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Abstract

We present a novel box depalletizing system based on im-
ages acquired with a time of flight laser sensor mounted
on the hand of the robot. Scanning the upper layer of the
pallet yields a 2.5D image to which edge detection and
robust line fitting are applied to extract 3D vertices. This
vertex information is used as an input for a model based
object recognition system. Model vertices are matched to
scene vertices and object location hypothesis are formed.
These hypotheses are verified or rejected using a two-step
verification process. Due to the fact that we use edges to
extract vertices, rather than surfaces, we are able to de-
tect target objects, in both cluttered and ordered configu-
rations. Our experiments with different configurations of
card board boxes and paper tissue packets demonstrate
the validity of our approach. The main advantages of
our system are it’s versatility, simplicity, efficiency and
robustness.

1 Introduction

This paper addresses the depalletizing problem (or
robotic bin picking problem) in the context of which a
number of objects of arbitrary dimensions, texture and
type must be automatically located, grasped and trans-
ferred from a pallet (a rectangular platform), on which
they reside, to a specific point defined by the user. The
need for a robust and generic automated depalletizing
system stems primarily from the car and food indus-
tries. An automated system for depalletizing is of great
importance because it undertakes a task that is very
monotonous, strenuous and sometimes quite dangerous
for humans. In this contribution we deal with the con-
struction of a depalletizer dealing with cluttered and or-
dered configurations of boxes.

1.1 Related Work

Existing systems can be classified as follows: systems in-
corporating no vision at all and systems incorporating
vision. The majority of the systems employed in indus-
trial depalletizing applications so far do not contain any
vision modules. They usually employ preprogrammed
gantry robots for bulk depalletizing tasks. Vision systems
can be classified in systems using intensity and range im-

agery. The former have all problems of camera-based ob-
ject identification: sensitivity to lighting conditions and
target object texture.

Attempts at incorporating range imagery seem much
more promising. In [1] a structured light range sensor was
employed to deal with unloading piles of postal parcels.
Due to the usage of intensity based feature extraction
methods on range images, the image features are not de-
tected with high accuracy. In the event that no objects
are detected, the robot is commanded to disturb the pal-
let and therefore target objects risk being damaged. The
system of [2] uses a laser sensor to deal effectively with
neatly placed boxes. The system, although fast and accu-
rate, cannot deal with cluttered configurations. In [3] the
authors deal with depalletizing of parallelepipeds of un-
known dimensions with the help of a range sensor. Com-
plete scene understanding is attempted. They use meth-
ods which facilitate size and pose estimation of target
objects by virtually extending their dimensions in the di-
rection away from the sensor until they physically contact
other objects in the scene. Efficiency measurements have
not been presented by the authors.

One of the fastest and most elegant recognition systems
for 3D convex objects, developed so far, is described in
[4]. In this system, immediately related model features
are grouped into sets, which are named local feature sets
(LFSs). The matching of a model LFS with a scene fea-
ture group assumes the existence of the model in the
pile and generates a unique value for the pose trans-
form which takes the particular model object to the scene.
This model location hypothesis is then rejected or verified
by checking if the position of neighboring scene feature
groups match positions of other model LFS. The authors
have chosen to use 3D vertices as LFSs, since they provide
constraints for calculating the pose transform.

The accurate calculation of the vertex position is of ex-
treme importance for the accuracy of recognition. The
authors employ a region based range image segmenta-
tion technique and the vertex position is determined by
intersecting surfaces. In the event that the objects ex-
pose three surfaces to the sensor, the calculation of the
vertex point is as accurate as desired. The problem is
that in many object configurations this is not the case.
If only two surfaces of the object are exposed, no reli-
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able method for computing the coordinates of the vertex
points is proposed in [5]. What is more, in configurations
where objects expose only one surface, the calculation of
vertex points based on surface information is impossible.

1.2 Our Approach

In our system a time of flight laser sensor mounted on the
robot’s hand is used for acquiring images. The feature
detection is based on edges. We employ a fast range im-
age edge detection algorithm to acquire the image’s edge
map. The object edges are robustly calculated. Vertex
points are computed as intersection of two edges. LFSs
in our system consist of a vertex point and the two edge
directions. The verification criterion handles cases where
few box features are detected. In this way we are able to
recognize objects even if only one surface is exposed to
the laser source.

