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Abstract. Fast robotic unloading of piled deformable box-like objects
(e.g. box-like sacks), is undoubtedly of great importance to the indus-
try. Existing systems although fast, can only deal with layered, neatly
placed configurations of such objects. In this paper we discuss an ap-
proach which deals with both neatly placed and jumbled configurations
of objects. We use a time of flight laser sensor mounted on the hand of
a robot for data acquisition. Target objects are modeled with globally
deformed superquadrics. Object vertices are detected and superquadric
seeds are placed at these vertices. Seed refinement via region growing
results in accurate object recovery. Our system exhibits a plethora of
advantages the most important of which its speed. Experiments demon-
strate that our system can be used for object unloading in real time,
when a multi-processor computer is employed.

1 Introduction

This paper addresses the depalletizing problem (or robotic bin picking problem)
in the context of which a number of objects of arbitrary dimensions, texture
and type must be automatically located, grasped and transferred from a pallet
(a rectangular platform), on which they reside, to a specific point defined by
the user. The need for automated, robust and generic depalletizing systems,
stems primarily from the car and food industries. Such systems are of great
importance because they undertake a task that is very monotonous, strenuous
and sometimes quite dangerous for humans. In this contribution we discuss the
automatic recovery of piled deformable box-like objects (see Fig. 3), which are
quite often encountered in distribution centers. These kind of objects tend to
deform (usually bend) along their longer side, which renders their fast recovery
a difficult task.

This is the reason why a multitude of systems aiming at depalletizing of
rigid polyhedral objects or boxes have been reported ([1,5,7], etc.), while only
a few systems which deal with depalletizing of non rigid objects exist. In [9,6]
intensity imagery is employed for the recovery of neatly placed sacks. [9] is based
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on the detection of markers on the exposed surface of the objects, [6] on the
detection of edges. These approaches although very fast, do not work when
the objects are jumbled and inherit the major problem of the intensity based
systems, that is, dependency on the lighting conditions. The system described
in [6], additionally assumes that the number of objects on the pallet is known.
This limits its application range even more. Approaches utilizing range imagery
seem more promising. The system described in [4] employs range imagery and
aims at the generic recognition of rigid, flat and “irregular” box like objects at
the same time. However, no experimental results on the detection of “irregular”
objects are shown and no efficiency measurements presented.

Our system employs a time of flight laser range finder mounted on the hand
of an industrial robot to depalletize neatly placed and piled box-like objects. A
vacuum gripper is used for object grasping. The system employs superquadrics
for object modeling and is based on a hypothesis generation and refinement
scheme. Object vertices are detected on the images acquired from the laser sen-
sor, and superquadric seeds are placed on the vertices. These seeds are the initial
object location hypotheses which are then refined in a region growing manner.
In our application it is assumed that the objects contained in each platform are
of the same kind and (known) dimensions and are full of material. We further
assume that each object’s length is longer than their width and both are much
longer than their height, so that their largest surface is mainly exposed to the
laser source. Despite these assumptions the application range of our system is
vast. The advantages of our system are: Independence from lighting conditions
since range imagery is used, computational efficiency due to fast region grow-
ing, accuracy and robustness due to the high quality initial hypotheses and the
constant monitoring of their evolution via region growing, versatility since our
system can deal with both jumbled and neatly placed configurations, low cost
since a range finder is all we need, and last but not least simplicity.

2 Object Recovery

The problem we are dealing with, belongs to the category of model based range
image segmentation problems and as stated in [3], interleaving model recovery
with segmentation (segment-and-fit) is one of the best approaches for handling
it. We use superquadrics for object modeling, since they exhibit a multitude of
advantages. Among them, a small number of parameters with a large expressive
power, and a fast method for their recovery from range images. The expressive
power of superquadrics (SQs) can be further enhanced by the addition of a
couple of global deformation parameters. We use global bending for modeling
the bending of our objects along their longest side.

2.1 Object Modeling with Superquadrics

Superquadrics are a family of parametric shapes, the implicit form of which is
given by Eq. 1. The parameters a1, a2, a3 express the length of the SQ in the
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Fig. 1. Radial Euclidean distance from a superquadric

x, y, z axes respectively and ε1, ε2 its shape. The function F in Eq. 1, is called
the inside-outside function, because it provides a simple test whether a given
point lies inside or outside a SQ. If F < 1, then a given point lies inside the SQ.
If F = 1, the point lies on the surface of the SQ, and if F > 1 the point lies
outside the SQ.
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The radial Euclidean distance |d| of a point P (x, y, z) from a SQ (Fig. 1), is
defined in terms of the inside-outside function, and is given in Eq. 2.

|d| = |r− rS| = |r||1 − F− ε1
2 (x, y, z)| = |rS||F ε1

2 (x, y, z) − 1| (2)

We employ two global deformation parameters to model object bending and
transform the z(elongated) axis of the SQ into a circular section. These are the
curvature of the circular section k and the z axis bending plane angle a (see [3]
for details).

