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FREIBURG
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Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für
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Abstract

This thesis introduces associative Markov networks for thesegmentation of biological structures
in 3D volumetric data. It is built upon the basis set by the work in [4], where the segmentation and
classification of objects using voxel-wise gray scale invariants is presented. This work makes fur-
ther refinements to [4] which is of interest, because objectswhich lie close together, are sometimes
misclassified as one.
Markov chain Monte Carlo sampling is introduced and an appropriate learning algorithm is pre-
sented for solving the optimization problem.
For feature extraction, a new method is presented, that calculates fast local curvature estimation. It
shows satisfying results and is robust towards noise. A smoothing algorithm has been implemented
that removes small fractions of noise. A futher extension ofthis work supplies the possibility to
split overlapping objects at a marked position.
All implemented methods show very promising results on 3D volumetric samples of chicken em-
bryo chorioallantoic membrane (CAM) probes, recorded witha confocal laser scanning micro-
scope.

Zusammenfassung

In dieser Diplomarbeit werden assoziative Markov Netzwerke zur Segmentierung von biologis-
chen 3D Volumendaten präsentiert. Sie baut auf der Arbeit [4] auf, in der Segmentierung und
Klassifikation von Objekten mit Hilfe voxelweiser Grauwertinvarianten vorgestellt werden. Diese
Arbeit verbessert die Methoden aus [4], was von Interesse ist, da nahe beieinander liegende Ob-
jekte manchmal fälschlicherweise als eines klassifiziertwerden.
Markov-Ketten Monte Carlo Sampling sowie ein geeigneter Lernalgorithmus zur Lösung des Op-
timierungsproblems werden vorgestellt. Zur Merkmalsextration wird eine Methode vorgelegt, die
eine schnelle Schätzung der lokalen Krümmung vornimmt. Sie zeigt zufriedenstellende Ergeb-
nisse und ist robust gegenüber Rauschen. Ein Glättungsalgorithmus, der schwaches Rauschen
unterdrückt, wurde implementiert. Ein weiterer Teil dieser Arbeit erlaubt es, sich überlappende
Objekte an bestimmten Positionen voneinander zu trennen.
Alle implementierten Methoden zeigen vielvesprechende Ergebnisse auf 3D Volumendaten von
Gewebeproben aus der Chorioallantois-Membran des Hühnereis, die mit einem konfokalen Laser-
mikroskop aufgenommen wurden.
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1 Introduction

The topic of this work runs as: “segmentation of biological structures in 3D volumetric data using
associative Markov networks”. Segmentation of structuresin 3D datasets is a very difficult task.
However, a satisfying solution to that problem would bring aquite long list of benefits along with
it.
The data that has been made disposable for this work includes3D volumetric samples of chicken
embryo chorioallantoic membrane (CAM) probes, recorded with a confocal laser scanning micro-
scope.1 CAM is a suitable model for some very promising medical research areas. Especially the
developement and adaptation of new bloodvessels, the so-called Angiogenesisis in the focus of
many explorations. New perceptions within this research area would progress the understanding
of many frequent diseases, including cancer and heart ischemia.
Regarding a solid tumor for example: This is much more complex than the simple pictorial idea of
a collection of increasing tumor cells. It rather includes the tumor cells on the one and the tumor
stroma on the other hand. This stroma consists of connectivetissue and bloodvessels. Its growth
offers the tumor supply through the upleading bloodvessels. Therefore, cells building the vessel
walls are important parts of recent research. Common tumor therapy methods focus on killing
current tumor cells and trying to prevent their further propagation. This leads to a number of prob-
lems and negative side effects on chemo- or radiation therapies. Angiogenetic therapies instead are
nearly free of side effects. Especially an automated localization and classification of different cell
types in 3D tissue probes would lead to a drastical reductionof the time spent by human experts.

In [3], an algorithm is presented that uses voxel-wise gray scale invariants for segmentation and
classification of objects. This works quite well for the database and is introduced in Chapter 2, but
there are still problems left. This approach has no appropriate solution if an object of one class
touches another object of the same class. Also it is possiblethat local missclassifications happen.
The main task for this thesis is to find appropriate solutionsto these problems, using associative
Markov networks and different types of feature extraction methods.

Figure 1: Left: Slice of a 3D database entry; Right: The binary classification result from [4].

1http://anna.anatomie.uni-freiburg.de/kurz/.
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Structure of this work

Giving a comprehensive view on the structure of this work, Figure 2 is presented. It shows all
particular steps towards the aspired goals of this thesis. The next two chapters treat with the upper
bounding-box of the illustration. They review the work from[4] and exhibit problematic aspects.
Chapter 2 gives an overview on the retrieval of the data used for this work, including fluorescence
marking and confocal laser scanning microscopy, followed by a description of the database itself.
In Chapter 3, an introduction to voxel-wise gray-scale invariants is presented and explanations on
segmentation and classification methods that had been applied in [4] are given.
Afterwards, the second part of Figure 2 is explained that gives proper solutions to the mentioned
problems. Chapter 4 treats the basic functionality of associative Markov networks, Markov chain
Monte Carlo sampling and the resulting learning algorithm.The different types of feature ex-
traction methods are introduced in Chapter 5, including a new approach for fast local curvature
estimations. A toy dataset is shown that has been chosen for better illustrations of the features
calculation steps and results. The last chapter presents the conclusions and an outlook for further
research possibilities.

