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Abstract

The problem of “Structure From Motion” (SFM) aims at recovering
the 3D shape and motion of flexible objects from their 2D projec-
tions on images. Assuming orthographic projection, Tomasi and
Kanade introduced a closed form solution to this problem. Later,
Bascle and Blake specialized this method to the single image case,
assuming that the 3D object belongs to a Linear Object Class for
which the model was pre-computed. We present, in this paper, an
alternative to this approach which improves the accuracy of the re-
covery. The previous approach is based on the factorization of a
matrix using the low-rank constraints of the problem. Instead of this
global estimate, we advocate the use of a selective estimate which
we introduce in this paper. We detail both methods and assess their
performance quantitatively and qualitatively, we present an efficient
implementation of our algorithm and verify the theoretical results
by Monte-Carlo simulations and experiment on photographs.

1 Introduction

The problem of “Structure From Motion” (SFM) aims at recov-
ering the 3D shape and motion of flexible objects from their 2D
projections on images. In Computer Vision, objects are usually
represented as 3D points that undergo rigid and non-rigid motion.
Then SFM is subdivided into two problems: first estimating the
motion of these points, then separating this motion into a rigid
motion (i.e. camera motion) and non-rigid motion (i.e. motion
of the 3D points relative to one another). This is generally a
non-linear problem that must be resolved using optimization
techniques. However under the assumption of orthographic
projection, Tomasi and Kanade [Tomasi and Kanade 1991]
have shown that the problem is reduced to a bilinear form
that can be solved using low rank constraints. To model the
non-rigid motion, it is usually assumed [Bascle and Blake 1998;
Brand 2001; Irani and Anandan 2000; Bregler et al. 2000;
Brand and Bhotika 2001; Torresani et al. 2001], that it can
be decomposed into a linear combination of key-motions.
Under this assumption, the object is said to belong to a
Linear Object Class (see Section 2). Then, the recov-
ery of the non-rigid motion reduces to the estimation of
the coefficients of the linear combination. Some applica-
tions [Brand 2001; Irani and Anandan 2000; Bregler et al. 2000;
Brand and Bhotika 2001; Torresani et al. 2001], aim at recovering
the rigid motion, as well as the 3D non-rigid key-motions and
the coefficients of their linear combination for a sequence of
images. Other [Bascle and Blake 1998] assume that the non-rigid
key-motions are available and estimate the non-rigid motion and
the linear coefficients of a single frame (reviewed in Section 3.1).
This is the problem we address in this paper. The approach
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presented here is based on the fact that several estimates of the
non-rigid motion can be computed. In [Bascle and Blake 1998],
the non-rigid motion is recovered from an implicit mixture of
all these estimates. However, we show in Section 3.2 that one
of these estimates is systematically much more accurate than all
others and also than the global estimate of [Bascle and Blake 1998]
(in Section 3.3). The theory is then verified on simulations in
Section 5.

2 Linear Object Classes

As is generally the case in the field of rigid/non-rigid motion
separation [Tomasi and Kanade 1991; Bascle and Blake 1998;
Brand 2001; Irani and Anandan 2000; Bregler et al. 2000;
Brand and Bhotika 2001; Torresani et al. 2001], the non-rigid mo-
tion is modeled as a linear object classes [Vetter and Poggio 1997].
The application proposed in this paper also assumes that the flexible
objects under study pertain to the Linear Object Classes. For these
objects, the non-rigid 3D deformations vary linearly. One example
of Linear Object Classes is human faces [Blanz and Vetter 1999].
The 3D shape of an object is represented by a set of N 3D
vertices, arranged into an N × 3 shape matrix, Q. This process
by which a continuous shape is discretized into a finite number
of vertices is called shape sampling. The shape sampling must
be done consistently for different instances of objects belonging
to a class. This means that the vertex number i must represent
the same feature on all the examples of the Linear Object Class.
The shapes produced in this manner are usually referred to as
being in correspondence. Then, the shape of an object belongs
to a linear manifold. Using a set of T example shapes, Qi, this
manifold is computed by a Principal Component Analysis. We
denote by S0 = 1/T ∑T

i Qi the average of the example shapes and
by Si, i = 1, . . . ,M, the ith principal component thereof (M, the
number of principal components retained is bounded by T − 1).
PCA is obtained by performing an SVD decomposition to the data
matrix, A, whose columns are the example shapes subtracted by
the average shape:

A3N×T =
(

vec(Q1 −S0) . . .vec(QT −S0)
)

= U VT (1)

C3N×3N =
1
T

A ·AT =
1
T

U · 2 ·U (2)

SiN×3

.
=

λi√
T

U(N)
·,i (3)

where vecQ vectorizes Q by stacking its columns, C is the covari-
ance matrix of the example heads, the columns of U are the prin-
cipal components (PC) and λi√

