
illustrate this and the further description of the algorithm, let us consider the
example in Figure 3.1.

This example can be found at the web-page of the LIBSVM3 c++ library
under the name of Fourclass. The problem has 2 features and therefore it can
be represented in 2D. Class 1 is represented with green triangles and class 2 is
represented with blue circles. This example has clearly a non-linear solution,
so a SVM with Gaussian Kernel was used. The graphical representation of the
found solution is depicted in Figure 3.2.

The classification function corresponding to the found hyperplane in the
transformed space is marked with a solid red line, the existing margin between
the two classes can be seen with the spotted red lines. The thicker points are
the needed support vectors for the classification. As it can be seen, these are a
big percent of the training data, therefore a large evaluation time for evaluating
new points is needed.

3Which Internet address is http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

22 Support Vector Machines in a Decision Tree

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

Fourclass

Figure 3.1: Fourclass example

Figure 3.2: Solution for the fourclass with a SVM (Gaussian kernel)

This solution can be trained in order to get a perfect classification in both
classes accordingly with the sample vectors. Due to limitations in the matlab
package, it cannot be obtained with this tool.

3.2 Description of the Algorithm 23

3.2.1 Decision Tree with Linear SVM Nodes

The speedup of the classification of a dataset is done by the construction of
a decision tree which nodes are hyperplanes obtained with the training of a
support vector machine with linear kernel.

To obtain the decision tree, at each step a hard class is chosen –say class 1–
then a SVM is trained so that the resulting hyperplane will correctly distinguish
all points belonging to class 1, that is, all the samples with label yi = 1 will lie
on one side of the hyperplane and all points on the other side of the plane will
be labeled as class 2. The number of samples is then reduced by leaving out the
training samples of class 2 that were correctly classified with this SVM. This
process is repeated with the reduced problem until the samples left, belong all
to the same class.

linear
 SVM

linear
 SVM

label

label

label

label label

No

No

No

No Yes

Yes

Yes

Yes

linear
 SVM

linear
 SVM

(〈wi,x〉 + bi) × hci > 0

(〈wi,x〉 + bi) × hci > 0

label x = −hci

(〈wi, x〉 + bi) × hci > 0

(〈wi,x〉 + bi) × hci > 0

label x = −hci

label x = −hci label x = hci

label x = −hci

i = 1

i = i + 1

i = i + 1

i = i + 1

Figure 3.3: Decision tree with linear SVM

The classification then takes places by identifying at each node if the sam-
ple belongs to the non-hard class 2 being labeled with it, or keeping with the

24 Support Vector Machines in a Decision Tree

evaluation to the next node. This is depicted in the diagram 3.3.
In the fourclass example, the class 1 (green triangles) is the hard class at

the first step, the line (hyperplane) obtained by solving problem 3.4 with hard
class 1 will look like in Figure 3.4.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

Fourclass with minimax and ch

Figure 3.4: First hyperplane for problem 3.4 for fourclass (C1 = hard class)

On Figure 3.5 the region which has exclusively samples belonging to the
non-hard class is depicted with a shadow in cyan and it all will be labeled as
class 2 with different scale (accordingly to the shadow). The darkness indicates
that is is more probable fora sample in that area to belong to class 2.

Next, the problem is reduced by leaving out the samples that lie in the
previously marked region. For the here analyzed fourclass example, the new
problem to solve is the one in Figure 3.6.

This procedure is stepwise repeated with the new sample-space marking the
”safe” areas (i.e. areas where samples of only 1 class was found) as non-hard
class.

The previous Figure shows which hyperplane found the algorithm at each
step of the tree. A region labeled with a cyan shadows represents the solution
of a QP with the positive class (green triangles) as the hard class, that is, all
the elements in the cyan region are labeled as negative samples. Every time
that a hyperplane was chosen, the samples belonging the the non-hard class
were removed and the QP for the rest was solve. The space can be step-wise
labeled by considering the region that is on the side of the hyperplane where
only samples belonging to the non-hard class were found.

At each step, the algorithm choose the plane that can reduce the most the
problem, therefore, it can happen that the same class is chosen as the hard class
for consecutive nodes in the decision tree.

By repeating this procedure, new regions are labeled until the left samples
belong all to the same class. The algorithm will label the whole left region
containing these samples with the class they belong.

3.2 Description of the Algorithm 25

Figure 3.5: First labeling after resolution of problem 3.4 for fourclass

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

Fourclass with minimax and ch

Figure 3.6: Reduced problem for next classification step

Picture 3.7 depicts the final solution of the algorithm for the fourclass pro-
blem and how the space was divided according to the decision tree.

