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Abstract. We describe a technique for extracting vertices from range
images of cluttered box-like objects. Edge detection is performed and
an edge map is acquired. Extraction of vertices is carried out using the
edge map and comprises two steps: Linear boundary detection in 3D
and boundary grouping. In order to recover the four parameters of a 3D
linear segment, we decompose the problem in two 2D subproblems, each
recovering two line parameters. These subproblems are solved by means
of the Hough Transform, constrained in this way so that accurate and
efficient propagation of the edge points localization error is achieved.
Pairs of orthogonal boundaries are grouped to form a vertex. The or-
thogonality of a boundary pair is determined by a simple statistical test.
Our strategy comprises many advantages, the most important of which
robustness, computational efficiency and accuracy, the combination of
which is not to be found in existing approaches.

1 Introduction

Automatic unloading and sorting of piled objects is of great importance to the
industry, because it undertakes a task that is very monotonous, strenuous and
sometimes quite dangerous for humans. Objects which are often encountered in
industrial sites and distribution centers are mainly rigid boxes as in Fig. 4 (a)
or deformable box-like objects (sacks) full of material as in Fig. 5 (a). It is
advantageous to employ range imagery for dealing with the problem mainly due
to relative insensitivity on lighting conditions and object texture. It is since
years known in the computer community that a three-dimensional visible vertex
provides the strongest constraints for accurately determining the position of
convex, three-dimensional objects and thus are very good approximations of the
location of the objects in space. Since the objects we are dealing with are either
boxes or box-like objects, their vertices can still be used for generating accurate
object location hypotheses. For this reason the robust and accurate detection of
object vertices in range images is of extreme importance to this application.

Although a variety of methods for detecting corners in intensity images have
been reported, this is not the case for range images. The majority of the existing
approaches (like [3],[1] and others) use region information to extract vertices.
The disadvantage is that the objects need to expose more than one surfaces to
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the sensor for accurate estimation of the vertex position. In [7], edge detection
was performed on the input range image, object boundaries were detected using
the Dynamic Generalized Hough Transform [8] and vertices were extracted by
grouping orthogonal object boundaries. This allows for accurate vertex detection
even if the objects expose only one surface. However the error in the localization
of the edge points was not taken into consideration, which made the approach
not as robust as desired.

The technique discussed in this paper comprises the same two parts, as was
the case in [7]: Linear boundary detection and boundary grouping. However there
are essential differences between the two approaches: The three dimensional lin-
ear object boundaries are recovered, via application of an iterative algorithm
to the edge map of the range image: In each iteration Hough Transforms are
executed and a set of models are recovered, followed by a model selection pro-
cess which retains the best models in terms of accuracy. The Hough Transforms
are constrained so that the edge points localization error is accurately propa-
gated to the parameter space. Boundaries comprising a fixed fraction of the edge
points are sought in each iteration. Finally, orthogonal pairs of boundaries are
grouped to a vertex. The orthogonality of a pair of recovered linear boundaries
is determined via a statistical test.

This strategy results in a variety of advantages over existing systems: Ro-
bustness due to introduction of error propagation which reduces the detection
rate of false positives, and due to robust boundary grouping guided by a sta-
tistical test. Accuracy, due to the incorporation of a model selection process,
which retains the most accurate boundaries. Computational efficiency since the
algorithm’s complexity is linear to the number of edge points. Low memory con-
sumption since accumulations use one dimensional structures. Versatility since
exposure of only one object surface is enough for vertex detection, so that the
system can deal with jumbled or neatly placed configurations of boxes. And last
but not least simplicity as the flow diagrams that follow indicate. Our approach
is described in detail in the subsequent sections.

2 Detection of Linear Object Boundaries in 3D

Input of our system are range images acquired from a laser range finder. Edge
detection is performed on the image and an edge map is created. Such a map is
depicted in Fig. 4 (b) and corresponds to the intensity image of Fig. 4 (a). The
sensor coordinate frame is attached to the edge map. A range edge point D is
defined by the coordinates D(Xs, Ys, Zs). The values Xs,Zs express its position
on the two-dimensional image plane, Ys expresses its depth value. We decided
to use the detector of [6] which performs approximation of the image scan lines
with linear and quadratic segments. The major advantages of this method with
regard to local edge detectors are its computational efficiency and its accuracy.
The latter is due to the fact that whether a range point is classified as edge
point or not does not depend on local information but on the parameters of
the approximated segments which intersect at the point, the determination of
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which is influenced by a big number of range points. However the localization
accuracy of the edge points is still not satisfactory. The surface of the target
objects can not be always well approximated by parabolic segments, especially
in areas where small local surface deformations occur. This is not very likely
to happen when the objects are rigid boxes or deformable but full of material.
Additionally, error is introduced by the laser sensor data acquisition process.
The problem we face is in which way can we robustly recover the parameters of
the 3D linear object boundaries of the objects from the edge map.