Figure 2: Overview on this work.
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2 Data

2.1 Data Retrieval

2.1.1 Fluorescence Marking

“Light beeing absorbed by a fluorescent substance has a smaller electro-magnetic wavelength than
the light that is emitted afterwards.”Strokes,1852

This rule describes the main idea behind the principle of fluorescence microscopy. In this case,
certain electrons of the fluorescenting molecules of the substance absorb the incoming photons
and therefore reach a higher energy-level. The electrons onthe other hand cannot hold on to that
and drop immediately back to the original energy-level. During this process, the received energy
is set free again and as one part of it, the so-called fluorescenting-light is emitted. This kind of
light has a lower energy-level than the stimulating light and thus a larger wavelength. The average
difference between stimulating and emitted lights’ wavelengths lies about 20 to 40nm. Figure 3
shows these differences for two fluorescenting substances, Cy-3 and Yo-Pro:

Figure 3: Wavelengths of two fluorescent substances [5].

Fluorescenting microscopes use exactly these properties.Through a suitable choice for the right
filter inside the microscope, the brighter stimulating light could be spread away from the weaker
fluorescenting light inside the pencil. So only those parts of the probe remain, that were previously
prepared with a certain fluorescenting marker.

Figure 4: Diagram of a fluorescenting microscope [7].
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2.1.2 Confocal Laser Scanning Microscopy

In order to avoid interferences like background noise or crosstalk and to improve focusing on
the essential parts of the probe, a laser should be used as lightsource for the microscope. The
big advantage is, that a fixed wavelength is emitted which caneasily be focused with also higher
resolution. By using several laser-lightsources, one single probe could be provided with multiple
fluorescenting substances, and afterwards recorded into different channels. The structure of such a
confocal laser scanning microscope (LSM) is illustrated inFigure 5:

Figure 5: Confocal laser scanning microscope [5].

One part of the microscope is the so-called confocal pinhole. This makes it possible to blind out
the outerfocal object informations and its diameter determines the thickness of the optical section.
The figure shows, that only those paths, that lie in focus can pass the pinhole. Those marked red or
blue are outside the focal plane.
The probe can now easily be scanned slice by slice with a certain z-resolution and three-dimensional
datasets of the fluorescent marked structures are generated. The quality of the data depends there-
fore on the distance between two optical sections.
But there is also one problem left. The z-resolution is stillnot as good as the resolution achieved
in x- and y-direction.
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2.2 Cell Database

The database consists of 3D volumetric data samples of chicken embryo chorioallantoic membrane
(CAM) probes. CAM is a common model for angiogenesis research at cellular level. It gives excel-
lent conditions for the exploration of angiogenesis mechanisms, growth factors or their receptors.
The data samples had been prepared with YoPro-1 and with Cy3 or Alexa546 fluorescent markers.
After that, two different channels with YoPro(509nm) and Cy3/Alexa546(570nm) were recorded
using a confocal laser scanning microscope (LSM) as described above.

Figure 6: A LSM recorded erythrocyte nucleus marked with YoPro. Left: Pseudo coloration; Right:
Gray scale.

Figure 7: YoPro channel of the data, showing cross section ofa capillary and a 3D reconstruction
of the different cell types.

Figure 8: Slice of a sample 3D database entry (erythrocyte).Left: YoPro stained channel; Center:
SNAAlexa stained channel; Right: Ground truth segmentation and label.
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3 State of the Art

Having a look on Figure 2, this chapter introduces the secondpart of the upper bounding-box.
All methods that are explained as state of the art have already been applied in [4]. First of all,
voxel-wise gray-scale invariant features are presented that have been extracted from the database
introduced in Chapter 2. After that, segmentation and classification is illustrated, followed by the
results of these applications. The last section of this chapter exhibits the problems that are still left
and which should by solved during this work.

3.1 Voxel-Wise Gray Scale Invariants

Feature-based methods, combined with learning algorithmshave been found out to be a successful
tool for image analysis also within biomedical research problems. This is true especially for those
applications that aid the human experts fulfilling the final image analysing steps. One big challenge
for computer aided systems lies in the group of classification problems. In the following, voxel-
wise gray scale invariant features are explained that show very good results for classification tasks
with 3D volumetric data samples in medical and biological applications.
The first step towards extracting an adequate feature for a certain problem is to find some function
T(Xi) that maps all input signalsXi belonging to the same semantic class onto one single point
x̃i inside the given feature space. Considering a concrete number of possible variations like 3D
rotations drastically reduces the amount of training examples for the later classification step. All
selected transformation possibibilties are put together into one transformation groupG. After all
elementsg of G are known, the feature functionT can be constructed. The following equation
illustrates the invariance ofT towards all transformation group entriesg:

T(gXi) = x̃i ,∀g ∈ G. (1)

Voxel-wise gray scale invariant features are generated foreach single voxel in a given data volume
by calculating Haar-intergration over the whole transformation group, meaning over all degrees of
freedom ofG:

T(X) :=
∫

G

(

gX
)

dg. (2)

To improve the often weak separability properties of features, non-linear kernel functions should
be embedded into the integral. This can be achieved for an n-dimensional datasetX in the following
way:

T[ f ](X) :=
∫

G
f
(

gX
)

dg, (3)

where f denotes a nonlinear kernel function andgX the transformed n-dimensional dataset.

The kernel functionf (X) can be rewritten asf
(

X(x1),X(x2),X(x3), · · ·
)

if it only depends on a fixed
number of points of the volume, whereX(xi) describes the gray value of theith position. Therefore,
we can now rewrite equation (3) as:

T[ f ](X) :=
∫

G
f
(

X(sg(x1)),X(sg(x2)),X(sg(x3)), · · ·
)

dg, (4)

where the transformation of the kernel pointxi is given bysg(xi).
In general, kernel functions operate on scalar values. Mostimaging devices return intensity values
interpreted as gray-values, kernels are often referred as gray-scale kernel functions.
In order to achieve applicable group-integral features forlarge 3D datasets, a fast calculation
method is needed.
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The so-called seperable two-point gray-scale kernels offer a possible solution to that problem for
Euclidean transformations by using fast convolution via FFT. They consist of the following form:

f (X) = fa
(

X(0)
)

· fb
(

X(q)
)

(5)

where fa, fb are simple nonlinear functions transforming the gray values, for example:f (x) =
x2, x3, · · · , √x etc.;q is representing the span of the kernel functionf .
One major drawback of the voxel-wise calculation with two-point kernel functions is the fact that
two-point kernels are not only invariant towards rotation,but also to any random permutation of
neighboring gray-values.
Figure 9 illustrates this dilemma. It is rather necessary torestrict invariance properties of features
to transformations which preserve the intrinsic information of the classes.