Our system demonstrates a plethora of advantages: Com-
putational efficiency, due to the fast feature extraction
and object recognition subsystems it incorporates. Accu-
racy, due to the fact that robust feature estimators are
utilized. Robustness, since a two step verification strat-
egy minimizes the number of false detections. Ease of
installation, since a simple mounting of the laser sensor
on the hand of the robot is all we need. Lighting condi-
tion and target object texture independence, since we use
data acquired from a time of flight laser sensor. Versatil-
ity, since our system deals in the same way with cluttered
and neat configurations of boxes. And last but not least
simplicity, as the flow diagrams of the systems compo-
nents which follow demonstrate.

In the following paragraphs our system is described in
detail. An experimental results paragraph illustrates the
validity of our approach.

2 System Description

From the hardware point of view, our system comprises
an industrial robot (model KR 15/2 manufactured by
KUKA GmbH), a square vacuum-gripper, which grasps
the boxes from one of the surfaces they expose, and a
time of flight laser sensor (model LMS200, manufactured
by SICK GmbH). The sensor is integrated on the gripper
and the latter is seamlessly attached to the robot’s flange.
In this way, we take full advantage of the flexibility for
viewpoint selection provided by a six degree of freedom
robot.

The operation of our system is depicted in Fig. 1. The
robot is programmed to execute a linear scanning move-
ment, the end points of which are the mid points of the
two opposite sites of the rectangular pallet. In this way
the upper layer of the pallet is scanned and a range im-
age is acquired (Fig. 1(a) and (b)). The object recogni-
tion systems accepts the range image and recognizes the

(a) (b)

(c) (d)

Figure 1: Operation example

boxes. The coordinates of the detected objects are sent
to the robot which then grasps them (Fig 1(c) and (d)).
In the paragraphs that follow, the feature extraction box
recognition algorithms of the robotic system are described
in detail.

2.1 Data acquisition

In the scanning phase of the system (Fig 1(a) and (b)),
the scanning plane of the sensor is perpendicular to the
direction of the movement and the sensor faces the upper
side of the pallet. During this phase, a set of 2D laser scan
lines is acquired. This set of scan lines yield a 2.5D image
of the scene. What is important for what follows is that
the image coordinates of each three dimensional image
points are known. Finally, the noise introduced through
range and reflectance changes is dealt with using the noise
attenuation method described in [6]. The acquisition time
for the retrieval of a scan line of the sensor is 25 ms. Since
the length of our rectangular platform is about 1.5 meters
and since we want the distance between scan lines not to
be more than 1cm, the duration of the data acquisition
process is about 4 seconds.

2.2 Edge Detection

Edges are detected by applying a scan line approxima-
tion based edge detector to the rows and columns of the
2.5D image. A detailed description of the algorithm can
be found in [7]. Due to the fact that the algorithm uses
information from long line segments to compute the edge
points, it has an advantage over local approaches in terms
of accuracy. A discussion of the accuracy and the com-
putational complexity can be found in [2].

2.3 3D Vertex Detection

The vertex detection consists of two steps: robust fitting
of line segments and the identification of the line segments
which are close to one-another and which roughly form a
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90 degree angle.

When thinking of robust line fitting, the Hough transform
(HT) springs to one’s mind. Unfortunately, the compu-
tational complexity and the memory requirements, which
rise exponentially with the number of parameters under
detection, make the HT impractical for our problem. The
solution to this problem lies in the fact that a large num-
ber of connected components (CC) can be found in the
edge data, which can be used to obtain a coarse segmen-
tation: points lying in the vicinity of lines fitted to the
CC in the least square sense can be used as input for a
subsequent robust line fitting algorithm. For the robust
fitting on of the standard techniques, such as Least Me-
dian of Squares or RANSAC can be used. However, for
the sake of simplicity and computational efficiency, we
have developed a two stage line fitting algorithm which
has been inspired by the one-dimensional accumulation
used in the dynamic generalized Hough transform [8] and
which will be described in the following.

The first step consists of the determination of the direc-
tion d of the line. Therefore, pairs of points are sam-
pled, their difference vectors normalized and the com-
ponents of the normalized vectors accumulated in three
one-dimensional accumulators. The maxima of the ac-
cumulators yield the components of the direction vector
d. In the second step, the difference vectors between the
line through the origin with the direction vector d and the
data points are determined and once again accumulated
in three one-dimensional accumulators. The maxima of
the accumulators then yield a vector p which indicates
the position of a point on the line with respect to the
origin. Of course, the parameterization with its 6, rather
then the 4 necessary parameters, is redundant, but has
the advantage of not requiring any coordinate transforms.
Figure 2 shows the results of our robust fitting technique
for two segments: each CC is represented with crosses,
the edge points with dots, the result of the least square
fitting with a thin line and the final result with a thick
line.