2.1 Parameter Recovery with the Hough Transform

The Standard Hough Transform (SHT) is the most common method employed
for recovering multiple parametric models from images. Despite this, the SHT
technique in its original form does not address the problem of localization error.
Another weakness of the SHT is its computational inefficiency when dealing with
models with many degrees of freedom. Lets suppose the model sought has N
parameters and each image point constraints p of them. For each image point,
the SHT increments all the bins comprising a N − p -dimensional manifold of
an N -dimensional accumulator. In our case the models (3D lines) have N = 4
degrees of freedom and each point constraints p = 2 line parameters. Applying
the SHT, will be both memory consuming, since a 4D accumulator is needed, as
well as computationally inefficient, since mapping of a single edge point requires
updating a 2D manifold of the accumulator.

A plethora of algorithms have been proposed to address the computational
inefficiency of the SHT. Lets suppose mainly for simplicity p = 1, that is, we
regard 2D images. The idea is to decrease the number of required accumulator
updates per mapping by constraining the pose of the model. This is done by
simultaneously mapping k (1 < k ≤ N) instead of one pixels to the parameter
space. If so, the dimensionality of the manifold along which the accumulator
must be updated drops from N −1 to N −k. In [11],[2] k = N is regarded which
implies N −k = 0. In this case update of only one accumulator cell per mapping
is needed. Unfortunately these approaches are not free of problems: Mapping
large sets of pixels gives rise to a combinatorially explosive number of possible
sets. Randomization techniques have been proposed to reduce the number of sets
examined.

Other researchers propose a somewhat different solution, which is based on
decomposing the Hough Transform into subproblems. Each subproblem is solved
within the context of a trial: A set of points with cardinality d(d < N) (distin-
guished set) is randomly selected. Random subsets of the remaining points with
cardinality v (varying sets) are then considered, so that d + v = N . The union
of the two sets is then mapped to the parameter space by updating one cell,
since the points in the union fully constrain the pose of the model. After all
the varying sets have been examined, the accumulator maxima are extracted.
A trial is considered successful if those maxima satisfy user-defined criteria. The
process finishes when a fixed number of trials t has been performed. There is
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a variety of algorithms which may result from this framework by assigning differ-
ent values to the cardinality (d) of the distinguished set, the number of varying
subsets (r) examined within a trial and the number of trials (t). Leavers [8]
sets d = 1, r is automatically determined by the framework, and t is the num-
ber of connected components found in the edge map. More recently Olson with
his RUDR (Recognition using Decomposition and Randomization) technique [9]
considers d = N − 1 and r = n − 1 where n the number of edge pixels in the
image. A trial is considered successful when at least m points lie on the model.
Finally, if γ the probability of failure in finding a model in the image, then the
number of trials is given by (1).

t =
log( 1

γ )

(m
n )

N−1
(1)

The selection of the particular cardinality for the distinguished set results to
the fact that in each trial the transform is constrained to lie on a one-dimensional
manifold, that is a curve (Hough Curve), in the parameter space. Many advan-
tages are gained from this selection: Firstly, one dimensional data structures are
used for the accumulation process, so the memory requirements are reduced to
O(n). Secondly, the complexity is O(tr) or O(tn). Since all quantities in (1) are
user-defined constants (m

n is a constant fraction of the input data), the overall
algorithm complexity turns out to be linear to the number of pixels. Thirdly, if
localization error is considered, a set of pixels maps not exactly on the Hough
Curve, but to an area (error cloud) of the parameter space which lies close to
the Hough Curve. The projection of the cloud to the Hough Curve will thus be
a good approximation of it. This allows for simple, accurate and efficient error
propagation to the parameter space. The error is expressed in a straightforward
way via square boundaries in the image space whose side length (δ) is measured
in pixels. The combination of these benefits are not to be found in other ap-
proaches simultaneously, up to our knowledge, and for this reason the adoption
of RUDR framework seems to be the best choice for dealing with our problem.

