Chapter 4

Boundary Detection in Range Images

4.1 Introduction

The great importance of boundary or edge detection as an early stage for more complicated
image processing or computer vision tasks is known since many years [53], [132]. Image
segmentation is perhaps the most blatant example where consideration of the outcome of
edge detection results in significant improvement of its robustness: Usually, image segmen-
tation techniques fail to provide accurate information about the shape and the position of
the objects in the image. On the contrary, edge detection can accurately determine object
boundaries, which are closely related to the shape and the position of the objects. Thereby,
boundary detection complements image segmentation. Since our approach for localizing
piled objects is based on range image segmentation, edge detection in range images is one
of the most essential components of our overall strategy. In the context of our system edge
detection is used as a pre- processing stage, the output of which is seamlessly incorporated
in the subsequent segmentation process. The way in which this is performed, will be shown
in chapter 5

A multitude of algorithms for detecting edges in intensity images have been proposed, based
on local linear filtering ([53] p.175 - 181). The features of interest of these strategies are the
Jump edges, since only this type of edges is encountered in intensity images. A jump edge
in an intensity image is considered as a discontinuity in the intensity values. In accordance
to this definition, jump edges in range images are defined as discontinuities in depth values.
Such edges occur when an object is occluded by other objects or itself. In addition to the
jump edges, crease edges can be found in range images as well, in the position where two
surfaces meet, and are characterized by discontinuities in surface normals. Besides, combi-
nations of jump and crease edges may exist. These different types of edges, are illustrated in
fig. 4.1. Fig. 4.1 (a), shows an one dimensional jump edge. Fig. 4.1 (b), shows a crease edge.
Finally, Fig. 4.1 (c), shows a combination of the two edge types. In each figure a dotted
arrow shows the position of the edge along the x axis of the sensor coordinate system. The
reader is referred to [53] p. 473, for a more formal definition of the different kinds of edges
and their properties.

The existence of more than one type of edges, renders the task of edge detection in range
images more elaborate than edge detection in intensity images. The majority of algorithms

proposed to deal with edge detection in range images, (e.g. [6], [22]), define the sought edges
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Figure 4.1: Edge types in range images

in a local manner, and thereby use local operations for detecting them. Their advantage is
the computational efficiency. However, local determination of boundary points often leads
to false alarms in the presence of noise in the image. Incorporating global shape information
in the edge detection process, which is available when knowledge about the geometry of
the objects appearing in the image exists, is expected to increase the robustness of an edge
detection algorithm.

Our approach for edge detection in range images is inspired by [81], in the context of which
edge detection via scan-line approximation with geometric parametric models is performed.
The main drawback of this edge detector, namely the scan line over-segmentation problem is
addressed by the introduction of a simple merging step. In addition, we incorporate a method
for detection of the noisy data points created by the effect of laser beam splitting between
surfaces of different ranges. Finally, a procedure for fine localization of the edge points is

44



4.2 The Scan-line approximation technique 45

introduced. Experimental results on a variety of target object configurations demonstrate
that our edge detection framework exhibits increased robustness and accuracy with regard
to [81]. These characteristics in combination with the computational efficiency of our edge
detection approach, allows for its usage as a component of our overall system for automatic
unloading of piled box-like objects.

In the sections that follow our approach for boundary detection is discussed in detail. Section
4.2, gives an overview of the scan line approximation method and highlights its advantages
and problems. Section 4.3 introduces our improved version for scan line approximation. In
section 4.4, experimental results demonstrate the credibility of our approach. Finally, an
overview of the advantages of our approach, along with a discussion about the way in which
its output will be subsequently used by our system, conclude this chapter.

4.2 The Scan-line approximation technique

One of the most popular approaches able to incorporate information about the target objects’
shape in the edge detection process, is the one reported in [81]. The method approximates
the rows and columns of the image, namely the scan lines, with one dimensional curves.
Assuming that the objects in the image can be well modeled by implicit quadratic surfaces,
approximation of the scan lines via quadratic polynomials is performed.

The framework involves usage of the scan line splitting technique of [45]: If s,e, and m the
respective positions of the start, end and mid point in the scan line, the corresponding depth
values in these positions y,, ¥, and 1, are used to define the parameters of the approximat-
ing quadratic model via interpolation. Subsequently, the point with the maximum distance
from the approximating model is retrieved. Assume max its position in the scan line. If
the distance of this point to the model is lower than a user-defined threshold e, the points
between s and e are considered to be satisfactory approximated by the model. Else, if the
number of points contained in each segment with bounding indices s,maz and maz + 1,e is
bigger than the user defined threshold v, the splitting process is recursively applied on the
two segments.