Note that Eq.1, expresses a SQ placed at the origin of the model coordinate
system. Six more parameters should be incorporated (three for translation and
three for rotation) to allow for expressing the inside-outside function in the
general position and two more for the global bending. This increases the number
of our model parameters to 13. If we denote by Λ the set of model parameters,
the inside-outside function takes the form F (x, y, z;Λ).

We use the minimization approach of [10] to fit SQs to data points. This
method minimizes the expression (3), where n is the number of points to fit.

min
Λ

n∑
i=1

(√
λ1λ2λ3(F ε1(xi, yi, zi;λ1, . . . , λ13) − 1)

)2
. (3)

The method is very fast,but has the inherent problem of favoring the recovery
of superquadrics which produce larger values for rs, since as pointed out in [11]:

F ε1(x, y, z) − 1 =
d

|rS|
(
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. (4)
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2.2 Segmentation Approach

One of the most successful approaches for recovering SQs from range data is
presented in [8,3]. The authors attempt recovery of multiple dissimilar occluded
objects from range images using SQs, in a segment-and-fit framework. SQ seeds
are placed in the image in a grid-like pattern of windows. Each seed encompasses
a set of range data points. A SQ is fitted to this data set, and an initial set of
SQ parameters is determined. The seeds are then allowed to grow by adding
neighboring points to their point data set which have a small radial Euclidean
distance from the already recovered models. The growing process continues until
the average error of fit of a model to its data points is bigger than a threshold, no
more points with a small distance from the recovered model exist (fully grown
models), or at least one model reaches twice its original size. In the latter case,
a model-selection procedure is initiated. This procedure retains a set of models
which are determined to optimally (in the MDL sense) describe the data. In this
way non-redundant models which accurately describe the data set are retained.
The remaining models are then further grown and the whole process continues
until no SQs can grow any more.

This system shows many advantages. Computational efficiency is achieved,
because the fast fitting method of [10] is used. Furthermore, the fact that each
seed grows independently, allows for parallel implementation of the algorithm.
Accurate and robust object recovery is accomplished by the placement of numer-
ous, redundant seeds in combination with the frequent invocations of the model
selection procedure which allows only the best models to grow. However, even
if the method is quite fast it is not appropriate for a real time implementation,
due to the big number of seeds and the fact that the model-selection procedure
is non-parallelisable. Algorithm acceleration requires reducing both the number
of seeds as well as the number of invocations of the model-selection procedure.
But this will inevitably reduce the recovery accuracy.

The solution to the problem lies in the experimental observation in [3], p. 135.
It is there reported, that in the event of good quality of initial seeds, the output
of the algorithm is equally satisfactory when the model-selection is invoked only
once, after all seeds are fully grown. It is as well observed, that in this case no
need for initializing many redundant seeds exists any more, since all the models
would yield almost the same result at the end. Ideally one reliable seed per
model would be enough to recover all the models in the image. This observation
is the kernel of our approach. In [2] is stated that a three-dimensional visible
vertex provides the strongest constraints for accurately determining the position
of convex, three-dimensional objects and thus are very good approximations of
the location of the objects in space. In [5] this principle has been employed
for detecting boxes in piles. Since our objects are box-like, their vertices can
still be used for generating accurate object location hypotheses. We therefore
detect 3D object vertices in the scene, place SQ seeds to those vertices and
let them grow to their full size. After all the seeds are fully grown the model-
selection procedure is invoked only once and the best descriptions are retained.
We thus reduce the number of seeds and minimize the number of model-selection
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invocations without reducing the recovery accuracy. The high quality vertex
seeds result in fast region growing. The minimization of the number of model-
selection invocations accelerates the algorithm and renders it fully parallelisable.
Vertex detection and seed placement: 3D object vertices are detected