3.2.2 Search of the Best Hyperplane

As seen in the theoretical approach, two problems are consider. One is the
original approach given by Vapnik, and the second one is the new approach

26 Support Vector Machines in a Decision Tree

Figure 3.7: Final solution for the fourclass problem

where a hard class is defined and the objective is to find a hyperplane with the
maximum margin and the least possible mistakes on the non-hard class.

As in [SS02], both problems can be reduced to a quadratic constrained pro-
blem and since there are several existing methods to solve it efficiently, an
optimal hyperplane can be found.

A general sequential quadratic programming (QP) problem can be set out
for problem 2.8 and also applied for problem 3.4, which has the form:

minimize
α

1

2
αT Qα − eT α (3.11)

subject to Li ≤ αi ≤ Ci (3.12)

yT α = 0, (3.13)

where e is the vector of all ones, Ci > 0 is the upper bound, Q is an m×m
positive semidefinite matrix, Qij = yiyjk(xi, xj) = 〈Φ(xi)Φ(xj)〉 is the kernel.
As explain in the previous chapter, vector xi are mapped into a higher (maybe
infinite) dimensional space by the function Φ. The algorithm used to solve this
quadratic problem is basically the same to the one developed and implemented
by Chih-Chung Chang and Chih-Jen Lin in [CL05], with some adjustments so
that this new algorithm can solve QP problems with general bounds.

This QP problem involves a matrix Q that has a number of elements equal
to the square of the number of training samples m. If there are many training
samples (more than 5000, for example), it can occur that Q will not be able to
fit in the memory. Thus, the QP problem becomes intractable via standard QP
techniques. Several techniques were developed to have a better approach to this
problem, like in [OFG97] a decomposition algorithm that is guaranteed to solve
the QP problem is presented. A special case of this algorithm is the Sequential
Minimal Optimization (SMO), presented in [Pla99], where subproblems with
only two variables are solved.

3.2 Description of the Algorithm 27

After the resolution of this problem, the direction of the orthogonal vector
is found. The rest is to find the threshold b of this hyperplane, equivalent to
the intersection with the axes of it.

It has to be taken into consideration that the searched hyperplane is one
that makes no mistakes in the hard class and makes the less possible mistakes
in the other class. The usual way of calculating the threshold in 2.36, cannot
be longer used for define the hyperplane. Instead, the threshold is calculated by
assigning to b1 the minimum (maximum) value of 〈w,xi〉 for all i ∈ C1 (i ∈ C2)
and then, for those samples belonging to the non-hard class that are correctly
classified, the maximum (minimum) value of 〈w,xi〉 for all i ∈ C2 (i ∈ C1) is
assigned to b2 and the threshold is set to b = 1

2
(b1 + b2). That is,

for hard class = 1

b =
mini∈C1

〈w,xi〉 + max{j∈C2∧〈w,xj〉<0}〈w,xj〉

2
(3.14)

for hard class = -1

b =
minj∈C2

〈w,xj〉 + max{i∈C1∧〈w,xi〉<0}〈w,xi〉

2
(3.15)

In Figure 3.8 the calculation of the threshold is depicted. For this example,
the hard class is the positive class (the green triangles). An orthogonal vector w
is given, the green hyperplane es the one with b1 as threshold; this has the char-
acteristic that all samples in class 1 are correctly classified, except for the ones
such that 〈w,xi〉 = b1, i ∈ C1 and from this threshold, the nearest hyperplane
is search such that the least possible errors in class 2 in sone, represented with
the blue hyperplane with threshold b2. Finally, b is calculated as the average of
these two values.

b

b2
b1

w

Figure 3.8: Search of threshold b for problem in Figure 2.8

The proposed solution for this problem can be seen in Figure 3.9, as usual,
the yellow area represent the positive class and the cyan area represents the
negative class with the assigned probability accordingly to the hyperplane that
is classifying that area.

28 Support Vector Machines in a Decision Tree

Figure 3.9: Final solution for problem in Figure 2.8

Chapter 4

Implementation Details

This chapter summarize specific details about the implemented algorithms.

The construction of the decision tree is straightforward, therefore, the main
interest is to explain the resolution of the optimization problem and the obtain-
ing of the hyperplane in each node of the tree.

Section 4.1 deals with the QP problem and its resolution. Section 4.2 is
focused in obtaining the parameters to define the hyperplane, w and b. Section
4.3 shows the additional heuristics that were used in order to find always a
hyperplane that can detach some samples in each iteration.