Figure 9: Local feature using the two-point kernel function(left) and voxel-wise features using
three-point kernel functions (right) [8].

The solution to that problem is also presented in Figure 9. Itis achieved by adding a third point to
the support of the two-point kernel functions:

f (X) = fa
(

X(0)
)

· fb
(

X(q2)
)

· fc
(

X(q3)
)

(6)

Like for two-point kernels, the first point is located at the rotation center. These three-point-kernels
are not sensitive to such permutations, but unlike the two-point variant, they cannot be calculated
just in form of one simple convolution. However, it is possible to approximate them by an expan-
sion in Spherical Harmonics, which leads to a series of simple convolutions, where every truncated
evaluation of this series still fulfills the invariance criterion.

Figure 10: Parameterization of the 3D rotation withλ = (ϕ1, ϕ2, ϕ3).
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Figure 11 briefly illustrates the computation instructionsfor the three-point kernel-functions. More
detailed informations about designing features for 3D volumetric data in biomedical image analysis
can be found in [8].

·

fc(X)

c

·

fb(X)

fa(X)

+

·

·

c d

c

c

c

c d

c d

c d

·

Convolution of 
each channel 
with Gaussian  
for multi−scale 
approach

Voxel−wise 
nonlinear gray 
value 
transformation and 
combination of 
different channels

Sensing the gray 
values touched by 
the second and third 
kernel point using 
"spherical 
harmonics series" 
expansion

Combination 
of results for 
the three 
kernel points

Volumetric 
multi−
channel 
data

Invariants
for each 
voxel

Convolution in 
cartesian coordinates

Convolution in 
spherical coordinates

c

d

Figure 11: Computation of three-point-kernelsf (X) = fa
(

X(0)
)

· fb
(

X(q2)
)

· fc
(

X(q3)
)

on multi-
channel 3D volumetric data. For each kernel function this scheme simultaniously calculates the
features for all voxels.
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3.2 Segmentation and Classification

In general, the order for achieving a classified object out ofa dataset would be segmentation,
feature extraction, followed by classification. But this procedure has one major drawback for this
approach. Segmentation of complex objects from datasets with structured background as it is given
here, would require higher semantic a priori knowledge about the objects in order to identify the
regions of interest. This would lead to very specialized model driven solutions, which cannot easily
be adopted to new data or other structures.
To overcome this problem, a self-learning algorithm is applied, merging segmentation and classi-
fication into one single step inside the processing pipeline. The first step is now voxel-wise feature
extraction, followed by feature-based segmentation via voxel-wise classification.
After the voxel-wise extraction of suitable feature-vectors using two- and three-point-kernels, a
support-vector machine model is trained in an interactive procedure over several iterations. There-
fore, a small number of training samples (voxels) for each class is manually selected by a human
expert. At last, all voxels are classified against the previously trained model. New training samples
can be added in each iteration to improve classification accuracy until a “stable” state is reached.
Finally, the labeled voxels could be combined to closed objects using connected component label-
ing.

xy-slice

yz-slice

Figure 12: The interactive training process - 1st row: 3D reconstruction of the original data, 311
training samples set for the first iteration of training. 2ndline - from left to right: Section of xy-
slice of original data as indicated in the 3D reconstruction, result after the first iteration (56 support
vectors in model), result after 2nd iteration, result afterthe 3rd iteration (642 training samples, 129
support vectors in model). 3rd line: Section of yz-slice of original data, results after 1st to 3rd
iteration in yz-slice.
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3.3 Results

The experiments had been executed using the leave-one-out method. This means that all feature-
vectors of one dataset-entry were taken away before training the SVM with the other entries. After
that, the one that had been taken away was classified against them.

cell type recognition-rate/voxel recognition-rate/cell

erythrocytes 90,4% 95,3%
endothelial cells 81,2% 84,6%

fibroblasts 78,3% 79,8%
background 94,1% -

Table 1: Results of the method introduced in [4].

3.4 Problems

The algorithm introduced above is able to automatically detect previously learned objects. Even
low fluorescent activity and strong intracellular structures do not cause false or partial segmenta-
tion results.
One problem has already been mentioned in Chapter 2.1.2. during the explanation of LSMs. The
low z-resolution of the 3D datasets can cause missclassifications at object borders and noise. An-
other drawback arises with the rather simple approach of connected component labeling, as it is
not capable of suppressing small fractions of noise. It is also not possible to split touching objects
of the same class with this procedure.

Figure 13: Left: Classification confidence; Right: Binary classified object.

Figure 13 illustrates the problem caused by two objects thatare lying too close to each other. After
the classification is fulfilled, they would be counted as one single object inside the dataset. Both
images on the left side of the illustration show the distances from the seperating hyperplane inside
the support vector machine used for classification. This canbe interpreted as the confidence in
selecting the labeling value. The blue regions have a weakercertainty than the red ones.
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One can assume that choosing a threshold would be a good solution to the problem of seperating
touching objects. The problematic areas are in fact of weak confidence. The picture illustrates,
that there are also regions inside the objects that are marked with blue. It becomes clear that this
approach would lead to undesired holes inside the objects.
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4 Associative Markov Networks

With this chapter, the second part of Figure 2 is reached. It starts with a describtion of associa-
tive Markov networks. Markov networks are undirected graphical models that can appropriately
describe all kinds of dependencies between different variables. The specialization to associative
Markov networks is used for this work to give a suitable environment for applying optimized fea-
ture extraction methods. In this chapter, Markov networks are explained, followed by a describtion
of Markov Chain Monte Carlo Methods (MCMCM). These methods,are a class of algorithms for
sampling from probability distributions based on constructing a Markov chain.

