Chapter 6

Experimental Results

6.1 Introduction

In this chapter, we aim at experimentally evaluating the performance of the approach de-
scribed in the preceding chapter, regarding computational efficiency, accuracy and robustness
on a variety of target object configurations. The objects we considered for performing our
experiments, are box-like objects very frequently encountered in super markets and distribu-
tion centers. We categorized the particular objects according to descenting degree of rigidity
as follows: (i) sacks (bags), (ii) pillows, (iii) box-like objects wrapped in transparent foil,
(iv) rigid card board boxes. The dimensions of the graspable surface of the objects range
between 108mm x 111mm (small bags), and 173mm X 354mm (pillows). Non rigid objects
like sacks are more difficult to be segmented than rigid objects (e.g. cardboard boxes), and
the reason for this is that the former objects may slightly locally deform: Such deformations
are not accounted for by our modeling entities. In addition, the edge maps originating from
non rigid objects are considerably more noisy than the maps obtained from rigid objects.

For every object category, we manually created 10 configurations. Besides, we created 5
configurations comprising objects belonging to different categories. For each configuration a
range image was acquired, and the objects were recovered by our segmentation approach in
a Pentium 4 2.8 GHz PC, using the parameter values of table 5.2. A part of the obtained
results are illustrated in figures 6.1 until 6.14. In each of these figures, the first row shows
the intensity and range image of the configuration. The second row presents the results
of the edge detection process: The left image of the second row, shows the detected edge
points superimposed on the range image, and the right image the edge map. The third row
presents the results of the seed placement process: The left image of the second row shows
the three dimensional superquadric models corresponding to the seeds, and the right image
the boundaries of these models embedded on the edge map. Finally, the last row presents the
results of our recovery approach: The left image of the last row shows the recovered models
in three dimensions superimposed on the range image, and the right image their boundaries
embedded in the two dimensional edge map.

The presentation of these results is organized in sections. Section 6.2 presents results related
to configurations of bags, section 6.3 shows results related to configurations of box-like pillows
wrapped in a foil. Similarly, sections 6.4, 6.5 and 6.6 shows results extracted from config-
urations containing box-like objects wrapped in a transparent foil, card board boxes and
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configurations combining all objects respectively. Finally, in 6.7, a summary of the results
presented in the previous sections is given. We have to note at this point, that in all cases
expect the section dealing with card board boxes, the system parameters p;, ys controlling
the degree of integration of region and boundary information within the boundary finding
process where set to u; = ps = 0.5. Especially for the rigid boxes we set p; = 1, uo = 0,
because of the high quality of boundary information.

For all configurations related to each of the sections, we extracted measurements concerning
the computational efficiency, robustness and accuracy, which are presented in table form
in the beginning of each section. For assessing our system’s robustness, we measured the
number of true-positive, false-positive and false-negative responses of our system. A system’s
response is considered to be true-positive, when a recovered object actually exists in the
image in the particular position, false-positive, when a recovered object does not exist in the
image, and false negative when a graspable object exists in the image but is not detected
by our system. We did not considered true-negative responses in our assessment, because
in every case at least one graspable object exists in the scene. Apparently, the bigger the
number of true-positive responses, and the lower the number of both false-positive and false-
negative responses is, the more robust the system will be.

As discussed in the preceding chapter, and more specifically in section 5.3.2.2, the decisions
regarding the existence of a graspable object in the image, are taken by the post processing
module of our approach, that is the decisions taken by this module influence the robustness
of our system to the greatest extend. In the context of this module, a recovered model is
assumed to correspond to a graspable object, if the fitting error residual of the superquadric
model to the range points belonging to the object of interest is small, and if the fitting error
residual of the model’s boundary to the edge map is small as well. Given that our objects can
be satisfactory well described by superquadric models, the accuracy of boundary information
plays the primary role in taking correct decisions. Hence, incomplete or missing boundary
information substantially reduces the robustness of our system. The most typical case in
which boundary information is incomplete, is when the objects are placed very tightly one
after another in distinct layers. In this case, the resolution of the sensor is not high enough to
capture the changes in depth, which will allow for boundary detection by our edge detection
module. After extensive experimentation, we found that boundary information is complete
in such cases, when the distance between the objects is not less than 1 cm. This was taken
into consideration when generating object configurations for assessing the robustness of our
system: When we created configurations with similar objects in the same layer (see figures
6.1, 6.6, 6.7, 6.11) we avoided placing objects too close to each other. Measurements on
our system’s robustness are shown in tables 6.2, 6.5, 6.8, 6.11. The first row of each table,
shows the total number of graspable objects in all images of the corresponding section. The
second, third and fourth row the number of true positive, false positive, and false negative
system responses.