4.1 Quadratic Problem

Each node in the decision tree is formed by a hyperplane. Each of these hyper-
planes can be defined with a vector w that is orthogonal to the hyperplane and
an offset b. The problem of finding the hyperplane with maximum margin and
no errors in one class leads to an optimization Problem (2.7 or 3.3) which dual
Problem (2.8 or 3.4) results to be a QP problem with the form:

minimize
α

f(α) = 1

2
αT Qα − eT α , (4.1)

subject to Li ≤ αi ≤ Ci,

yT α = 0.

If the problem has m samples, Q is a m×m matrix containing the kernel function
applied to each pair of samples, that is, Qij = k(xi,xj); e is the vector of ones
with lenght m; Li and Ci are the lower and upper bound, respectively, for αi.
Finally, y = (y1, ..., ym)T is the vector containing the labels for samples xi.

Finding an optimum in the dual space, is equivalent to finding an optimum
in the primal space. With the help of the KKT conditions, the vector w can be
later calculated using

w =

m
∑

i=1

αiyixi, (4.2)

while the bias b can be fixed accordingly to the stated problem.

29

30 Implementation Details

4.1.1 Sequential Minimal Optimization (SMO)

The difficulty of solving the previous problem, is the density of Q because Qij

is in general not zero. The methods proposed by [OFG97], [Pla99] and [Joa98]
modifies only a subset of α per iteration. This subset –denoted as the working
set B– leads to a small sub-problem to be minimized in each iteration. The
SMO method as used in [FCL05] is a particular (extreme) case of it, where the
subset is restricted to have size 2. Then, in each iteration a simple two-variable
problem is solved.

With the original problem, where Li = 0, several simplifications to the
resolution method (solver) could be done to speed it up. Therefore, some small
adjustements had to be done to the code of the LIBSVM in order to solve
problems with Li 6= 0. This algorithm can be found in [CL05] under the name
of Algorithm 1 .

At each iteration, SMO identifies a pair {αi, αj} to solve a subproblem with
only two variables. This pair is chosen such that it leads to the maximum
decrease in the objective function. The algorithm to select the working set can
be consulted in [FCL05]. The new subproblem is the one defined in [CL05] like
follows

Problem 4.1 (Two-variable QP subproblem) For iteration t, if B =
{i, j} and Qii + Qjj − 2Qij > 0, then the following problem has to be solved

minimize
αt

B
={αi,αj}

1

2
[αi αj]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (−eB + QBNαt
N)T

[

αi

αj

]

,

subject to Li ≤ αi ≤ Ci,

Lj ≤ αj ≤ Cj ,

yiαi + yjαj = ∆ − yT
Nαt

N ,

where B = i, j, N = {1, ..., m} \ B, αt
B and αt

N are the subvectors of α at
iteration t corresponding to B and N respectively; yN is the subvector of y
(vector containing the labels) corresponding to N ; Qij = yiyjk(xi,xj); eB is
the vector of ones of size |B| and ∆ = yT α.

For the resolution of the two variable problem, the next algorithm was im-
plemented. This consist only on slights variations of the one implemented by
Chang and Lin [CL05], now it is considered the lower bound different to zero.

Algorithm 4.2 (SMO-iteration solution) The following algorithm, devel-
oped and implemented by Fan [FCL05] and Chang [CL05] in the LIBSVM li-
brary was also used in this project in order to update the values of αiandαj in
the QP problem,

Q[i][j] = kernel evaluation of sample i and sample j

y[i] = label for sample x[i]

alpha = array of size m

G[i] = i-th element of the gradient of the objective function

L_i = lower bound for alpha[i]

C_i = upper bound for alpha[i]

if(y[i]!=y[j]) {

delta = (-G[i]-G[j])/max{Q[i][i]+Q[j][j]+2*Q[i][j],0}

4.1 Quadratic Problem 31

diff = alpha[i] - alpha[j]

alpha[i] += delta

alpha[j] += delta

if(diff > 0) {

if(alpha[j] < L_j) {

alpha[j] = L_j

alpha[i] = diff + L_j

}

}

else {

if(alpha[i] < L_i) {

alpha[i] = L_i

alpha[j] = -diff + L_i

}

}

if(diff > C_i - C_j) {

if(alpha[i] > C_i) {

alpha[i] = C_i

alpha[j] = C_i - diff

}

}

else {

if(alpha[j] > C_j) {

alpha[j] = C_j

alpha[i] = C_j + diff

}

}

}

else {

delta = (G[i]-G[j])/max{Q[i][i]+Q[j][j]-2*Q[i][j],0}

sum = alpha[i] + alpha[j]

alpha[i] -= delta

alpha[j] += delta

if(sum > C_i) {

if(alpha[i] > C_i) {

alpha[i] = C_i

alpha[j] = sum - C_i

}

}

else {

if(alpha[j] < L_j) {

alpha[j] = L_j

alpha[i] = sum - L_j

}

}

if(sum > C_j) {

if(alpha[j] > C_j) {

alpha[j] = C_j

alpha[i] = sum - C_j

32 Implementation Details

}

}

else {

if(alpha[i] < L_i) {

alpha[i] = L_i

alpha[j] = sum - L_i

}

}

}

4.1.2 QP Speeding up Techniques

Two more techniques were used to improve the resolution time of the QP pro-
blem.