4.1 Markov Networks

In the following, Markov networks over discrete variablesY = {Y1, · · · ,YN} are introduced. Each
variable represents one single object that could be classified to one ofK possible labels, so that:
Yi ∈ {1, · · · ,K}. With N different objects, a markov network forY defines a joint distribution over
{1, · · · ,K}N. y describes one possible assignment of values toY. As already mentioned, Markov
networks (or random fields MRFs) are defining an undirected graphG(N,E). The set of nodesN
represents the object-variables. These are arranged in different groups, the so-called cliques, which
form fully connected subgraphs. Two nodesi, j are connected if there is an edge (i, j) ∈ E from
nodei to node j. Some possible neighborhoods for 2D and 3D are illustrated in Figure 14. Other
variants are also considerable.

Figure 14: 4- and 8-adjacent pixels a) and b); 6-, 18- and 26-adjacent voxels c), d) and e).

To make it more evident, only pairwise Markov networks are regarded, meaning that all cliques
consist of two nodes and one edge between them. Nodes and edges are associated with so-called
potentialsφi(Yi) andφi j (Yi ,Yj), with: i j ∈ E(i < j). These potentials attache a non-negative value
to each node, represented by the variableYi, respectively to each edge, represented by a pair of
variablesYi ,Yj. Litterally speaking, the potentials reflect how well the features fit to the labels.
The joint distribution specified by the network can now be calculated as follows:

Pφ(y) =
1
Z

N
∏

i=1

φi(yi)
∏

(i j )∈E
φ(yi , yj), (7)

whereZ =
∑

y′
∏N

i=1 φi(y′i )
∏

i j∈E φi j (y′i , y
′
j) is the partition function. The basic issue, the maximum

a-posteriori (MAP) inference problem in a Markov network isto find:

arg maxyPφ(y). (8)

In general, the node and edge potentials are functions of thefeatures of the objectsxi ∈ ℜdn and
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features of the relationships between themxi j ∈ ℜde. We define the number of node featuresdn

and the number of edge featuresde.
In order to formulate the dependence of the potentials on thefeatures in a way, that is likely to be
simple, a log-linear combination of the feature-vector with a label-specific row vector is applied:

logφi(yi) =
K
∑

k=1

(wk
n · xi)y

k
i , for nodes and

logφi j (yi , yj) =
K
∑

k,l=1

(wk,l
e · xi j )y

k
i y

l
j , for edges, (9)

wk
n andwk,l

e are the label-specific row vectors of sizedn andde, that are assigning weights to the
feature vectors. Coming back toy, described above as possible assignment of values toY. y is
now represented as a set ofK · N indicatorsyk

i , whereyk
i = I (yi = k). This leads to the following

equation:

logPw(y|x) =
N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +
∑

(i j )∈E

K
∑

k,l=1

(wk,l
e · xi j )y

k
i y

l
j − logZw(x), (10)

defining the log of the conditional probability ofPw. The partition functionZ only depends onw
andx, but not on the labelsy.
Replaced by a more compact notation, equation (10) can be rewritten as:

logPw(y|x) = wXy− logZw(x), (11)

wherew = (wn,we) andy = (yn, ye). The matrixX consists of the node feature vectorsxi, the edge
feature vectorsxi j , both repeated multiple times. At least it is appropriatly padded with zeros.
Finally, the MAP assignement is now given by:

arg maxylogPw(y|x), (12)

which simply corresponds to maximizing the linear functionwXy.

4.2 Markov Chain Monte Carlo Sampling

The concept ofsamplingstands for: “randomly select one element out of many”. The sets we
have to treat with are often way too big for efficiently applying trivial sampling methods that are
producing all entries and then randomly select one element.Therefore, using Markov chains for
sampling increases the applicability. A sequence (X1, ...,Xn) of random variablesXi, taking values
in X is called a Markov chain, if it fulfills the Markov property given as:

P(Xn = xn|X1 = x1, ...,Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1),∀n ≥ 1 andx1, ..., xn ∈ X. (13)

This phenomenon is also called thememoryless property, because the conditional distribution of
Xn depends only onXn−1. After all, the random selection of elements from one sampling step to
another can also be improved if the chance for “better” elements becomes more and more probable.

An overview of Finite Random Fields is presented to elementary introduce the basic ideas behind
sampling from a given target distribution.
Gibbs-Sampling is a special class of MCMC algorithms, whichcreates a sequence of samples from
the probability distributions of two or more random variables in order to approximate the unknown
joint distribution.
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4.2.1 Finite Random Fields

A finite index setS = {1, 2, ...,N} × {1, 2, ...,N} is the set ofN2 pixels, called sites in the 2D case.
For every sites ∈ S there is a finite spaceXs of statesxs. The neighborhoud�(s) for a fixed sites is
defined as the number of 4-adjacent pixels tos. The space of configurationsx = (xs)s∈S is defined:
X =

∏

s∈S Xs. Probability measures or distributionsP on X can be represented asP = (P(x))x∈X
such thatP(x) ≥ 0 and

∑

x∈X P(x) = 1. Having a subsetE ⊂ X, the probability ofE is given by:
P(E) =

∑

x∈E P(x).
If P is a positive probability measure onX, thenP is arandom field.
The random fieldP is aMarkov fieldif for all x ∈ X,

P(X(s) = xs|X(S \ s) = xS\s) = P(X(s) = xs|X(�(s)) = x�(s)). (14)

A set of random variablesX(S) is said to ba a Gibbs random field (GRF) onS, if and only if its
configuration obey a Gibbs distribution. This is defined as:

P(X) =
1
Z

exp















−
∑

c∈C
φc(xc)















, with Z =
∑

x

exp















−
∑

c∈C
φc(xc)















. (15)

One theorem that describes the equivalence of these two types of properties is the so-calledHammersley-
Clifford theorem. It states that a random field is a MRF onS with respect to�, if and only if it is
a GRF onS with respect toN.

