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Abstract

We present a framework for edge detection in range im-
ages acquired by a time of flight laser sensor. Our edge de-
tection approach is inspired by [7], in the context of which
edge detection via scan line approximation with geomet-
ric parametric models is performed. The main drawback of
this edge detector, namely the scan line over-segmentation
problem is addressed by the introduction of a simple merg-
ing step. In addition, we incorporate a method for detec-
tion of the noisy data points created by the effect of laser
beam splitting between surfaces of different ranges. Finally,
a procedure for fine localization of the edge points is in-
troduced. Experimental results on a variety of target object
configurations demonstrate that our edge detection frame-
work exhibits increased robustness and accuracy with re-
gard to [7]. These characteristics in combination with the
computational efficiency of our approach, allows for its us-
age as a component of a real time system for automatic un-
loading of piled box-like objects.

1. Introduction

Automatic unloading of piled box-like objects like those
of fig. 3 (a-1),(b-1),(c-1), is undoubtedly of great impor-
tance to the industry. Existing systems e.g. [10],[15], em-
ploy primarily intensity imagery for dealing with the prob-
lem. Their main drawback is that they assume that the tar-
get objects are neatly placed. In addition, they are very sen-
sitive to lighting conditions at the installation sites. Our ap-
proach towards the construction of a fully automatic object
unloading system, involves usage of range imagery to deal
with the problem [9]. Our system comprises, from the hard-
ware point of view, an industrial robotic arm, on which a
SICK LMS-200 [14] laser sensor is mounted. A range im-
age of the object configuration is acquired by linearly mov-
ing the robotic arm above the object configuration, with the
depth axis of the laser sensor pointing towards the objects.

Given the input range image, our system localizes the ob-
jects in the pile and the objects are grasped by the robot.

As discussed in [9], [8] accurate detection of the bound-
aries of the target objects in the pile, is of great impor-
tance for the robust performance of our system. In this pa-
per, we propose an approach for edge detection in range im-
ages of our target object configurations. Our approach is in-
spired from the scan line approximation technique of [7].
This technique has been refined by the addition of a merg-
ing step as well as a method for detecting and discarding
noisy range points, generated by laser beam splitting. The
resulting framework exhibits advantages like computational
efficiency accuracy and robustness.

In the section that follows our approach is discussed in
detail. Section 2.1 gives an overview of the scan line ap-
proximation method and highlights its advantages and prob-
lems. Section 2.2 introduces our improved version for scan
line approximation. Finally, in section 3, experimental re-
sults demonstrate the credibility of our approach.

2. Boundary Detection via Scan Line Approx-
imation

A multitude of algorithms have been proposed for detect-
ing edges in intensity images, based on local linear filtering
([5] p.175 - 181). The features of interest of these strategies
however are the jump edges, since only this type of edges
is encountered in intensity images. The situation is differ-
ent in range images, since localization of jump and crease
edges, as well as their combinations is required. The user is
referred to [5] p. 473, for a definition of the different kinds
of edges and their properties.

The majority of algorithms proposed to deal with edge
detection in range images, (e.g. [2], [3]), define the sought
edges in a local manner, and thereby use local operations for
detecting them. Their advantage is the computational effi-
ciency. However, local determination of boundary points of-
ten leads to false alarms in the presence of noise in the im-
age. Incorporating global shape information in the edge de-
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Figure 1. Edge detection via scan line approx-
imation with linear models

tection process, which is available when knowledge about
the geometry of the objects appearing in the image exists, is
expected to increase the robustness of an edge detection al-
gorithm.

2.1. The Scan Line Approximation Technique

Perhaps the most popular approach able to incorporate
information about the target objects’ shape in the edge de-
tection process, is the one reported in [7]. The method ap-
proximates the rows and columns of the image, namely
the scan lines, with one dimensional curves. Assuming that
the objects in the image can be well modelled by im-
plicit quadratic surfaces, approximation of the scan lines
via quadratic polynomials is performed. For explaining the
framework’s internals, we assume that the sensor coordi-
nate system is aligned to the range image, so that if x, y, z
the coordinates of a range point, the depth value z is stored
at the row x and column y of the image.

The framework involves usage of the scan line splitting
technique of [4]: If s,e, and m the respective positions of the
start, end and mid point in the scan line, the corresponding
depth values in these positions zs, ze and zm are used to de-
fine the parameters of the approximating quadratic model
via interpolation. Subsequently, the point with the maxi-
mum distance from the approximating model is retrieved.
Assume max its position in the scan line. If the distance of
this point to the model is lower than a user-defined thresh-
old ε, the points between s and e are considered to be sat-
isfactory approximated by the model. Else, if the number
of points contained in each segment with bounding indices
s,max and max+1,e is bigger than the user defined thresh-
old ν, the splitting process is recursively applied on the two
segments.

Candidate edge points are the end points of neighbor-
ing segments produced by the splitting process. Consider
the neighboring segments s1, s2. Assume e the end index
of s1 and s = e + 1 the start index of s2. Assume as well
that z = f1(x), z = f2(x) the parabolas approximating s1,
and s2 respectively. If x = s+e

2 , then the jump and crease

edge strengths of candidate edge points at e and s are given
by (1),(2) respectively. The candidate points whose strength
is bigger than a user defined threshold are the output edge
points.