The first one, shrinking , was proposed in [Joa98]. This technique is used
because for many problems the number of free vectors (i.e. where Li < αi <
Ci) is small. The shrinking technique reduces the size of the working problem
without considering some bounded variables, and near to the end of the iterative
process, the possible set A, where all final free αi may reside in, is identified.

The other method used to reduce the computational time is the caching ,
that is, the elements of Qij are calculated as needed since Q is fully dense and
may not be stored in the computer memory, but only the recently used Qij are
stored. Hence, the computational cost of later iterations can be reduced.

This two methods were not modified from the original version in the LIBSVM
library and are explained in detail in [Joa98] and [CL05].

4.2 Construction of the Decision Hyperplane

The aim of the quadratic programming is to go back to the primal Problem 2.7,
and obtain the orthogonal vector and the bias b for the corresponding node in
the decision tree. With this, a decision function with the form sign(〈w,x〉+ b)
can be used, since the found hyperplane is in the original space.

4.2.1 Orthogonal Vector

If the hard Class is denoted as Ck and the non-hard Class is denoted as Ck̄.
The two following problems are solved with (k = 1, k̄ = 2) and later with
(k = 2, k̄ = 1).

The first problem solved is based directly on Problem 2.7, where a very large
cost is given to the errors on the hard class and a standard low cost is given to
the non-hard class, in this way, the hyperplane will avoid misclassifications in
the hard class:

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (4.3)

subject to 0 ≤ αi ≤ 1, 000, 000, 000, 000, i ∈ Ck

0 ≤ αj ≤ 1, j ∈ Ck̄
∑m

i=1
αiyi = 0.

4.2 Construction of the Decision Hyperplane 33

The initial solution for this problem is set to αi = 0 for all i ∈ C .
The next problem is based on the new approach proposed in Problem 3.4.

This problem is explicitly formulated so that the feasible solutions are the ones
that does not allow any misclassifications in the hard class (in numerical terms,
this is equivalent to assign a very large cost on the erros in the hard class) and
the hyperplane is then adjusted to do the least possible mistakes on the other
class. The quadratic problem takes the next form:

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (4.4)

subject to 0 ≤ αi ≤ 1, 000, 000, 000, 000, i ∈ Ck

αj = 1, j ∈ Ck̄
∑m

i=1
αiyi = 0.

The initial solution for this problem is αi = 0 for all i ∈ Ck and αj = 1 for
all j ∈ Ck̄.

The solution of these problems will give the values for α on the optimal
point. To obtain the orthogonal vector w, the KKT Condition 2.24 is used:

w =

m
∑

i=1

αiyixi.

After solving these problems, four possible solutions for w are obtained, two
are the solutions of Problem 4.3 after solving the problem with k = 1 and then
for k = 2 and the other two are the results obtained from Problem 4.4, again
after solving the problem for k = 1 and then for k = 2.

With one of these hyperplanes, the problem will be reduced by removing
the samples of class k̄ that were correctly classified with the hyperplane. The
solution that can reduce the problem more is finally assigned to the next node
on the decision tree with the appropiate threshold b.

New hyperplanes are searched and placed in the succesive child nodes.

4.2.2 Threshold

The resolution of the QP problem proposes as solution an orthogonal vector w
to a hyperplane, there is still missing the calculation of the threshold b, which
as mentioned before, is usually calculated as in Equation 2.36:

b =
1

2

(

min
i∈I0∪I1∪I2

{〈xi,w〉} + max
i∈I0∪I3∪I3

{〈xi,w〉}

)

, (4.5)

with I0 = {i|0 < αi < Ci}; I1 = {i|yi = 1, αi = 0}; I2 = {i|yi = −1, αi = Ci};
I3 = {i|yi = 1, αi = Ci}; I4 = {i|yi = −1, αi = 0}.