Candidate edge points are the end points of neighboring segments produced by the splitting
process. Fig. 4.2 illustrates: Consider the neighboring segments s;, s3. Assume e the end
index of s; and s = e+ 1 the start index of so. Assume as well that y = fi(z), y = fa(x), the
parabolas approximating s;, and s respectively. If 7 = ”Te, then the jump and crease edge
strengths of candidate edge points at e and s are given by (4.1),(4.2), respectively. The candi-

date points whose strength is bigger than a user defined threshold are the output edge points.

JES = [fi(Z) — fo(T)] (4.1)
_ st @ D(=f5@), DT
T I(=£1@), DIII(=f3@), D] (4.2)

The approach exhibits many advantages: Computational efficiency is the outcome of the fast
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Figure 4.2: Edge detection

scan line segmentation via splitting, and of the fact that interpolation is used for the ap-
proximation. Robustness and accuracy in the localization of the edge points, is the outcome
of incorporating global shape information in the process. Classification of a range point as
edge point, does not any more depend on local information but on the parameters of neigh-
boring approximating models, the estimation of which is influenced by a bigger number of
range points. Finally, the approach is simple and easy to implement. The thresholds used,
namely the minimum number of points per segment v, the maximum allowable distance of
a segment’s point to the approximating model ¢, and the crease and jump edge strength
thresholds, have a straightforward interpretation, which renders their tuning relatively easy.

A drawback of the method however, is the scan line over-segmentation, illustrated in fig. 4.3 (a),
where, for reasons of simplicity, linear instead of parabolic models have been employed for the
approximation. In this image, data points are represented by crosses, and the segment end
points are shown in bold. Ideally, all segments inclusively between each of C-I, J-K, M-N
and O-P should be replaced with one segment. In [81], the problem is implicitly addressed
by the fact that not all segment end-points are delivered as output of the edge detector, but
only those with large edge strengths. The end point of segment O for example is determined
not to be a valid edge point, since the angle between O and P is almost 7. However, the
problem cannot be entirely solved in this way: Boundaries of small noisy segments are falsely
classified as edge points, since their crease edge strength value can be relatively large. This
is the case for the boundaries of the segments E, F, for example. Experimentation with
our sensor showed that such cases cause a significant degradation of the boundary detection
output. Thereby, a solution to the over-segmentation problem is of significant importance
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Figure 4.3: Edge detection via scan line approximation with linear models

to our application.

Another problem observed, has not entirely to do with the segmentation approach itself,
but with the fact that time of flight laser sensors output noisy points in the areas of depth
change, due to splitting of the laser beam [2]. Fig. 4.4 (a) illustrates: The noisy points are
assigned to the segments B and C in the figure. Since these segments do not correspond to
real objects, edge strength values calculated at their boundaries are unreliable, and should
not be included in the output of the edge detection process. Detecting such noisy segments
and discarding the respective edge information, is expected to improve the performance of
the edge detection algorithm.

We employ the scan line approximation technique for edge detection. However, there are
differences from the original approach of [81]. A merging step is incorporated to deal with
the over-segmentation problem. In addition, a simple technique for detecting segments with
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noisy points in the areas of depth change is devised. Finally, a method for more accurate
localization of the edge points in the image is introduced.

4.3 Owur approach for edge detection

A possible strategy for dealing with scan line over-segmentation is to increase the maximum
distance threshold e. Unfortunately, this may lead to the inverse effect, namely scan line
under-segmentation, which is more difficult to handle. A solution to the problem is described
in [135]. In this work, a method for scan line segmentation based as well on approximation
with geometric models is presented. The main difference with [81], is that the segmentation
is attempted without the usage of the threshold €, so that segmentation becomes almost
non-parametric. Scan line splitting continues until the next splitting step creates a segment
with less than v points. The resulting over-segmentation is handled by the introduction of
a very simple merging step: For each segment of the final segmentation, the point with the
maximum distance d from the approximating model is considered. A significance value S
is then assigned to the segment, defined as the ratio between the length of the segment L
divided by d, as in (4.3).
L

S = Pl (4.3)
According to the merging procedure each segment is combined sequentially with the previ-
ous, the next and both the previous and next segments and for each combination the value
S is computed. If one of the combinations results in a bigger S than the one of the candidate
segment, the corresponding segments are merged. Note, that definition of the significance
measure as in (4.3), implies v = P + 1, where P the number of parameters of the approxi-
mating model, so that infinite significance values are avoided.