For assessing the accuracy of our system, we performed manual segmentation of the input
range images, that is, for all true positive system responses, we isolated all regions in the
input images corresponding to the exposed surfaces of the recovered objects. We then de-
vised two measures for measuring accuracy: The first, employs depth information to measure
similarity, and will be hereinafter denoted to as dsp. This measure expresses the average
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euclidean distance of the recovered model to the points of the region corresponding to the
particular model. The second, which will be hereinafter referred to as dop, expresses the
similarity between the boundary of the recovered model, and the boundary of the manually
segmented region corresponding to this model. In order to compute this measure, we firstly
consider the boundary of the image coordinates of the manually segmented region of a gras-
pable object. Then, we generate the euclidean distance transformed image of the boundary.
Subsequently, we embed the boundary of the related recovered model to the transformed
image. dop equals the average euclidean distance of the pixels on the boundary of the model
to the pixels of the boundary of the manually segmented region. Apparently the lower the
value of both dyp and d3p is, the more accurate the recovery is.

We additionally assessed the accuracy of our system by comparing the parameters of the
recovered model to a reference model. Given a manually segmented region of points to
which a recovered model corresponds, the reference model is acquired by manually fitting
a box-like superquadric to the region. In particular, we compared the parameters related to
the size (a1,a2) and the pose of the models (py, py, ¢, 0,1). Note that as discussed in section
5.3.2.2, it is not possible to robustly determine the height of the model a3, using one view of
the configuration. This is the reason why this parameter is not considered in the comparison.

The assessment of the system’s accuracy is presented in the tables 6.3, 6.6, 6.9, 6.12 of this
chapter. More specifically, the first subtable (a) of each table, shows the averaged values for
the distance measures dsp, and dyp per graspable object. The second subtable (b), shows the
average differences in the parameter values between the reference and the recovered models.

Finally, tables 6.1, 6.4, 6.7, 6.10, illustrate computational efficiency measurements. The first
row of each table, shows the average time required for executing the hypothesis generation
stage of our approach. The second row shows the average time required for the execution
of the hypothesis refinement stage. The third row shows the average time required for the
recovery of a single object. Note, that since in our system the recovery of a model parameters
is performed separately for each seed, the object recovery, the average time for executing
our system in a multi processor computer, where the recover of each seed is assigned to a
separate processor is the some of the time needed to perform seed generation and the average
time required for recovering a single seed.
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6.2 Sacks (bags)

Modules Duration (sec)
Hypothesis generation 3
Hypothesis refinement 125

Hypothesis refinement per model 20

Table 6.1: Computational efficiency for bag (sack) configurations

Measures Values
Graspable objects 48
True positives 43
False positives 4
False negatives )

Table 6.2: Robustness for bag (sack) configurations

Distance measures

d3D (mm)

dap (pixels)

Values

9.1

1.3

(a) Average distances between recovered models and manually segmented regions

Parameters

a1 (mm)

as(mm)

pz(mm)

py(mm)

p,(mm)

¢(deg)

0(deg)

Y (deg)

Values

6.81

9.67

10.43

4.91

9.96

1.23

5.17

1.46

(b) Average difference in pose parameters between recovered and reference models

Table 6.3: Accuracy for bag (sack) configurations
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6.2 Sacks (bags)
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Figure 6.1: Sacks 1
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Figure 6.2: Sacks 2
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6.2 Sacks (bags)
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Figure 6.3: Sacks 3
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6.3 Box-like pillows

Table 6.4: Computational efficiency for pillow configurations

Modules Duration (sec)
Hypothesis generation 5
Hypothesis refinement 74

Hypothesis refinement per model 22

Measures Values
Graspable objects 28
True positives 25
False positives 0
False negatives 3

Table 6.5: Robustness for pillow configurations

Distance measures

d3p (mm)

daop (pixels)

Values

9.9

1.35

(a) Average distances between recovered models and manually segmented regions

Parameters

a;(mm)

as(mm)

pz(mm)

py(mm)

p,(mm)

¢(deg)

0(deg)

Y (deg)

Values

6.37

2.45

9.70

7.89

8.14

2.15

2.85

0.64

(b) Average difference in pose parameters between recovered and reference models

Table 6.6: Accuracy for pillow configurations
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6.3 Box-like pillows
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6.4 Box-like objects

Modules Duration (sec)
Hypothesis generation 2.5
Hypothesis refinement 118

Hypothesis refinement per model 15

Table 6.7: Computational efficiency for box-like object configurations

Measures Values
Graspable objects 51
True positives 47
False positives 0
False negatives 4

Table 6.8: Robustness for box-like object configurations

Distance measures

d3p (mm)

dop (pixels)