This cannot be used for the new implementation since this is calculated
considering a margin of error in both classes [KSBM99] and [KG02]. Our aim
is to find such a threshold, that when it is used to classify, all the samples
in the actual hard class remain correctly classified and the least possible from
the samples belonging to the non-hard class are misclassified. The following
algorithm was done to calculate b:

34 Implementation Details

Algorithm 4.3 (Pseudocode for Calculation of threshold) Code used to
calculate the threshold b for the problem in Equations 4.3 or 4.4

m = number of samples

n = feature space size

x[i] = feature vector of sample i

y[i] = label of sample i

hc = hard class (1 or -1)

w = orthogonal vector to the found hyperplane

ub = INF

lb = -INF

for i=0 to m {

if ((y[i])*hc > 0) {

yG = x[i]’ * w

if(y[i] > 0)

ub = min{ub,yG}

else

lb = max{lb,yG}

}

}

if (ub != INF)

r1 = ub

else

r1 = lb

ub = INF

lb = -INF

for i=0 to m {

if ((y[i])*hc < 0) {

yG = (x[i]’ * w) - r1

if ((y[i]*yG) > 0) {

yG = yG + r1

if(y[i] > 0)

ub = min{ub,yG}

else

lb = max{lb,yG}

}

}

}

if (ub != INF)

r2 = ub

else if (lb !=-INF)

r2 = lb

4.3 Heuristics Used 35

else

r2 = r1

r=(r1+r2)/2

return r

4.3 Heuristics Used

Even though that the optimization function is a quadratic function, numeric
problems, speeding up techniques and semi-positive definite matrix can mislead
the algorithm so that a global optimum can not always be found. Several
heuristics were implemented to assure the convergence of the tree.

4.3.1 Greedy Technique

At each step, Problem 2.8 and Problem 3.4 are solved for both cases: making
class 1 as the hard class and also making class 2 as the hard class. The number
of vectors that can be left out by using each of these 4 solutions is counted and
the assigned hyperplane to the next child node is the one that can reduced more
the problem. These made the algorithm a greedy algorithm.

4.3.2 Avoiding the Zero Solution

As seen in Corollary 3.2, the zero solution can outcome if the cost of the hard
class is bigger enough than the cost of the non-hard class. One method to avoid
obtaining trivial solutions, the upper bound for the alphas in the hard class
(Ck), is reduced until a solution different to the trivial one is found, that is, if
‖w‖ < tol, then Ck is adjusted as follows:

Ck = Ck/10, (4.6)

where tol is a number close to zero that states the tolerance for the norm of
vector w.

The other method to avercome the problem of the degenerated solution, is
the new approach of the QP problem as in Problem 3.4.

4.3.3 Change of Sign of w

In several cases, the found hyperplane in not able to reduce the problem. In
this case, if none sample could be left out, then, −w is used instead. This is
equivalent to change the inequality sense for the classification. This is illustred
in Figure 4.1

4.3.4 Perpendicular Hyperplanes

In several cases, the found hyperplane is not able to reduce the problem. It was
observed that, nerverless, the hyperplane was oriented in the direction of the

36 Implementation Details

Figure 4.1: Change of sign of w. The direction of vector w points towards
the positive class. The third hyperplane (dashed line) can not classify correctly
any sample in the non-hard class (positive class, represented with triangles). If
the inequality is changed, this hyperplane can reduce the problem for the next
iteration.

distribution of the samples, and some of the orthogonal hyperplanes could do a
successful classification.

The use of these perpendicular hyperplanes in the decision tree –in a greedy
way– increased the classification rate and the generalization ability. Experimen-
tally, it was observed that this heuristic was not frequently used. The algorithm
implemented it, only to change the morphology of the problem to go further.

An additionally degree of greedy technique was implemented with this heuris-
tic. This consist on having the option of considering also the orthogonal hyper-
planes together with the original hyperplane that results from the QP problem.
Again the chosen hyperplane is the one that can reduced more the problem.

This heuristic is illustrated in Figure 4.2.

4.3.5 Reduction of Usless Hyperplanes (Pruning)

The algorithm stops building the tree after all the samples have been left out
(that is, at the moment that the left samples belong all to the same class). At
the end of the algorithm, several hyperplanes are of no use in the classification
since later hyperplanes were more general than these. This means that if some
hyperplanes deeper in the decision tree is used before, some others could be left
aside and then reduce the classification time. Figure 4.3 shows an example of
this case.

An algorithm was implemented to ”clean” the set {wi}, where each wi

corresponds to the node i in the decision tree. Each hyperplane was eliminated
from the decision tree and if no more errors were generated than with the original

4.3 Heuristics Used 37

Figure 4.2: Searching perpendicular hyperplanes to w. The direction of vector w
points towards the positive class. The fourth hyperplane (dashed line) can not
classify correctly any sample (both equalities) in the non-hard class (positive
class, represented with triangles). Instead, a perpendicular hyperplane (with
w′) is used.