2.2 Line Detection in 3D

In our case, each edge point constraints two out of the four line parameters. It is
thus not possible to directly apply the decomposition technique discussed above,
because we cannot select a particular cardinality of the distinguished set which
will allow for constraining the transform to lie on an one-dimensional curve, as
in the 2D case. Therefore we came to the idea to break the problem down to
2D subproblems, and the natural way to do it is to examine two such subprob-
lems, each recovering two line parameters using the RUDR technique. In detail:
A trial is initiated by randomly selecting a distinguished point D(Xd, Yd, Zd),
which supposedly belongs to the linear boundary L, shown in the edge map of
Fig. 4 (c). At first, the two parameters of the 2D orthogonal projection of L
to the image plane (ZX) are estimated. Fig. 1 (a) illustrates: The orthogonal
projections of all the edge points to the image plane are taken into account. Lets
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(a) Line detection in the image (ZX) plane (b) Line detection in the LZXY plane

Fig. 1. 3D Line detection in two steps

consider Dzx the projection of D. A two-dimensional RUDR trial is performed
on the image plane with Dzx as distinguished point and the parameters of Lzx

are retrieved. The corresponding range points to the pixels contributed to the
accumulator’s maximum (drawn as “*” in Fig. 1 (a)) are then projected to the
plane defined by Lzx and the axis Y of the sensor coordinate system. Lets con-
sider now DLZXY the projection of D to this plane. A second two-dimensional
RUDR trial is performed on this plane with DLZXY as distinguished point to
retrieve the remaining two parameters of L. Fig. 1 (b) illustrates. The range
points finally determined to belong to the line L correspond to the 2D points
drawn as “*” in this figure. The flow diagram of the trial for detection of a 3D
line is depicted in Fig. 2 (a).
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Fig. 2. Flow diagrams
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2.3 Model Selection

Boundary detection to the edge map of Fig. 4 (b) is presented in Fig. 3 (a), where
the detected lines are superimposed to the edge map. The problem observed, is
that the line detection process outputs redundant lines. This is a consequence of
the randomization. Our algorithm as is, cannot guarantee that more than one
points belonging to the same boundary will not be used as distinguished pixels of
the recovery process. Simply removing the range points determined to belong to
a boundary after a successful trial and continue the process is questionable. We
cannot assure that some of these points cannot be used by a later trial to recover
a model which represents the boundary better. Instead of retaining a locally
sufficient model it is preferable to wait until all the trials take place and retain the
models which satisfy some global optimality criteria. It is logical to assume that
a recovered model should be favored over another if it describes a bigger number
of image points more accurately. The latter statement is a simplified version of
the Minimum Description Length (MDL) principle for model selection, which
has been used quite frequently in various computer vision applications, lately
in [5], [10]. We adopt the strategy of in [5] p.123 for formalizing our approach,
mainly due to its compactness and simplicity: Lets suppose that the recovery
process outputs M models (in our case 3D lines). We regard a vector m of
size M , the element mi of which has the value 1 if the model i is contained
in the final description and 0 if not. We consider as well a M × M matrix
Q, the diagonal terms qii of which express the benefit value for a model, while
the others qij handle the interaction between the possibly overlapping models i
and j. A model benefits when considered in the final description if it describes
many data points with high accuracy as expressed by (2), where Vi the variance
and |Mi| the number of points of the model i, K1, K2 user defined constants.

qii = K1|Mi| − K2Vi (2)

We always penalize overlapping models, thus the benefit of overlapped models
is negative and analogous to the number of points explained by both models, as
expressed by (3).

qij = −K1|Mi

⋂
Mj |

2
(3)

The function the maximization of which will result to the selection of the optimal
set of models, is given by (4).

F (m) =mTQm (4)

Many approaches can be applied for maximizing (4), among them simulated
annealing or neural networks. A greedy algorithm of O(M2) is selected [5] for
efficiency reasons. Fig. 3 (b) illustrates the results of model selection on the lines
detected in Fig. 3 (a).

We name the process of line Detection followed by model Selection the D-S
process, the flow diagram of which is illustrated in Fig. 2 (b). The algorithm’s
complexity is the complexity of the line detection plus the complexity of the
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(a) Before segment selection (b) After segment selection

Fig. 3. Effect of segment selection

selection that is O(tn)+O(M2) ≈ O(n), since t = O(1) and n � M . In terms of
memory consumption, all we need is one dimensional accumulator of size O(n)
plus a two dimensional matrix of size M × M . The D-S process inherits its
robustness from the RUDR approach but it is more accurate because the best
segments are retained by the selection process.