T
are their associated standard devia-

tions (λi is the ith diagonal element of the diagonal matrix ). Si is
the reshaped ith PC scaled by its standard deviation. U·,i is the ith

column of U, the notation a(n)
m×1

(see [Minka 2000]) folds the vector
a into an n× (m/n) matrix. As a result, any shape can be obtained



by a linear combination of these M principal components (In the
following α0 = 1):

SN×3 =
M

∑
i=0

αi ·SiN×3
(4)

The covariance matrix of αi, i = 1, . . . ,M is IM , the identity matrix
(indeed, the projection of the example shapes onto the scaled PCs
are the columns of V). Applied to faces, this equation means that
the shape of the face of any individual can be obtained from a linear
combination of principal components.

Assuming a weak perspective, the position of the vertices in an
image is computed by the following Imaging Equation:

XN×2 = f ·
(

M

∑
i=0

αi ·Si

)

·R3×2 +1N×1 · tT2×1
(5)

where the rows of the correspondence matrix, X, hold the (x,y)
image frame coordinates of the vertices, f controls the scale of the
object in the image, R3×2 is the first two columns of a 3D rotation
matrix, t is a 2D translation vector and 1 is a column vector full of
ones. Note that there is no ambiguity between the scale factor f and
the magnitude of the α’s as α0 is constrained to be equal to 1.

Given an image of an object of the class, the rigid/non-rigid
transformation separation problem is to recover the parameters
which explain the image. More formally, given (i) X, the corre-
spondences between the vertices of the model and an image of the
object and given (ii) the PCA of the non-rigid deformations of the
Linear Object Class (Si), recover (i) the imaging parameters f , R
and t and (ii) the non-rigid parameters αi.

In this paper we assume that the correspondence problem (that
of assigning vertex labels to the pixels of the image) has been
addressed: using a correspondence finding algorithm, correspon-
dences were found for the N vertices (see for instance [ano n. d.] for
an algorithm able to recover a large amount (in the region of 10.000)
of correspondence points). Generally, this correspondence problem
is not solved exactly. Hence, the recovered correspondences, X,
are noisy: X → X + E. In this paper we assume that the noise is
i.i.d. (independently and identically distributed) and Gaussian with
constant variance: E ∼ N(0,σN). The Imaging equation is then
modified to take the noise into account (S is a horizontal stacking
of the M + 1 shape matrices and α is an M + 1× 1 column vector
of the non-rigid parameters):

X = f ·SN×3(M+1)
· (α ⊗R)+1 · tT +EN×2 (6)

where ⊗ denotes the Kronecker (tensor) prod-
uct [Magnus and Neudecker 1999] which multiplies an m × n
and a p × q matrices into an mp × nq matrix. The requirement
of this method is to have a sufficient amount of corresponding
points: N > 3(M + 1). It is assumed that S has full rank:
rank(S) = 3(M +1).

3 Parameters Recovery

3.1 Global Method a.k.a. Factorization-based

In this section we outline the global approach introduced by Bascle
and Blake [Bascle and Blake 1998], which aims at estimating the
scale, f̂ , the non-rigid parameters α̂ , the rotation matrix R̂ and the
2D translation t̂ from the correspondences affected by noise, Equa-
tion (6). It is assumed that the Si are centered at the origin and
henceforth the translation is the mean of the 2D points:

t̂ =
1
N

N

∑
i

XT

i,· (7)

where Xi,· is the ith row of X.
Let us denote by Q the 3(M +1)×2 matrix product of the scale,

the rigid and non-rigid parameters: Q = f α ⊗R. Then, omitting
the error matrix, Equation (6) can be rewritten as:

S ·Q = X−1 · t̂T (8)

and denoting by S+, the pseudo-inverse of S, S+ =
(

STS
)−1 ST we

obtain:
Q̂ = S+ ·

(

X−1 · t̂T
)

(9)

Then, separation of the rigid and non-rigid parameters is obtained
by reshaping the matrix Q̂ into a matrix P and applying SVD:

P6×(M+1)
=

1
f
(vecQ̂T)(6) = U · ·VT ' vec R̂ · α̂T (10)

where is a diagonal matrix that holds the singular values of P
in descending order (λ1 ≥ λ2 ≥ . . . ≥ λ6). As this matrix is the
outer-product of two vectors, in the noiseless case, E = 0, it has
rank 1, and vecR and α are proportional to the first column of U
and V, respectively. However, generally, due to the noise, λi, i > 1
are not negligible and the estimated rotation matrix, R̂ and non-
rigid parameters α̂ are noisy. We call these estimates, the global
estimates.

Note that the ultimate step of this algorithm is to enforce the
orthonormality of the rotation matrix by applying a linear transfor-
mation, see [Tomasi and Kanade 1991] for further details.