Values

8.40

0.90

(a )Average distances between recovered models and manually segmented regions

Parameters

a;(mm)

as(mm)

pz(mm)

py(mm)

p,(mm)

¢(deg)

0(deg)

Y (deg)

Values

4.20

10.7

6.71

2.48

10.63

2.32

0.45

0.91

(b) Average difference in pose parameters between recovered and reference models

Table 6.9: Accuracy for box-like object configurations
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6.4 Box-like objects
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6.4 Box-like objects
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6.5 Card board boxes

Modules Duration (sec)
Hypothesis generation 2
Hypothesis refinement 50

Hypothesis refinement per model 5

Table 6.10: Computational efficiency for rigid box configurations

Measures Values
Graspable objects 47
True positives 44
False positives 2
False negatives 3

Table 6.11: Robustness for rigid box configurations

Distance measures

d3p (mm)

dop (pixels)

Values

7.3

0.5

(a) Average distances between recovered models and manually segmented regions

Parameters

a1 (mm)

as(mm)

pz(mm)

py(mm)

p,(mm)

¢(deg)

0(deg)

Y (deg)

Values

8.0

3.09

0.12

1.92

8.14

1.15

0.57

1.11

(b) Average difference in pose parameters between recovered and reference models

Table 6.12: Accuracy for rigid box configurations
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Figure 6.11: Boxes 1
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6.5 Card board boxes
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Figure 6.12: Boxes 2

147



148 Experimental Results

6.6 Mixed
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6.6 Mixed
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6.7 Conclusions

From the results presented in the preceding paragraphs, we draw the conclusion that the
performance of our approach depends on the rigidity of the objects examined. Actually,
when the issue of computational efficiency is considered, our strategy is slower when dealing
with non-rigid objects like sacks, pillows, or box-like objects, (for which the average pro-
cessing time per image was 125, 74, and 118 seconds respectively and the average recovery
time per graspable object 20, 22, and 15 seconds respectively) than when dealing with rigid
boxes (with average processing time per image 50 seconds, and average recovery time per
graspable object 5 seconds respectively). Concerning robustness, our system gives more false
positive responses when dealing with sacks (4), than dealing with all other objects. Finally,
concerning accuracy, both indeces d3p and dsp have higher values when non-rigid objects
are dealt with: For sacks and pillows their values where 9.10 mm, 1.3 pixels and 9.90 mm,
1.35 pixels respectively, while for rigid boxes 7,30mm, 0, 50pixels. As mentioned in chapter
5, as well as in the first paragraph of this chapter, the reason why this happens is that our
globally deformable modeling entities cannot satisfactory describe the local deformations
occurring to the surface of the non-rigid objects. Furthermore, local deformations of the
non rigid objects is the cause of the generation of noisy edge maps. However, the reduction
in the performance of our system when non rigid objects are addressed is slight, so that
satisfactory handling of all kinds of box-like objects is enabled.

The quantitative measurements shown in the preceding paragraphs are summarized in the
tables 6.13, 6.14, and 6.15. More specifically, table 6.13 shows averaged computational ef-
ficiency measurements for all the object configurations examined, 40 in total. The average
time for image analysis is 91.5 seconds and the average time for the recovery of a graspable
objects is 15.5 seconds. Table 6.14, demonstrates our system’s robustness: In the 40 ex-
amined images, 174 graspable objects exist in total, 159 of which have been successfully
recovered. In other words, the percentage of the true positive responses was more than 91%
. Note, that the system gave false negative responses in only 6 cases. Finally, table 6.15
illustrates averaged segmentation accuracy measurements. More specifically, the index dsp
was 8.68mm per graspable object on the average, while dop was a little bit more than one
pixel per graspable object. The average difference between the dimensions of the exposed
surfaces of the reference and the recovered model per graspable object was 6.35mm for the x
axis, and 6.48mm for the y axis of the model coordinate system respectively. These results
clearly demonstrate that our strategy is a robust, computationally efficient, and accurate
solution to the object recovery problem. The output of our approach on additional object
configurations is exposed in appendix A.
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Modules Duration (sec)
Hypothesis generation 3.13
Hypothesis refinement 91.75
Hypothesis refinement per model 15.5
Table 6.13: Average computational efficiency
Measures Values
Graspable objects 174
True positives 159
False positives 6
False negatives 15
Table 6.14: Robustness
Distance measures | d3p (mm) | dop (pixels)
Values 8.68 1.01
(a) Average distances between recovered models and manually segmented regions
Parameters | a;(mm) | ao(mm) | py(mm) | p,(mm) | p,(mm) | ¢(deg) | O(deg) | ¥(deg)
Values 6.35 6.48 7.99 4.3 9.21 1.74 2.26 1.03

(b) Average difference in pose parameters between recovered and reference models

Table 6.15: Average accuracy
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