in the images in the way presented in [5] which is based on the joint use of
edge detection and a technique inspired by the fast dynamic generalized Hough
transform. A scene vertex is represented as a triplet which comprise the position
of the vertex point in the scene and the two normalized vectors pointing in the
direction of the edges joining at the vertex. The vertex is aligned with the xz
surface of the superquadric seeds. The alignment procedure is described in detail
in [5].
Region growing: We adopt the region growing method of [3,8], a descrip-

tion of which has already been presented. However the method as is has some
drawbacks which stem from the fitting function problem expressed by Eq.4.
Let’s suppose that in the object configuration shown in Fig. 2 (a), the “black”
3D range points correspond to the inclined object, while the white ones to the
horizontally placed. When using (3) to fit a model to the black points, the model
C2 (ABCD) depicted with dashed line in the figure is recovered, because then
the |rs|’s of all the black points are maximized (see Eq. 4). Actually in Fig. 2 (a)
|rs12| > |rs11|. In the next region growing operation, the point P2, will be added
to the set of data points of model C2, although it belongs to another object. Due
to monotonic region growth, inclusion of outliers in a model’s point set dete-
riorates the performance of the least square fitting and hinders its growth. A
solution to the problem could be the restriction of the size of the recovered
model along the y axis so as not to surpass its known maximum value. However,
it was observed in practice that this reduces the recovery speed. Another issue is
that the radial Euclidean distance function equally favors points which belong to
the model’s growing direction (which is reliably defined by the 3D seed vertex)
and others which are probable outliers.
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(a) Box like packets (b) Sacks

Fig. 3. Object configurations

(a) Box - like packets (b) Sacks

Fig. 4. Vertices

(a) Box - like packets (View 1) (b) Sacks (View 1)

(c) Box - like packets (View 2) (d) Sacks (View 2)

Fig. 5. Recovered superquadrics
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In order to solve both problems, we exploit the fact that the growing direction
is defined by the vertex with which the seed was aligned and thus the position
of the inliers is grossly known. We include neighboring range points to a model’s
point data set only if they are close not to the growing model but to another
model which is defined in this way so as to be near the probable inliers and away
from the outliers. We name this model Leading Model , because it guides the
region growing process. This model is aligned to the same vertex of the growing
model which was fitted to the scene vertex. Its length along the y axis is kept to
a small value, and the length along the x and z axes equals the corresponding
lengths of the growing model increased by a user-defined small value. Fig. 2 (b)
illustrates. The Leading Model (C2) is aligned to the vertex V of the original
model C1. C2 is bigger than C1 along the z (and x) axis, but much smaller along
the y axis. Points which lie in the growing direction (P1) are favored because
they have smaller radial Euclidean distance (d12 < d11), while others (P2) which
are probably outliers are inhibited (d22 > d21).

3 Experimental Results

For testing our system we used configurations of objects like the ones depicted
in Fig. 3, more specifically box-like packets and sacks. For the configurations
in Fig. 3, the detected vertices superimposed to the edge map are depicted
in Fig. 4. Two views of the recovered superquadrics on the top of the edge
map are presented in Fig. 5, where the reader can get an impression of the
recovery accuracy. The time needed to process each of the range images was
about 3 minutes while the time required for the recovery of a unique superquadric
was about 30 seconds in a pentium III 650MHz PC. Since our algorithm is
fully parallelisable the latter will approximately be the overall processing time
required in a parallel architecture if one processor per seed is used. In terms
of robustness, our experiments demonstrated that the system only occasionally
fails to find at least one object in the pile.

Our system can as well deal with neatly placed object configurations, since
a vertex is defined via only two direction vectors on the edges of the object’s
exposed surface. However, problems are encountered, if the objects are placed
too close one after the other,when no edges and as a result no vertices can be
detected. We expect that a sensor with a higher accuracy or an additional sensor
could be used to overcome this problem. The alert reader may have already
noticed that in Fig. 5 (b) the front sack has not been fully recovered but the
length along the z axis is about 90 per cent of the actual length. This is due
to the fact that the global bending we have used for modeling can not cover all
the ways in which long objects may deform. We plan to solve this problem by
introducing a few more global deformation parameters to our model.
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4 Conclusions

We described a system for depalletizing piled deformable objects. Globally de-
formed superquadrics have been used for object modeling. We placed super-
quadric seeds to object vertices, the refinement of which via a region growing
approach resulted in reliable object recovery. In the future we plan to continue
experiments with the system so as to retrieve detailed accuracy measurements.
In addition, we plan to introduce more deformation parameters to our model
so as to be able to describe more accurately all possible target object deforma-
tions. Further target is the recovery of piled deformable objects of dissimilar
dimensions.
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