4.2.2 Ising Model

Figure 15: Ising model with two types of sites: up (+1) and down (-1).

The Ising model has been proposed by Ernst Ising in his doctoral thesis. It is a model for explaining
magnetic behaviour, considering an idealised system of interacting particles. Figure 15 shows such
a system on a regular planar grid. Each particlexi interacts only with its four nearest neighbors
(see Figure 14). To compute the total energy of a system, all spin orientations are needed. The
probability of any particular configurationc is:

1
Z

exp

{

−E(c)
kT

}

,with E = −J
∑

xi∼x j

xi xj andZ =
∑

c∈C
exp

{

−E(c)
kT

}

, (16)

where xi ∼ xj are adjacent particles,C is the set of possible configurations,k is Boltzmann‘s
constant, T is the absolute temperature in K andE(c) is the energy of configurationc ∈ C. The
constantJ, when positive, decreases the total energy for an agreementbetweenxi andxj. At low
temperatures, the most likely states are those with lowest energy.
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In our case, we consider binary imagesI , having two kinds of pixel-coverage, black and white. It
is an obvious suggestion that the probability for pixelxi of beeing white increases with more white
adjacent pixels then black ones.

P(xi = w|x−i) =
exp(βnw

i )

exp(βnw
i ) + exp(βnb

i )
, (17)

wherex−i = {xj : j ∈ I \ i}, nw
i =
∑

j∼i Ixj=w the number of white adjacent pixels ofxi and:

φc(xc) =

{−β, both pixel in clique C have the same color
0, otherwise

,

Considering equation (18), this leads to:

P(x) = exp















β
∑

i∼ j

I (xi)I (xj)















/Z(β), with: Z(β) =
∑

x

exp















β
∑

i∼ j

I (xi)I (xj)















. (18)

4.2.3 Gibbs Sampling

Sampling from a Gibbs fieldP(x) = 1
Zexp(−E(x)) with E(x) = −β∑i∼ j I (xi)I (xj) for the Ising-

andE(x) = β
∑

i∼ j(I (xi) − I (xj))2 for the Potts model (see Chapter 4.2.5), is the basis of minimum
mean squares estimation, since the estimate is the mean of samples. Table 2 shows the pseudo-code
notation of the Gibbs sampler for the Ising model:

Gibbs-Sampler for the Ising model
choosex = w, x = b or all pixels randomly;
for t = 1 : niter

for j = 1 : n
i = adjacent pixel toj;
p = exp(βnw

i )/exp(βnw
i ) + exp(βnb

i );
if rand(1) < p

xi = b;
else

xi = w;
end

end
end

Table 2: Gibbs sampler for the Ising model;niter denotes the number of iterations andn the absolute
number of pixels.

Figure 16 shows an example image for the Ising model.
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(a) (b) (c) (d)

Figure 16: (a) original image; (b) after 500,000 (c) 5,000,000 steps and (d) after 300,000. Panels
(b) and (c) haveβ = 0.85, while panel (d) hasβ = 0.25; [11].

4.2.4 Metropolis Algorithm

Another common sampling method is the Metropolis algorithm. This would have the following
steps:

Metropolis-Sampler for the Ising model
for t = 1 : niter

for j = 1 : n
i = adjacent pixel toj;
x′i = 1− xi;
nagree= β

∑

j∼i I (xi == xj);
ndisagree= β

∑

j∼i I (x′i = xj);
p = exp(min{0, ndisagree− nagree});
if rand(1) < p

xi = x′i ;
end

end
end

Table 3: Metropolis sampler for the Ising model;niter denotes the number of iterations andn the
absolute number of pixels.

Figure 17 shows an example for the Ising model via Metropolisalgorithm.

4.2.5 Potts Model

The Potts model is a generalization of the Ising model for more than two colors withxi ∈ {0, 1, 2, ..., nc−
1}. The energy function for the Potts model is given as:

E(x) = β
∑

i∼ j

(I (xi) − I (xj))
2, with: β > 0. (19)

If I (xi) = ±1 then−I (xi)I (xj) = (I (xi) − I (xj))2/2− 1 and therefore equation 19 is compatibel with
the binary Ising model (see equation 18).
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(a) (b) (c) (d)

Figure 17: (a) Random Start; (b) after 100,000 (c) 500,000 (d) 5,000,000 steps of Metropolis
algorithm with inverse temperatureβ = 0.85; [11].

4.3 Associative Markov Networks

Associative Markov networks(AMNs) are a subclass of pairwise Markov networks that have an
important refinement. They do model those problems, where related variables tend to have the
same label. Furthermore, AMNs allow different labels to have different attraction strengths. This is
represented in the following constraints:wk,l

e = 0 for k , l andwk,k
e ≥ 0, which results inφ(k, l) = 1

for k , l andφ(k, k) = λk
i j , whereλk

i j ≥ 1. This makes AMNs a generalization of the previously
explained Potts model. The basic idea behind these conditions is, that edges between nodes with
different labels should be penalized over edges between equallylabeled nodes.
The linear programming relaxation of the MAP problem for these networks can be written as:

max
N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +
∑

(i j )∈E

K
∑

k=1

(wk,k
e · xi j )y

k
i j (20)

so that: yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
i j ≤ yk

i ,∀i, k; yk
i j ≤ yk

j , ∀(i j ) ∈ E, k.