The advantage of the merging approach is that its realization does not require introduction
of additional thresholds. Experimentation with the method showed that it produces supe-
rior results when long, well approximated segments outnumber the small, probably noisy
segments. In [135], this is not the case: the number of small segments is relatively large,
because splitting is performed exhaustively. The splitting threshold € guarantees the exis-
tence of longer segments in our case. Application of the merging step in the scan line of
fig. 4.3 (a), is depicted in fig. 4.3 (b). Note that fitting is used, instead of interpolation
for model approximation, in order to generate the segmentation of the figure. Using fitting
results into more accurately approximated segments, and thus in more reliable significance
values. Thereby, usage of fitting improves the effectiveness of the merging process.

We employ a simple but effective heuristic approach to detect and discard segments corre-
sponding to spurious data points caused by the effect of laser beam splitting between surfaces
of different ranges. These points are aligned and can be accurately modeled by linear mod-
els, which are almost parallel to the range axis Y of the sensor coordinate system. This is
illustrated in fig. 4.4 (a). The noisy segments B, C in the figure, can be easily identified: The
angle formed between each segment and the depth axis Y of the sensor coordinate system
is computed. If the angle is smaller than a predefined threshold, the segment is considered
noisy and discarded. Application of this filtering to the data of fig. 4.4 (a), is depicted in
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fig. 4.4 (b). Note in the figure, that the meaningless crease edges generated between the
segments A-B and C-D in fig. 4.4 (a) are replaced by a jump edge expressing the depth
difference between the segments A-D, as desired. We have experimented with more sophis-
ticated techniques for discarding these noisy points (e.g. [2]), which did not prove to deliver
better results for our data sets. In addition, combining edge detection and noise filtering in
one process saves computational costs.

Note, that in fig. 4.4 (a), some points expected to belong to segment D (namely the points
between the dashed arrows in the figure), are assigned to the noisy segment C by the splitting
process. The reason for this is that the splitting process is not allowed to generate segments
with less than v points. This problem of minor point misclassification during splitting is ob-
served in [81], and a heuristic solution is proposed for candidate crease edge points only. For
improving the position of candidate jump edge points after noisy segment deletion, points
from the deleted noisy segment C which have a distance lower than e from the approximating
model of the neighboring segment D are added to the segment D. The new starting point
of D is marked as candidate edge point. As seen in fig. 4.4 (b), the candidate edge point is
accurately recovered in this way.

As discussed in chapter 3, we employ superquadrics for modeling our target objects. Since
the two dimensional analog of a superquadric is a two dimensional superellipse, superel-
lipses should be normally used for approximating the scan lines in our image. The problem
is that the superelliptic model does not linearly depend on it parameters. Thus, fitting
superellipses to data points requires iterative optimization techniques, which have high com-
putational costs. This is the reason why we used linear segments for scan line approximation.
This decision reduces the accuracy in edge point localization when the target objects are not
planar. As we will see in the following section, the introduced inaccuracy is not high, as is
the case for the computational cost savings achieved. In chapter 5, we will as well see that
the introduced inaccuracy in edge detection does not prevent the subsequent segmentation
framework from robustly recover the objects in the image.

Our overall approach for edge detection acts on all the rows and columns (scan lines) of
the input range image. Linear models are employed for modeling our almost planar target
objects, and model fitting is utilized for the approximation. For every scan line, splitting
is performed. A merging step follows. Subsequently, noisy segments are identified and
discarded. The boundary points of segments neighboring noisy segments are accurately
localized. Finally, edge strength values are calculated and the points with high values are
returned as edge points. In the paragraph the follows, experimental results give the reader
an overview of the performance of our approach.

4.4 Experiments

We conducted experiments with about 20 range images corresponding to box-like object
configurations. In figures 4.5, 4.6, 4.7, representative results are illustrated: Fig. 4.5 shows
edge detection results for an object configuration consisting of card board objects. Fig. 4.6
shows results for a configuration consisting of box-like objects wrapped in transparent foil.
Finally, fig. 4.7 shows results for a configuration consisting of bags (sacks) full of material.

49



50 Boundary Detection in Range Images

For all figures, the first image shows the intensity image of the configuration. In the sec-
ond row, edge detection results obtained via application of [81] to the corresponding range
images are depicted. The detected edges are superimposed to the range images. The third
row depicts the results of our approach. For all experiments ¢ = 15 and v = 3 was used. By
inspecting the figures, one can see that the accuracy on edge point localization drops when
dealing with non planar objects. This is the outcome of using linear segments for approxi-
mating the superelliptic objects in the images. In the results obtained by our approach, the
localization accuracy does not deteriorate sharply when dealing with non rigid objects, as is
the case when [81] is applied.

v XN

FOM = - x > d (4.4)

=0

In order to acquire a more clear overview of the performance of our approach, we performed
a quantitative comparison of our strategy to [81]. Assuming N the number of points in a
scan line, M the number of segments and d; the distance of the point at position ¢ from the
model approximating the point, we used the quantity defined in (4.4) to perform the com-
parison. The quantity FOM has been introduced in [137] and used among others in [135] for

comparing segmentation results. Lower values of FOM correspond to better segmentations.