Figure 4.3: Prunning, useless hyperplanes are removed from the tree.

tree, the node with this hyperplane was eliminated.

w = two-dimensional array, w[i] contains the hyperplane in node i

rho[i] = threshold for node i

38 Implementation Details

hard_class_vector[i] = hard class for node i

reached_errors = number of errors with the original decision

plane, without reduction

x[j] = sample j

y[j] = label for sample j

Classify(w, rho, hard_class_vector, x) = function that classifies

sample x with the decision tree form with the w, rho and

hard_class_vector elements

function erase(i) = erase element i of the vector

function insert(i,obj) = insert obj at position i

w_temp= w[0]

rho_temp = 0

hcv_temp = 0

for (int i=w.size - 1; i>=0 ; i--) {

errors = 0

w_temp = w[i]

rho_temp = rho[i]

hcv_temp = hard_class_vector[i]

w.erase(i);

rho.erase(i);

hard_class_vector.erase(i);

for (int j=0; j<prob->l ; j++) {

x_class = Classify(w,rho,hard_class_vector,x[j]);

if (y[j]*x_class <=0)

errors++

}

if (errors > (reached_errors)) {

w.insert(i,w_temp);

rho.insert(i,rho_temp);

hard_class_vector.insert(i,hcv_temp);

}

if (w.size()==1)

break

}

For the fourclass example, at the end of the construction of the tree, the
following hyperplanes were taken with the corresponding heuristics:

4.3 Heuristics Used 39

Line Solver Hard Sign of Use of a
Number used Class w perpendicular hyperplane

1 c -1 1 no
2 h 1 1 yes
3 h 1 1 no
4 h 1 -1 yes
5 h 1 1 no
6 h -1 -1 yes
7 c -1 1 no
8 h 1 1 no
9 h 1 1 no
10 h -1 -1 no
11 h -1 1 no
12 h -1 1 no

Chapter 5

Experiments and
Comparisons

5.1 Description of the Datasets

5.2 Results and Comparisons

The datasets were trained and classified with a RBF-Kernel SVM and with the
new implemented method. Additionally, two different normalizations methods
were used (using the standard deviation and also the minimax method), already
implemented in the LIBSVMtl library.

It has to be mentioned that the results obtained with the SVM with RBF-
Kernel were not tunned and the results were obtained with the standard values.
The aim of this section is mainly to compare the number or SVs against the
number of require hyperplanes in the new method together with the training
and classification time.

DNA RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 180 180 180

Nr. Train Samples 1330 1330 1330

Nr. SVs or 881 3 3 293.67 293.67
Hyperplanes

Training Time 00:02.62 00:02.11 00:03.82 1.24 0.69

Nr. Test Samples 1446 1446 1446

Training accuracy 1351 1315 1315 1.03 1.03

Classification Time 00:06.78 00:01.85 00:01.71 3.66 3.96

Train correctness % 93.43 % 90.94 % 90.94 % 1.03 1.03

40 Experiments and Comparisons

5.2 Results and Comparisons 41

DNA RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 180 180 180

Nr. Train Samples 1330 1330 1330

Nr. SVs or 798 3 3 266 266
Hyperplanes

Training Time 00:02.35 00:02.01 00:03.74 1.17 0.63

Nr. Test Samples 1446 1446 1446

Training accuracy 1354 1305 1305 1.04 1.04

Classification Time 00:06.70 00:01.93 00:01.81 3.47 3.7

Train correctness % 93.64 % 90.25 % 90.25 % 1.04 1.04

Faces RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 576 576 576

Nr. Train Samples 9172 9172 9172

Nr. SVs or 1902 9 9 211.33 211.33
Hyperplanes

Training Time 31:53.67 00:43:59.77 47:46.43 0.43 0.67

Nr. Test Samples 4262 4262 4262

Training accuracy 4148 3926 3926 1.06 1.06

Classification Time 03:05.80 00:13.55 00:14.51 13.71 12.8

Train correctness % 97.33 % 92.12 % 92.12 % 1.06 1.06

Faces RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 576 576 576

Nr. Train Samples 9172 9172 9172

Nr. SVs or 2206 4 4 551.5 551.5
Hyperplanes

Training Time 14:55.23 10:55.70 14:21.99 1.37 1.04

Nr. Test Samples 4262 4262 4262

Training accuracy 4082 3879 3879 1.05 1.05

Classification Time 03:13.60 00:14.73 00:14.63 13.14 13.23

Train correctness % 95.78 % 91.01 % 91.01 % 1.05 1.05

Fourclass

The test and the training samples were randomly generated 1/3 of the population was
training samples