4.4 Learning with Associative Markov Networks

The starting-point for the learning phase is having one single feature vectorx. It includes allxi,
where eachxi consists of non-zero values only, representing all features to the belonging datapoint
pi. The MAP problem formulates this task as finding the set of labelsy that maximizes the log of
the conditional probabilitylogPw(y|x).
The main task for the learning phase is to find the weightsw∗, such that:

w∗ = arg maxwlogPw(ŷ|x), (21)

whereŷ defines the vector of correct labels. The inference is then denoted by:

y∗ = arg maxylogPw∗(y|x). (22)

An alternative method introduced in [2] is to maximize the margin of confidence in the true label
assignment ˆy over any other assignmenty , ŷ, represented by:

logPw(ŷ|x) − logPw(y|x) = wX(ŷ− y). (23)

The advantage of this maximum margin optimization is, that the termZw cancels out and the
maximization can be done efficiently.
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5 Feature Extraction

This chapter presents the different types of feature extraction methods that have been implemented
for this work. In Figure 2, which gives an overview on the structure of this work, the inner part of
the second bounding-box is regarded, inlcuding all featureextraction methods that are embedded
into the AMN (see Chapter 4).
Problems like splitting touching objects of the same class have to be solved. Therefore, a new
approach of curvature estimation is explained.

5.1 Smoothing Algorithm

As described in Chapter 2, connected component labeling is applied to the data that has been
calculated using voxel-wise gray-scale invariants. Figure number 18(left) shows an example. In
order to close improper holes inside the objects or to betterapproximate the objects‘ appearance
towards cell shapes, a smoothing algorithm is applied.
The actual implementation of the algorithm follows the theory of the Ising model, introduced in
the previous chapter. Figure 18(right) and 19(right) show an example result of the 2D algorithm,
applied to one slice and of the 3D variant, applied to the whole datavolume.
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Figure 18: Smoothing algorithm in 2D; Left: Original data; Right: Smoothed data.
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Figure 19: Smoothing algorithm in 3D; Left: Slice of the original data-volume; Right: Slice of the
smoothed data.
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5.2 Toy Data

In order to test the implemented algorithms and to show the results of each calculation step more
evidently, a representative set of toy examples is needed for 2D and 3D data. One requirement for
a toy example is a proper representation of a typical cell-couple that needs to be divorced during
the calculations. This is realized by the example shown in Figure 20.
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Figure 20: Toy-Example.

To achieve better knowledge about the effects of the different features, some more datasets are
used in 2D and 3D. These sets are from the Kimia silhouette database2 and the Princeton Shape
Benchmark3.
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Figure 21: 2D-Toy-Dataset.

Figure 22: 3D-Toy-Dataset.

2http:://www.lems.brown.edu/vision/software/index.html
3http://shape.cs.princeton.edu/benchmark/
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5.3 Fast Local Curvature Estimation

Local curvature (of a surface) is a valuable rotational invariant feature for many computer vision
and pattern recognition problems in 3D. For example, it has been shown in [12], that it is possi-
ble to reconstruct (up to a constant factor) an object surface from the principle curvatures of each
surface point. This makes curvature a useful shape descriptor which can be applied i.e. for object
recognition or segmentation tasks.

For a continuous setting inR2, where the object surface is represented by a planar curveC, and
given a suitable parameterisation ofC, k can easily be calculated via derivation. So curvature ap-
pears to be a measure, that is very easy to handle. However, taking a look at surfaces inR3 shows
that there is no canonical definition of curvature at all. Several different measures have been in-
troduced in literature, most of them relying on the so calledprincipal curvatures kmax andkmin.
Following the definition inR2, kmax andkmin are computed as the extreme values of the 2D curva-
tures which are embedded in all possible planes spanned by the normal vector and the tangents in
the evaluation point of the surface. The most common measures are themean curvature, given as
H := (kmax+ kmin)/2 and theGaussian curvature, K := kmax · kmin.
Given the previous definitions, curvature is easy to handle in continuous settings, but for discrete
gray-scale images and volume data, things turn out to be a lotmore difficult.

First of all, an overview on curvature measures is given. Starting with a planar continuous setting,
for a given contour parameterized asS(t) = (x(t), y(t)), curvature is essentially defined via the
second order derivatives with respect tot:

k :=
∣

∣

∣

∣

∣

x′y′′ − y′x′′

(x′2 + y′2)3/2

∣

∣

∣

∣

∣

(24)

This general differentiation approach is well suited for any continuous setting, but as we stressed
before, in the discrete case this usually suffers from the fact that contour reconstructions from dis-
crete data is always nothing more than an approximation of the original contour, which additionally
suffers under noise.
In order to overcome these problems, we consider a second, rather intuitive definition of curvature:
for a plane curveS, the curvature at a given pointp ∈ S is defined as the reciprocal of the radius
of an osculating circle (see Figure 23).

p
t

n

r

S

C

Figure 23: For a continuous setting inR2, local curvaturek at a given pointp is defined ask = 1/r.
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This intuition is backed by some rather simple facts: considering a circleC with radiusr param-
eterized in arc length.C is given asC = reit/r . Applying the differential approach, we see that
the curvature is just 1/r, which is equal to the absolute value of the 2nd derivative. This relation,
along with the properties of (24) shows, that the second derivative is the dominant factor in local
curvature estimation. Now, for a given pointp on some contourS, which is also parameterized in
arc length, we consider osculating circles atp. With full osculation atp, we can neglect the first
derivatives when expanding the Taylor series:

C(t) = 1/rt2 +O(t3) (25)

S(t) = S′′(0)t2 +O(t3) (26)