Jiang/Bunke [81] | Our Approach
Fig. 4.5 1345 755
Fig. 4.6 1774 1074
Fig. 4.7 2375 1198

Table 4.1: Edge detection comparison results

The comparison results are illustrated in table 4.1. The first and second columns of the table
correspond to the average FOM per scan line obtained by [81] and our approach, respec-
tively. The rows of the table correspond to the range images where the methods have been
applied. The first row concerns the card board boxes configuration (fig. 4.5), the second
row the configuration of box like objects (fig. 4.6), and the third row the configurations of
sacks (bags) of fig. 4.7. Note, that as highlighted in [133], the FOM measure favors ap-
proximations with larger number of segments. Since the number of segments produced by
[81] is larger than those obtained by our approach, due to the fact that the latter includes a
merging step, the FOM favors the result obtained by application of [81]. Despite this, for
all cases the average FFOM per scan line obtained by our approach is lower.

Regarding computational efficiency, execution of our method took about 2 seconds in a

Pentium IV processor of 2.8 GHz, which implies that our technique is suitable for real time
use.

20



4.4 Experiments

51

(]

(a) Approximation output
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Figure 4.4: Detection of noisy segments
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(b) Edge image using our approach

Figure 4.5: Card board boxes
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(a) Intensity image

(b) Edge image using our approach

Figure 4.6: Box-like objects
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(b) Edge image using our approach

Figure 4.7: Sacks
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4.5 Discussion

We presented an edge detection approach for range images, inspired by the scan line approx-
imation technique. The main advantage of the approach with regard to local edge detectors,
is accuracy in the localization of the edge points, and this stems from the fact that global
shape information is incorporated in the edge detection process. In addition, our approach is
more robust than the standard scan line approximation technique [81], due to the introduc-
tion of a threshold free merging step, and the incorporation of a mechanism for identification
and rejection of noisy segments in the scan lines. Besides, our approach is computationally
efficient. This is mainly due to the fact that the scan line segmentation mechanism is based
on a fast splitting operation, as well as to the speed of the merging operation.

In the future, we plan to continue experimentation with our approach by considering a bigger
variety of target objects and configurations. In addition, we plan to compare our edge de-
tection approach with other edge detectors, using ground truth segmented images of various
sensors, in the context of the range image segmentation comparison framework of [72].

Target of our overall system is to recover the graspable objects in the input image. The
characteristic of these objects is that they are not occluded by others. Hence, the edge
detection process should favor delivering edge points lying on the boundaries of the non
occluded objects. This requirement is taken into consideration in the way in which the jump
edges are retrieved. Given a jump edge, both the end point of the current segment and the
starting point of the next are probable edge points. However, the point which is further away
from the laser sensor, is a point which belong to an occluded object. This is the reason why
given a pair of end points of neighboring segments only the point lying closer to the sensor
is marked as an edge point. To exemplify, given the jump edge formed by the segments A
and D of figure 4.4 (b), where both the starting point of D and the end point of A are
valid edge points (since the depth difference between the segments is big enough), only the
starting point of D is marked as an edge point since it lies closer to the sensor.

In conclusion, the information contained in the output of the edge detection process, cor-
responds to the position of the boundaries of the non-occluded objects in the image plane.
These boundaries correspond to the boundaries of the ezposed surfaces of the objects (see
section 3.8). Hence, in our case, solution of the segmentation problem is equivalent to the
localization of the the boundaries of the exposed surfaces of the objects in the image. This
is not easy to realize using edge information only: As we have already seen, since we have
selected very simple models for approximating the objects, there are inaccuracies in the lo-
calization of the edge points, when the objects in the pile are non-planar. In addition, the
edge points detected do not form close contours, that is, there are gaps between the edges.
Besides, still false alarms, that is noisy edge points, occur.

As we will see in the following chapter, boundary information is not the only information
source used for segmenting the image. Region information is as well incorporated, which
complements the output of the edge detection process. More specifically, the edge informa-
tion produced by our top-down scan line splitting approach, is used in conjunction with a
bottom up region based segmentation process to achieve robust segmentation of the objects
in the input range images.
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