42 Experiments and Comparisons

Fourclass RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 2 2 2

Nr. Train Samples 87 87 87

Nr. SVs or 135 7 5 19.29 27
Hyperplanes

Training Time 00:00.30 00:00.09 00:00.11 3.33 2.73

Nr. Test Samples 618 618 618

Training accuracy 538 600 593 0.9 0.91

Classification Time 00:00.18 00:00.05 00:00.07 3.6 2.57

Train correctness % 87.06 % 97.09 % 95.95 % 0.9 0.91

Fourclass RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 2 2 2

Nr. Train Samples 287 287 287

Nr. SVs or 150 16 8 9.38 18.75
Hyperplanes

Training Time 00:00.10 00:00.18 00:00.11 0.56 0.91

Nr. Test Samples 618 618 618

Training accuracy 498 573 596 0.87 0.84

Classification Time 00:00.08 00:00.05 00:00.05 1.6 1.6

Train correctness % 80.58 % 92.72 % 96.44 % 0.87 0.84

Isolet

The test and the training samples were randomly generated 2/3 of the population was
testing samples

Isolet RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 617 617 617

Nr. Train Samples 155950 155950 155950

Nr. SVs or 35340 344 344 102.73 102.73
Hyperplanes

Training Time 07:13.75 18:51.98 01:04:11.38 0.38 0.11

Nr. Test Samples 1559 1559 1559

Training accuracy 1499 1472 1472 1.02 1.02

Classification Time 03:01.99 00:32.85 00:36.43 5.54 5

Train correctness % 96.15 % 94.42 % 94.42 % 1.02 1.02

5.2 Results and Comparisons 43

Isolet RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 617 617 617

Nr. Train Samples 155950 155950 155950

Nr. SVs or 22932 325 325 70.56 70.56
Hyperplanes

Training Time 12:46.70 06:14.40 52:47.43 2.05 0.24

Nr. Test Samples 1559 1559 1559

Training accuracy 1493 1496 1496 1 1

Classification Time 03:16.56 00:39.92 00:24.37 4.92 8.07

Train correctness % 95.77 % 95.96 % 95.96 % 1 1

5.2.1 USPS Data

The USPS data is a database for handwritten text recognition research [Hul94], the
training set contains 7291 examples and the test set contains 2007 examples as provided
[].

Usps RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 256 256 256

Nr. Train Samples 18063 18063 18063

Nr. SVs or 4522 102 99 44.33 45.68
Hyperplanes

Training Time 00:27.52 00:35.26 00:02:37.48 0.78 0.17

Nr. Test Samples 7291 7291 7291

Training accuracy 7030 6798 6816 1.03 1.03

Classification Time 02:07.23 00:29.75 00:17.22 4.28 7.39

Train correctness % 96.42 % 93.24 % 93.49 % 1.03 1.03

Usps RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 256 256 256

Nr. Train Samples 18063 18063 18063

Nr. SVs or 3597 49 49 73.41 73.41
Hyperplanes

Training Time 00:44.74 00:22.70 02:09.58 1.97 0.35

Nr. Test Samples 7291 7291 7291

Training accuracy 6986 6836 6836 1.02 1.02

Classification Time 01:58.59 00:19.99 00:20.07 5.93 5.91

Train correctness % 95.82 % 93.76 % 93.76 % 1.02 1.02

44 Experiments and Comparisons

Worm2 RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 231 231 231

Nr. Train Samples 493 493 493

Nr. SVs or 348 9 9 38.67 38.67
Hyperplanes

Training Time 00:05.59 00:08.57 00:17.75 0.65 0.31

Nr. Test Samples 1055 1055 1055

Training accuracy 896 813 813 1.1 1.1

Classification Time 00:13.34 00:05.16 00:05.42 2.59 2.46

Train correctness % 84.93 % 77.06 % 77.06 % 1.1 1.1

Worm2 RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 231 231 231

Nr. Train Samples 493 493 493

Nr. SVs or 346 4 4 86.5 86.5
Hyperplanes

Training Time 00:05.44 00:05.08 00:09.88 1.07 0.55

Nr. Test Samples 1055 1055 1055

Training accuracy 728 811 811 0.9 0.9

Classification Time 00:14.28 00:05.40 00:05.54 2.64 2.58

Train correctness % 69 % 76.87 % 76.87 % 0.9 0.9

Nuclei RBF Hard Hard RBF/Hard RBF/Hard
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 32 32 32