Figure 2: 3D-line fitting

In order to obtain vertices, the pairwise distances of the
line segments are calculated and lines which are close
to one-another and form roughly a 90 degree angle are
grouped into a scene vertex. The intersection of the two
lines is defined as the midpoint between the lines. We
represent a scene vertex as a triplet (VS, V̂1

S
, V̂2

S
), where

VS is the position of the vertex point in the scene, while
V̂1

S
and V̂2

S
are the normalized vectors pointing in the

direction of the edges joining at the vertex. In the event
that the distance of two scene vertices is below a cer-
tain threshold, the vertices are considered to belong to
the same scene vertex and corresponding elements of the
triplets are averaged to obtain the final values.

2.4 Object Recognition

Our object recognition system is based on a hypothesis
generation and verification framework. In a data driven
approach, a scene vertex is matched to a vertex of one
of the models stored in the model database. This match
creates a hypothesis about the position of the model in
the scene. Whether the hypothesis will be verified or
rejected depends on the position and the orientation of
neighboring scene vertices.

A Local Feature Set (LFS) is defined to be a set of fea-
tures of a model box, a 3D vertex in our case, which,
when matched to a scene vertex, produces a unique pose
transform that takes a model object to the scene. This
pose transform is equivalent to a hypothesis of the model
box location in space. We denote this transform as S

M
T ,

since it describes the position of the model ({M}) rela-
tive to the scene coordinate system ({S}). The center of
gravity of all models resides at the origin of the model
coordinate frame (c.f. Fig. 3).
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Figure 3: Model box
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Figure 4: Local feature sets (LFSs)

In the same way as the scene vertices, the LFSs are rep-
resented as (VM, V̂1

M
, V̂2

M
), where VM is a model vertex

position vector in the model coordinate system, while V̂1

M

and V̂2

M
are the normalized directions of the model edge
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vectors joining at the vertex VM. Note that in this rep-
resentation the order of the direction vectors is such that
their cross product points in the same direction as the
third edge of the box corresponding to the vertex. Note
as well the edge direction vector pair defines a model sur-
face. Since a box has three different surfaces, and since
for each surface two orientations in space are valid, the
number of LFSs per model should be six. A list of all the
LFSs of all the box models in our application are stored
in the model database. For the model box of the Fig. 3,
the LFSs are shown in the Fig. 4 and listed in Table 1.
The verification of a hypothesis generated by a model

LFS ID 1 2 3 4 5 6
Vertex A D A F A B

Direction vector 1 ÂD D̂E ÂB F̂G ÂB B̂C

Direction vector 2 ÂF D̂A ÂF F̂A ÂD B̂A

Table 1: LFS List

LFS and expressed by the transform S

M
T is aided by the

feature sphere. The feature sphere is a data structure in
the model database, which allows for rapid verification
of a pose transform calculated by matching a scene ver-
tex to an LFS. Conceptually, the feature sphere is a 3D
sphere whose radius equals unity, centered at the origin
of the model coordinate system (Fig. 3). Contents of the
feature sphere are the normalized position vectors of the
8 vertices of our model box (principal directions of vertex
points). For a detailed description of the implementation
the reader is referred to [4].

The flow diagram of the object recognition system is de-
picted in Fig. 5. Input of our system is the list of de-
tected scene vertices, the scene feature sets. An element
is extracted from the list and all the adjacent vertices
of the feature set are retrieved. Two scene vertices are
considered to be adjacent when their distances is smaller
than the diagonal of the largest model box in the model
database. A model LFS is then extracted from the model
LFS list. A matching between the model LFS and the
scene vertex is performed and a pose location hypothesis
is generated. If the hypothesis is verified, the elements
of the adjacent scene vertex list which are compatible
are removed form the list of scene vertices. Additionally
the transform corresponding to the verified hypothesis is
added to the list of verified transforms. This list will be
forwarded to the robotic grasping subsystem to grasp the
boxes. If the hypothesis is not verified, on the other hand,
the next model LFS is extracted. If all the LFSs are ex-
amined, another scene vertex is extracted from the list
and so on until all scene vertices are examined.