JES = |f1(x) − f2(x)| (1)

CES = cos−1 (−f ′
1(x), 1)(−f ′

2(x), 1)T

‖(−f ′
1(x), 1)‖‖(−f ′

2(x), 1)‖ (2)

The approach exhibits many advantages: Computational
efficiency is the outcome of the fast scan line segmentation
via splitting, and of the fact that interpolation is used for the
approximation. Robustness and accuracy in the localization
of the edge points, is the outcome of incorporating global
shape information in the process. Classification of a range
point as edge point, does not any more depend on local in-
formation but on the parameters of neighboring approximat-
ing models, the estimation of which is influenced by a big
number of range points. Finally, the approach is simple and
easy to implement. The thresholds used, namely the min-
imum number of points per segment ν, the maximum al-
lowable distance of a segment’s point to the approximat-
ing model ε, and the crease and jump edge strength thresh-
olds, have a straightforward interpretation, which renders
their tuning relatively easy.

A drawback of the method however is the scan line over-
segmentation, illustrated in Fig. 1 (a), where, for reasons
of simplicity, linear instead of parabolic models have been
employed for the approximation. In this image, data points
are represented by crosses, and the segment end points are
shown in bold. Ideally, all segments inclusively between
each of C-I, J-K, M-N and O-P should be replaced with
one segment. In [7], the problem is implicitly addressed by
the fact that not all segment end-points are delivered as out-
put of the edge detector, but only those with large edge
strengths. The end point of segment O for example is de-
termined not to be a valid edge point, since the angle be-
tween O and P is almost π. However the problem cannot be
entirely solved in this way: Boundaries of small noisy seg-
ments are falsely classified as edge points, since their crease
edge strength value can be relatively large. This is the case
for the boundaries of the segments E, F, for example. Ex-
perimentation with our sensor showed that such cases cause
a significant degradation of the boundary detection output.
Thereby, a solution to the over-segmentation is of signifi-
cant importance to our application.

Another problem observed, has not entirely to do with
the segmentation approach itself, but with the fact that
time of flight laser sensors output noisy points in the ar-
eas of depth change, due to splitting of the laser beam [1].
Fig. 2 (a) illustrates: The noisy points are assigned to the
segments B and C in the figure. Since these segments do
not correspond to real objects, edge strength values calcu-
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lated at their boundaries are unreliable, and should not be
included in the output of the edge detection process. De-
tecting such noisy segments and discarding the respective
edge information, is expected to improve the performance
of the edge detection algorithm.

We employ the scan line approximation technique for
edge detection. However, there are differences from the
original approach of [7]. A merging step is incorporated
to deal with the over-segmentation problem. In addition, a
simple technique for detecting segments with noisy points
in the areas of depth change is devised. Finally, a method
for more accurate localization of the edge points in the im-
age is introduced.

2.2. Our Approach for Edge Detection

A possible strategy for dealing with scan line over-
segmentation is to increase the approximation threshold ε.
Unfortunately, this may lead to the inverse effect, namely
scan line under-segmentation, which is more difficult to
handle. A solution to the problem is described in [12]. In
this work, a method for scan line segmentation based as
well on approximation with geometric models is presented.
The main difference with [7], is that the segmentation is at-
tempted without the usage of the threshold ε, so that seg-
mentation becomes almost non-parametric. Scan line split-
ting continues until the next splitting step creates a segment
with less than ν points. The resulting over-segmentation is
handled by the introduction of a very simple merging step:
For each segment of the final segmentation, the point with
the maximum distance d from the approximating model is
considered. A significance value S is then assigned to the
segment, defined as the ratio between the length of the seg-
ment L divided by d, as in (3).

S =
L

d
(3)

According to the merging procedure each segment is
combined sequentially with the previous, the next and both
the previous and next segments and for each combination
the value S is computed. If one of the combinations results
in a bigger S than the one of the candidate segment, the cor-
responding segments are merged. Note that definition of the
significance measure as in (3), implies ν = P + 1, where
P the number of parameters of the approximating model,so
that infinite significance values are avoided.

The advantage of the merging approach is that its realiza-
tion does not require introduction of additional thresholds.
Experimentation with the method showed that it produces
superior results when long, well approximated segment out-
number the small, probably noisy segments. In [12], this
is not the case: the number of small segments is relatively
large, because splitting is performed exhaustively. The split-
ting threshold ε guarantees the existence of longer segments
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Figure 2. Detection of noisy segments

in our case. Application of the merging step in the scan line
of fig. 1 (a), is depicted in fig. 1 (b). Note that fitting is used,
instead of interpolation for model approximation, in order
to generate the segmentation of the figure. Using fitting re-
sults into more accurately approximated segments, and thus
in more reliable significance values. Thereby, usage of fit-
ting improves the effectiveness of the merging process.