Nr. Train Samples 3372 3372 3372

Nr. SVs or 980 122 84 8.03 11.67
Hyperplanes

Training Time 00:00.98 00:03.03 00:02.99 0.32 0.33

Nr. Test Samples 65536 65536 65536

Training accuracy 64021 61480 62265 1.04 1.03

Classification Time 01:01.70 00:23.44 00:15.18 2.63 4.06

Train correctness % 97.69 % 93.81 % 95.01 % 1.04 1.03

0 6073/6887 (88.18%) 1009/5.865e+04 (1.72%)
2 498/539 (92.39%) 1010/6.5e+04 (1.554%)
4 437/565 (77.35%) 786/6.497e+04 (1.21%)
6 673/896 (75.11%) 342/6.464e+04 (0.5291%)
10 54584/56649 (96.35%) 124/8887 (1.395%)

5.2 Results and Comparisons 45

Nuclei RBF Hard Hard RBF/Hard RBF/Hard
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 32 32 32

Nr. Train Samples 3372 3372 3372

Nr. SVs or 1619 121 95 13.38 17.04
Hyperplanes

Training Time 00:00.96 00:04.59 00:03.28 0.21 0.29

Nr. Test Samples 65536 65536 65536

Training accuracy 63065 61167 61635 1.03 1.02

Classification Time 01:30.16 00:33.47 00:33.86 2.69 2.66

Train correctness % 96.23 % 93.33 % 94.05 % 1.03 1.02

Bibliography

[BCSTW00] Kristin P. Bennett, Nello Cristianini, John Shawe-Taylor, and Donghui
Wu. Enlarging the margins in perceptron decision trees. Machine Learn-

ing, 41(3):295–313, 2000.

[BS97] Chris J. C. Burges and Bernhard Schölkopf. Improving speed and accu-
racy of support vector learning machines. In M. Jordan M. Mozer and
T. Petsche, editors, Advances in Neural Information Processing Systems

9, pages 375–381. MIT Press, Cambridge, MA, 1997.

[CL05] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support
vector machines, 2005.

[Cri] David J. Crisp. A geometric interpretation of nu-svm classifiers.

[DGM01] T. Downs, K. E. Gates, and A. Masters. Exact simplification of support
vector solutions. Machine Learning, 2:293–297, 2001.

[FCL05] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the
second order information for training svm. Technical report, National
Taiwan University, 2005.

[Hul94] J. J. Hull. A database for handwritten text recognition research, 1994.

[Joa98] T. Joachims. Making large-scale support vector machine learning prac-
tical. In A. Smola B. Schölkopf, C. Burges, editor, Advances in Kernel

Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1998.

[KG02] S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO al-
gorithm for SVM classifier design. Machine Learning, 46(1-3):351–360,
2002.

[KSBM99] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements
to platt’s smo algorithm for svm classifier design, 1999.

[LHL05] Stine R. Lin H. and Auslender L., editors. Speeding Up Multi-class SVM

Evaluation by PCA and Feature Selection. 2005 SIAM Workshop, New-
port Beach, CA, 2005.

[LL03] K. Lin and C. Lin. A study on reduced support vector machines, 2003.

[LM04] Y. Lee and O. Mangasarian. Segmentation and classification of cell nuclei
in tissue slices using voxel-wise gray-scale invariants, 2004.

[NW99] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer-Verlag New York, Inc., 1999.

[OFG97] E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for
support vector machines, 1997.

[Pla99] J.C. Platt. Fast training of support vector machines using sequential
minimal optimization. In Advances in Kernel Methods: Support Vector

Learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

46 BIBLIOGRAPHY

BIBLIOGRAPHY 47

[SS02] B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press,
Cambridge, MA, USA, 2002.

[VC79] V. Vapnik and A. Cervonenkis. Theorie der Zeichenerkennung. Akademie
Verlag, Berlin, 1979.

	Introduction
	Background
	Classification
	Support Vector Machines
	Data Preprocessing
	Model Selection

	Decision Trees

	Support Vector Machines in a Decision Tree
	Theoretical Approach
	Zero Solution in SVM
	Reduction of Possibility of the Zero Solution

	Description of the Algorithm
	Decision Tree with Linear SVM Nodes
	Search of the Best Hyperplane

	Implementation Details
	Quadratic Problem
	Sequential Minimal Optimization (SMO)
	QP Speeding up Techniques

	Construction of the Decision Hyperplane
	Orthogonal Vector
	Threshold

	Heuristics Used
	Greedy Technique
	Avoiding the Zero Solution
	Change of Sign of w
	Perpendicular Hyperplanes
	Reduction of Usless Hyperplanes (Pruning)

	Experiments and Comparisons
	Description of the Datasets
	Results and Comparisons
	USPS Data