In the paragraphs that follow, the salient procedures of
the object recognition algorithm, that is the hypothesis
generation and verification, are described in detail.

Start

modelLFS,sceneFS,adjacentFSs,T)
verifyHypothesis(

No more LFSs in model DB sceneFSs = sceneFSs − compatibleSceneFSs

No more scene FSs

NO

NO

YES

YES

NO YES

End

add T to list of recognized objects

modelLFS = getNextLFS()

T = generateHypothesis(modelLFS,sceneFS)

adjacentFSs = getAdjacentFSs(sceneFS)

sceneFS = getNextSceneFS()

Figure 5: Object recognition flow diagram

2.4.1 Hypothesis generation: An LFS gener-
ates a unique box location hypothesis in the scene.
The hypothesis is expressed by a transform S

M
T . If

(VS, V̂1

S
, V̂2

S
) a scene vertex and (VM, V̂1

M
, V̂2

M
) a model

LFS, the transform is calculated by matching these two
entities. First, the rotation matrix R is computed by
minimizing the matching error between the two edge di-
rection vectors:

E2 =

2
∑

i=1

‖RV̂i

M − V̂i

S‖
2. (1)

Then, we use the vertex position vectors VM and VS to
compute the translation vector:

t = VS −RVM. (2)

An elegant solution for this minimization problem, which
is based on quaternions, can be found in [9].

2.4.2 Hypothesis verification: The hypothesis
verification procedure determines whether an hypothesis
given by the transform S

M
T is valid. Primary target in the

design of the verification procedure is the minimization
of the number of false positives, which guarantees robust
performance of the system. Input of the hypothesis verifi-
cation procedure is a list of adjacent vertices of the scene
vertex which determined the transform S

M
T . The vertex
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positions are then back-transformed to the model frame.
If Va

S
is an adjacent vertex position, then the position in

the model frame is computed in the following manner:

Va

M = M

S TVa

S = R−1(Va

S − t). (3)

The direction of the position vector Va

M
is then normal-

ized. If one of the principal directions of the model stored
in the feature sphere is close to the input direction vector,
we consider the adjacent scene vertex compatible with
the examined scene vertex under the current hypothe-
sis. Due to the way the feature sphere is implemented,
searching for a stored direction is a rapid process.

Whether a hypothesis will be verified or not depends on
the number of compatible adjacent scene vertices. The
detection of two compatible vertices, each sharing no
common edges with all the others, is required to safely
recognize a box in three dimensions. However, in many
cases, like when the boxes are neatly placed on the plat-
form, the boxes expose less than two surfaces and there-
fore the verification criterion cannot be satisfied. In these
cases we loosen the set of constraints of the criterion, so
as to verify a rectangular surface hypothesis, rather than
a 3D box position hypothesis. The disadvantage is that
if two model boxes have a surface with equal dimensions,
the verification procedure will assert that the particular
surface was detected, but will be not able to distinguish
which of the two boxes reside on the pile. If all the sur-
faces of our models have different sizes, this is equivalent
to a verification of a box hypothesis.

A minimum set of requirements for surface verification is
that the number of compatible adjacent vertices is two.
However, if only one compatible vertex is detected, the
verification framework can still accept a surface pose hy-
pothesis if the compatible vertex shares no common edge
with the scene vertex on which the hypothesis generating
LFS was matched. If however this does not happen (that
is when the compatible adjacent vertex shares an edge
with the scene vertex) two hypotheses about the posi-
tion of the box, to which the surface belongs exist. Using
the feature sphere for verification here is not enough for
determining the box position. For this reason we intro-
duce an additional test in the verification process. We
extract the 3D points lying in the hypothesized surface
segment, fit a 3D plane to the points, and if the fitting
error is below a certain threshold we consider the surface
segment verified. The identification of the inlying points
is straightforward: The four points defining the boundary
of the hypothesized surface are computed and their image
coordinates extracted. The image points inside the image
polygon defined by the four boundary points are deter-
mined with a very fast polygon rasterization algorithm
[10].