We employ a simple but effective heuristic approach to
detect and discard segments corresponding to spurious data
points caused by the effect of laser beam splitting between
surfaces of different ranges. These points are aligned and
can be accurately modeled by linear models, which are al-
most parallel to the range axis Z of the sensor coordinate
system. This is illustrated in Fig. 2 (a). The noisy segments
B, C in the figure, can be easily identified: The angle formed
between each segment and the depth axis Z of the sen-
sor coordinate system is computed. If the angle is smaller
than a predefined threshold, the segment is considered noisy
and discarded. Application of this filtering to the data of
fig. 2 (a), is depicted in fig. 2 (b). Note in the figure, that
the meaningless crease edges generated between the seg-
ments A-B and C-D in fig. 2 (a) are replaced by a jump
edge expressing the height difference between the segments
A-D, as desired. We have experimented with more sophisti-
cated techniques for discarding these noisy points (e.g. [1]),
which did not prove to deliver better results for our data
sets. In addition, combining edge detection and noise filter-
ing in one process saves computational costs.

Note, that in fig. 2 (a), some points expected to belong
to segment D (namely the points between the dashed ar-
rows in the figure), are assigned to the noisy segment C by
the splitting process. The reason for this is that the split-
ting process is not allowed to generate segments with less
than ν points. This problem of minor point misclassifica-
tion during splitting is observed in [7], and a heuristic solu-
tion is proposed for candidate crease edge points only. For
improving the position of candidate jump edge points af-
ter noisy segment deletion, points from the deleted noisy
segment C which have a distance lower than ε from the ap-
proximating model of the neighboring segment D are added
to the segment D. The new starting point of D is marked
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as candidate edge point. As seen in fig. 2 (b), the candidate
edge point is accurately recovered in this way.

Our overall approach for edge detection acts on all the
rows and columns (scan lines) of the input range image.
Linear models are employed for modeling our almost pla-
nar target objects, and model fitting is utilized for the ap-
proximation. For every scan line, splitting is performed.
A merging step follows. Subsequently, noisy segments are
identified and discarded. The boundary points of segments
neighboring noisy segments are accurately localized. Fi-
nally, edge strength values are calculated and the points with
high values are returned as edge points. In the paragraph the
follow, experimental results give the reader an overview of
the performance of our approach.

3. Experimental results

We conducted experiments with about 20 range images
corresponding to box-like object configurations. In fig. 3
representative results are illustrated. The first row of the fig-
ure contains the intensity images of three object configura-
tions. In the second row, edge detection results obtained via
application of [7] to the corresponding range images are de-
picted. The detected edges are superimposed to the range
images. The third row of the figure depicts the results of our
approach. For all experiments ε = 15 and ν = 3 was used.
By inspecting the figure, one can get a clear impression
of the improvement, concerning the edge localization accu-
racy, introduced by our approach. Note as well that the lo-
calization accuracy does not deteriorate sharply when deal-
ing with non rigid objects likes those of fig. 3 (b-1),(c-1),
which demonstrates the robustness of our approach.

FOM =
M

N
×

N∑

i=0

d2
i (4)

In order to acquire a more clear overview of the perfor-
mance of our approach, we performed a quantitative com-
parison of our strategy to [7]. Assuming N the number of
points in a scan line, M the number of segments and di the
distance of the point at position i from the model approxi-
mating the point, we used the quantity defined in (4) to per-
form the comparison. The quantity FOM has been intro-
duced in [13] and used among others in [12] for comparing
segmentation results. Lower values of FOM correspond to
better segmentations.

The comparison results are illustrated in table 1. The first
and second columns of the table correspond to the average
FOM per scan line obtained by [7] and our approach, re-
spectively. The rows of the table correspond to the range
images where the methods have been applied. The first
row concerns the card board boxes configuration (fig. 3 (a-
1)), the second row the configuration of box like objects

Jiang/Bunke [7] Our Approach
Fig. 3 (a-1) 1345 755
Fig. 3 (b-1) 1774 1074
Fig. 3 (c-1) 2375 1198

Table 1. Comparison results

(fig. 3 (b-1)), and the third row the configurations of sacks
(bags) of fig. 3 (c-1). Note, that as highlighted in [11], the
FOM measure favors approximations with larger number
of segments. Since the number of segments produced by [7]
is larger than those obtained by our approach, due to the
fact that the latter includes a merging step, the FOM fa-
vors the result obtained by application of [7]. Despite this,
for all cases the average FOM per scan line obtained by
our approach is lower.

Regarding computational efficiency, execution of our
method took about 2 seconds in a Pentium IV processor
of 2.8 GHz, which implies that our technique is suitable for
real time use.

4. Conclusions

We presented an approach for model based edge detec-
tion in range images of piled box-like objects, based on
scan line approximation with linear models. Our strategy
for edge detection exhibits computational efficiency accu-
racy and robustness. In the near future, we plan to continue
experimentation with our approach by considering a big-
ger variety of target objects and configurations. In addition,
we plan to compare our edge detection approach with other
edge detectors, using ground truth segmented images of var-
ious sensors, in the context of the range image segmentation
comparison framework of [6].
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