2.4 Acceleration via Point Removal

Our algorithm as is, performs t trials followed by model selection to extract
3D lines from the input edge map on which at least m points lie. The model
selection, guarantees that the remaining linear segments describe the edge points
to which they correspond in an optimal way. In other words, it is highly probable
(this probability is given by the quantity 1− γ) that no other segments can be
found comprising m or more points other than those already discovered. This
observation results to a substantial algorithm acceleration: We adopt an iterative
approach, every iteration of which comprises a D-S process retrieving lines with
at least m points followed by a point removal, so that all the points determined
by the D-S to lie on lines are eliminated from further consideration. We start
by looking for long segments, so m is assigned a big value (mmax) and then we
gradually reduce the number of points expected to be found on a segment by m

2
until a lower threshold (mmin) is reached. The execution time of the D-S step
is proportional to the number of edge points in the image times the number of
trials. The latter is inversely proportional to the number of points expected to
lie in the lines. By looking for lines comprising many points first, we reduce the
number of trials and thus the execution time of the current D-S step. By point
removal reduction of execution time of the subsequent D-S steps is guaranteed.
Thus an overall algorithm acceleration is realized. The flow diagram of the entire
algorithm is depicted in Fig. 2 (b).
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3 Boundary Grouping

We define a 3D vertex as an aggregate consisting of two orthogonal 3D linear
segments and a vertex point defined by their intersection. In the ideal case, two
linear segments X,Y comprise a vertex if the dot product of their direction
vectors x,y is zero, that is: r = xTy = 0. However due to uncertainty in the
estimation of the segment parameters the dot product can never be exactly zero
and a threshold must be introduced to determine the validity of a grouping
hypothesis. The threshold depends on the uncertainty in the calculation of the
line parameters and thus is difficult to define. The dot product is a bilinear
function of the direction vectors. Thus rigorous uncertainty propagation can be
achieved and a statistical test can determine whether the grouping hypothesis is
to be rejected or not, based on a user defined significance value. In [4] a compact
framework for testing uncertain geometric relations is presented, on which our
method is based. If we assume Gaussian noise and if Σxx and Σyy the covariance
matrices of the direction vectors x and y respectively, the variance of their dot
product is given by the expression:

σ2
r = x

TΣyyx+ yTΣxxy (5)

The optimal test statistic for the hypothesis H0 : r = 0 is given by: z = r
σr

∼
N(0, 1). We select a significance value α and compare the value z with the
value N1−α(0, 1). If z > N1−α(0, 1), the grouping hypothesis is rejected. In all
our experiments α was set to 0.05. The overall grouping algorithm has as follows:
All possible pairs of detected lines are considered and those pairs passing the
statistical test along with their intersection points are inserted to the set of the
detected vertices.

4 Experimental Results

We applied our algorithm in various range images corresponding to piled objects.
Two test cases are presented here: Rigid card-board boxes (Fig. 4) and sacks
(bags) full of material (Fig. 5). The edge map, the recovered 3D line segments
and the extracted vertices are as well depicted. In both cases all the objects linear
boundaries were successfully recovered except those which were very noisy and
comprised few number of points. For the boxes case we had n = 1015 edge points
and assumed error of δ = 0.6 pixels during the detection in the image plane and
δ = 4 pixels during line detection in the LZXY plane. The corresponding values
for the sacks test case were n = 1260, δ = 1, and δ = 4. In both cases, the
probability of failure was γ = 0.01 and the model selection parameters were set
to K1 = 1, K2 = 0.1. Two algorithm iterations were executed: The first detected
lines comprising at least 60 and the second 30 range points. The execution time
for vertex detection was about 12 seconds in both cases in a Pentium 3, 600MHz.
Note that if we execute only one iteration in the context of which lines comprising
30 points are sought from the first place, the execution time rises to about 19
seconds. This verifies that the iterative algorithm and point removal actually
reduce the overall execution time.



368 Dimitrios Katsoulas

(a) Intensity (b) Edge Map

(c) 3D Line Segments (d) Vertices

Fig. 4. Boxes

(a) Intensity (b) Edge Map

(c) 3D Line Segments (d) Vertices

Fig. 5. Sacks
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5 Conclusions

We presented a technique for detecting vertices in range images of cluttered
objects in two steps: Boundary extraction and grouping. Recovery of the four
parameters of the linear boundary segments was performed by a sequence of
problem decomposition, model selection and point removal, integrated into an
iterative framework. Efficient and accurate propagation of error to the parame-
ter space was achieved so that robustness was realized. Boundary grouping via
a statistical test contributed to the system’s robustness. Vertex extraction cor-
responds to the recovery of a subset of the parameter set describing each object
on the pallet. In the future we intend to use this framework as a starting point
for the recovery of the remaining parameters of each object.
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