Since the curvature for circles is given, we now estimate theosculation in order to find the circle,
which delivers the best local curvature approximation and choose it’s curvature as local approxi-
mation atp:

‖S(t) −C(t)‖ ≤ ‖(S′′(0)− 1/r)‖t2 +O(t3) (27)

Starting from this relation, we can estimate the local curvature atp by the radiusr which minimizes
(27), neglecting higher order derivatives. The expected error of this approximation is bounded in
terms ofO(t3).
Following our approach, we have to find the appropriate circle C which minimizes (27). By defi-
nition, C has it’s center on the normaln at p (see fig. 23) reducing the optimization problem to a
simple convex search overr. All we need is an appropriate osculation measure.
For our discrete problems, we can find such a measure which is very robust and easy to implement:
we simply integrate over the point-wise distance of the circle surface with the object contour (see
fig. 24).

∫

t

δ(‖C(t) − S(t)‖)dt (28)

If we chooseC not to be binary, but real valued and normalized to one, we candirectly compare
circles of different radii and choose the argmax as best fit.

i

Figure 24: Schema of the integration over the point-wise distance of the circle surface with the
object contour.

5.3.1 Fast Integral Curvature Measure

For the case of a binary 2D imageI , discrete images of circlesCr (see Figure 25) with radiusr are
computed previously and normalized to one (

∑

Cr = 1). Then the algorithm follows a multi scale
approach, which is applied using different radii separately.
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Figure 25: Circle imageC50.

First, the input imageI is convolved withCr . This convolution is equal to a point-wise integration
over a spherical neighborhood of the respective radius.

I Ir = I ∗Cr

So the resulting imageI Ir stores the integration results for all possible center points:
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Figure 26: Convolution result of the toy-example. Left:I Ir ; Center:I Ir+; Right: I Ir−.

In the next steps, a copyI ′Ir of I Ir is made, where those entries over a certain thresholdt are set to
one and all others are set to zero (see Figure 27).
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Figure 27: Normalizing mask for the convolution result of the toy-example. Left:I ′Ir ; Center:I ′Ir+;
Right: I ′Ir−.
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Then I Ir is split in a convex (I Ir+) and concave (I Ir−) part, depending on whether the center point
lies within the original object or not.I Ir− is weighted with−1 to denote concavity. Afterwards,
the integration results are back-projected onto possible points of the contour which again can be
achieved via fast convolution:

IPr+ = (I Ir+ ∗Cr) · IC

IPr− = (I Ir− ∗Cr) · IC

where∗ denotes a convolution and· a point-wise multiplication. Figure 28 shows both back-
projection results.
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Figure 28: Back-projection result of the toy-example.

At this point, it becomes more clear, whyI ′Ir has been calculated before. In Figure 29,IPr+ andIPr−
is masked with the contour of the input imageCI . Here, it can easily be seen that without further
normalization the results would not be satisfying.
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Figure 29: Result of the toy-example without normalization.
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Therefore, the normalized convolution-results are also back-projected:

I ′Pr+ = (I ′Ir+ ∗Cr) · IC

I ′Pr− = (I ′Ir− ∗Cr) · IC

This results in the following Figure:
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Figure 30: Normalizing mask for the back-projection resultof the toy-example. Left:I ′Pr+; Right:
I ′Pr−.

After normalizingIPr+ with I ′Pr+ andIPr− with I ′Pr− the following results are achieved:
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Figure 31: Normalized back-projection result of the toy-example.

In a final step, the convex and concave parts are reassembled and restricted to the original contour.
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Figure 32: Normalized result of the toy-example with original scaling.
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Figure 33: Normalized result of the toy-example with different scaling.
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Figure 34: Toy-dataset results.
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Applying this curvature estimation for multiple scales, and choosing the curvature given by the
optimal radius in terms of the maximal back-projection value at all contour points, leads to very
reliable curvature estimates. Some representative results of the 2D binary toy dataset are shown in
Figure 34.

5.3.2 Noise Robustness

A key property for curvature estimation features is it’s robustness towards noise. The following
two Figures show the results of this approache, applied to the toy-example with 50% and 95% of
salt- & pepper noise.
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Figure 35: Result of the toy-example with 50% salt & pepper noise.
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Figure 36: Result of the toy-example with 95% salt & pepper noise.

From a theoretic point of view, it is evident that integration should be far more robust towards
noise than differentiation. Figure 37 illustrates the behaviour of this approach under noise. It can
be seen, that the results are quite tractable even if 90% of salt- & pepper noise is applied to the
toy-example.
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Figure 37: Result of the toy-example with salt & pepper noisefrom 0 to 100%.

5.3.3 3D binary volume data

The extension from the binary case in 2D to 3D is straight forward: instead of circles, we sim-
ply apply spheres in the convolution algorithm. Then Gaussian or mean curvature is computed by
weighting the curvature estimate by the integration results of the different spheres.

Figure 38: Result of the 3D toy-dataset.
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Figure 39: Result of the 3D toy-dataset.

5.3.4 Cell Database

At last, the local curvature estimation method is applied tothe cell database introduced in Chapter
2. Figure 40 shows an example on the left and the calculated curvature result on the right.
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Figure 40: Results of the local curvature estimation on a cell dataset.

At this point, another problem appears. It is true, that the significant areas, where two cells overlap,
are detected. But furthermore, those regions, where two singular objects are lying close to each
other are also marked as having high curvatures. This problem arises exactly at those areas, where
the distance between the objects is nearly equal to the chosen radius of the convolution sphere
(circle) Cr . Even with a multi-scale approach, using different radii, this problem could not be
handled satisfyingly.
Taking a look at Figure 40, a possible solution arises. Thoseareas, where the curvature estimation
failed are concave object regions, contrary to those areas of overlapping cell-objects.
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5.4 Convexity Calculations

It is easy to achieve the measure of convexity for the case of 2D binary data. For every pixelp1

on the contour of an object, convexity (concavity) is calculated by detecting two corresponding
pixels p2, p3 that lie in a previously determined distance in opposite directions on the contour. A
3x3 matrixM is formed from the three pixel coordinate vectors, by appending the unity vector.