The Flow diagram of the overall verification process is

compAdjSceneFSs = featureSphereVerification(
ModelLFS,adjacentFSs,T)

return TRUE

return FALSE

sameEdge(modelLFS,T,sceneFS,
compatibleAdjacentSceneFS)

return TRUE

fittingTest(LFS,T,sceneFS)

return FALSE return TRUE

NO YES

NO YES

NO YES

NO YES

compatibleAdjSceneFSs.size() == 1

compatibleAdjSceneFSs.size() >= 2

Figure 6: Hypothesis verification flow diagram

depicted in Fig. 6. For robust verification with the fitting
test, we have to be sure that the hypotheses correspond-
ing to surfaces with bigger area are tested before those
corresponding to surfaces with smaller area. For this rea-
son, the model LFSs are placed in the LFS list of the
model database in descending order of the area of the
surface to which they correspond.

Note that the plane fitting test could be as well used as a
verification method in the event that no compatible scene
vertices were detected. For a particular scene vertex the
fitting test would then be triggered a number of times
equal to the number of model LFSs, in the worst case.
Although our plane fitting test is fast, the time overhead
that such an approach would introduce made us avoid its
usage in such cases. In addition, in almost all cases two
vertices corresponding to the same box can be detected.

The introduction of the plane fitting test in the verifica-
tion procedure has minimized the number of scene ver-
tices that need to be detected. Furthermore, this test
ensures that a detected box surface is graspable (i.e. that
there are no other objects lying on the top of it). This
could not have been determined if the four points defin-
ing the boundary of the surface were not accurately com-
puted. The accuracy in the calculation of these points
stems from the accurate computation of the points and
the edges of the scene vertices.

Additionally, a successful fitting test implies that almost
all 3D points lie inside the boundary and thus belong to
a graspable surface. The parameters of the fitted plane
can therefore be used for even more robust grasping of
the box to which the surface corresponds.
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3 Experimental Results

We tested the system by using two kinds of boxes. Card
board boxes and paper tissue packets (box - like) wrapped
in a foil. The dimensions of the card boxes where 35cm in
length, 23cm in width and 15cm in height. The dimen-
sions of the box like objects where 27.3, 21.5 and 7cm
respectively. The pallet is a rectangular area, 1.5m in
length and about 0.7m in width.

(a) Card board boxes (b) Paper tissue packets

Figure 7: Object configurations

(a) Edge map (b) Robust lines

(c) Vertices (d) Detected boxes

Figure 8: Card board box recognition

(a) Edge map (b) Robust lines

(c) Vertices (d) Detected boxes

Figure 9: Paper tissue packet recognition

Two example configurations of objects, are depicted in
Fig 7(a) and (b). Note that in these configurations both
jumbled and neatly placed objects exist. The results of

our recognition algorithms (edge detection, robust box
edge estimation, vertex detection and object recognition)
on the two configurations are depicted in Fig. 8 and 9
respectively. The reader can see in these figures that the
detection accuracy allows for a precise object grasping.
This was our observation after having let the system run
and grasp several objects. Nevertheless, we have not yet
performed detailed accuracy measurements of the system.
This is something we plan to do in the near future.

For both configurations the execution time of our algo-
rithms was about 11 seconds on a Pentium III 650 MHz
PC. If we add to this the time needed for the data acqui-
sition (about 4s), we see that the overall processing time
is about 15 seconds. Note that in both example con-
figurations, more than one objects were detected. Due
to this fact, the average box localization time is consider-
ably less. In terms of robustness, our experiments demon-
strated that the system only occasionally fails to find at
least one graspable box in the pile.

In the event of neatly placed objects, where the boxes are
placed very close together in distinct layers, however, our
system failed to recognize the boxes, since the resolution
of the sensor didn’t allow the edges between the objects
to be detected. In such cases an additional sensor like
a normal intensity camera should be employed to deter-
mine the orientation of the objects. Such an approach is
described in [2].

4 Conclusions and Future Work

A box depalletizing system based on range images ac-
quired with a time of flight laser sensor has been pre-
sented. We have shown how the use of edge detection
and robust line fitting allows for precise 3D vertices de-
tection. Using these vertices in a hypothesis generation
and verification framework makes object recognition both
robust and accurate. Due to the fact that edges, rather
than surfaces, are employed for the vertex detection, our
system is able to deal with objects even if they expose
less than three surfaces to the sensor. Thus the system is
capable of recognizing boxes in cluttered and ordered con-
figurations. However, the system cannot resolve situation
where the boxes a neatly placed in layers and contact one-
another so that edges between them cannot be detected.
In the future we will perform detailed grasping accuracy
measurements. Furthermore, we plan to exploit the ver-
tices detected in previous scans to make the recognition
process faster.
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