M =





















x2 y2 1
x1 y1 1
x3 y3 1





















The determinant of this matrix is, when positive, an appropriate measure for the degree of convex-
ity, or, when negative, the concavity of the contour.

Figure 41: Convexity calculation.

Figure 42 shows some results of the convexity calculations applied to the 2D toy-dataset.
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Figure 42: Toy-dataset results.
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5.5 Splitting Algorithm

Finally, an algorithm is needed, that splits an object at a marked position. The first step is calculat-
ing the distance transform of the binary objectP.

〈P〉 = {p : p ∈ � ∧ P(p) = 1} = P−1(1), and

〈P〉 = {p : p ∈ � ∧ P(p) = 0} = P−1(0),

are proper subsets of� where� is the grid on whichP is defined. Thedα distance transformT of
P associates with every pixelp of 〈P〉 thedα distance from p to〈P〉. Here,dα is the 4-adjacent grid
point metric, defined as:

d4(p, q) = |x1 − x2| + |y1 − y2|, with p, q ∈ �, p = (x1, y1), q = (x2, y2).

Figure 44(a) shows the distance transform of the toy-example(see Figure 20).
After that, the gradient image ofT is calcutated. This is defined for a function of two variables
F(x, y) as:

∇F =
δF
δx
+
δF
δy
.

Literally speaking, the gradient image ofF is a collection of vectors that are pointing in the direc-
tion of increasing values ofF:
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Figure 43: Example image for the gradient calculations.

For each pixelp that has been marked to be a point where two cells are overlapping and need
to be divorced, the gradient vector of p is pointing in the right splitting direction. The algorithm
follows the directions of the gradient vectors pixel by pixel until a local maximum of the distance
transform of the current object is reached. After that, the negative vector directions are followed.
In each step, the pixel is set to the background value.
The marked positions (see Figure 44(b)) are initialising the splitting algorithm as described above.
The result is presented in Figure 44(c).
These results can be optically improved by applying the smoothing algorithm once more.
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Figure 44: The different steps of the splitting algorithm. (a): Distance transform; (b): Marked po-
sitions; (c): Divided object.

5.6 Final Results

Finally, the fast local curvature estimation is applied again on the complete cell dataset. After that,
convexity calculations are done. Because of the lower z-resolution of the confocal laser scanning
results, it turned out to be sufficient to do so for each x/y-slice of the data volume. This is done
for those pixels only, where the results of the curvature estimation exceeds a certain threshold.
Therefore, the procedure becomes much faster then calculating convexity for all dataset entries.
Afterwards, only the concave object positions remain. Here, it is also possible to choose another
threshold for the degree of concavity. At this point, all positions, where two different cells are
overlapping are localized and the splitting algorithm can be applied. The smoothing algorithm that
has been used at the beginning is run again on the data volume.
The results of each single processing step are illustrated in Figure 45.
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Figure 45: Results of the cell dataset.
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6 Conclusions

In this work, all basics were formed to use associative Markov networks for the segmentation of
biological structures in 3D volumetric data. A random Markov field was constructed, including
different types of feature extraction methods. A new feature forlocal curvature estimation in 3D
volumetric data was found, which is invariant under monotonic gray-scale changes and has also
shown to be robust towards noise. This feature can be computed for all positions in the volume at
once using a non-iterative and thus very efficient algorithm. Also it has been shown that this new
method is capable of detecting regions, where two adjacent objects lie so close to each other that
established methods would classify them as one. It works well for different types of object shapes
in 2D and 3D space. Correct separation has been supplied in this work as well.
The next step would be a generalization on multiple datasets, using the proposed learning algorithm
for AMNs. Markov chain Monte Carlo methods were introduced to use sampling from probabil-
ity distributions based on the construction of Markov chains. It has been shown, that with those
methods a solution for the optimization problem is quite attainable.
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A Softwaretools

Blitz++

Blitz++ is a C++ class library for scientific computing. It uses template techniques to achieve high
performance. Blitz++ provides dense arrays and vectors, random number generators, and small
vectors, which are suitable for discrete image processing.4

Matlab

Matlab is a high-level technical computing language and interactive environment for algorithm
development, data visualization, data analysis, and numeric computation.5

NetCDF

The Unidata network Common Data Form (netCDF) is a platform independent data format. It
is suitable for a homogeneous representation of scientific data. The belonging interface and the
implementation are freely distributed. NetCDF is optimized for n-dimensional array-structured
data. It is also appropreate for saving images and volume data. These can been saved in addition
to any other informations about the data. The current netCDFsoftware provides C, Fortran-77,
Fortran-90, and C++ interfaces for applications and data.6

ParaView

ParaView is an open-source, multi-platform visualizationapplication. It is designed for large data
sets and supports distributed computation models.7

B Abbreviations

AMN Associative Markov Networks
CAM Chorioallantoic Membrane Probes
FFT Fast Fourier Transformation
GRF Gibbs Random Field
LSM Laser Scanning Microscope
MAP Maximum A-Posteriori

MCMC Markov Chain Monte Carlo
MCMCM Markov Chain Monte Carlo Methods

MRF Markov Random Field
SVM Support Vector Machine

4http://www.oonumerics.org/blitz/whatis.html.
5http://www.mathworks.com/products/matlab/.
6http://www.unidata.ucar.edu/packages/netcdf/.
7http://www.paraview.org/HTML /Index.html.
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