3.2 Kernel-based Selective Method

The matrix Q holds a series of 3×2 matrices stacked vertically. In
the noiseless case, these matrices are proportional to the rotation
matrix:

Q = f
(

α0RT α1RT . . . αMRT
)

T (11)

However, due to the noise, this will not be the case:

Q̂ = f̂
(

α̂0R̂T

0 α̂1R̂T

1 . . . α̂MR̂T

M

)T
(12)

where the R̂i are different estimates of the rotation matrix. The
message of this paper is that these estimates are not impacted by
the noise evenly, and it turns out that, generally, one of these esti-
mates is much better (i.e. less impacted by the noise) than all the
others, included the global estimate of the previous section. Instead
of using all equations on equal footing, we use the great redundancy
of the equations available in order to find a more accurate solution.

Selective Estimation We demonstrate in the appendix that the
pseudo-inverse of S can be expressed in terms of S̃i, the horizontal
stacking of all shape matrices but the shape matrix i, and Ki, the
kernel of S̃i, whose rows are unit-length and mutually orthogonal:

S̃iN×3M

.
=
(

S0 . . . Si−1 Si+1 . . . SM
)

(13)

KiP×N
· S̃i

.
= 0, and S+ =





(K0S0)
+ K0

. . .
(KMSM)+ KM



 (14)

where P, the number of kernel vectors is generally equal to N−3M.
Hence, the ith estimate of R is:

f̂ α̂iR̂i = (KiSi)
+ Ki ·

(

X−1 · t̂T
)

(15)

This is the least square estimate of f̂ α̂iR̂i obtained by mapping the
correspondences X onto Ki. Using the constraint that the columns
of a rotation matrix are unit-length enables the determination of



R̂i independently of f̂ α̂i from Equation (15). Note that this method
allows also the estimation of the 2D translation, t, without using the
assumption that the Si are centered at the origin made in Section 3.1.
Indeed, if K is the kernel of S, K ·S .

= 0 (in the general case, K has
N −3(M +1) rows), we have from Equation (6):

t̂T = (K ·1)+ ·K ·X (16)

Quality Assessment Equation (15) provides M +1 estimators
of the rotation matrix. So, a pertinent question would be: Is one of
these estimators better than the other ? By better we mean, reduces
the sum of squared residuals more. In this paragraph, two criteria
of the quality of an estimate R̂i are presented. We show qualita-
tively and quantitatively the fact that one estimator is systematically
better than the others. The first quantitative criterion uses the con-
straint that R holds the first two columns of a rotation matrix; hence
RTR = I2, where I2 is the 2×2 identity matrix. So, one scheme to
select the estimate R̂i which is the least impacted by noise is to use
the one that, pre-multiplied by its transposed, is closest (in a Frobe-
nius norm) to the identity matrix. As an example, Table 1, shows
R̂T

i R̂i for i = 0,1 and 2. In this example, the best estimate is the
one for i = 0, i.e. using the mapping onto S0, the mean shape. We,

i=0 i=1 i=2
(

1.00 −0.01
−0.01 1.00

)(

1.00 −0.94
−0.94 1.00

)(

1.00 −0.89
−0.89 1.00

)

Table 1: R̂T

i R̂i for i = 0,1,2 which should ideally be equal to I2.

now, present a second quantitative criterion which is based on the
minimum sum of squared residuals and does not use the constraint
on R. To obtain the ith estimate, the matrix X must be mapped onto
Ki (for clarity, in the following equations, the translation t and the
noise are omitted):

Ki · X̂ = f̂ Ki ·Siα̂iR̂ (17)

Then the fitted correspondence matrix X̂ back-mapped into its orig-
inal space is obtained by plugging Equation (15) into the previous
Equation:

KT

i ·Ki · X̂ = KT

i ·Ki ·Si · (Ki ·Si)
+ ·Ki ·X (18)

So the sum of squared residuals for the ith estimate is:

SSRi = ‖X−KT

i ·Ki · X̂‖2 (19)

= ‖KT

i ·Ki ·X−KT

i ·Ki · X̂‖2

+‖X−KT

i ·Ki ·X‖2
(20)

The first term of Equation (20), SSR1
i is the SSR of the fitted corre-

spondence matrix projected orthogonally into the row-space of Ki
and the second term, SSR2

i is the SSR between the correspondence
matrix and its projection into the row-space of Ki. SSR2

i depends
on the correlation between X and SiR. The higher the correlation,
the lower the SSR will be. To illustrate the case, let us assume that
X ∝ SkR, i.e. αi = 0 for i 6= k, then SSR2

i is equal to ‖X‖2 for
i 6= k. Moreover if the shape matrices Si are mutually orthogonal,
then SSR2

k is null. Recall that the Si are obtained by PCA and, as
a result, are orthogonal. Hence SSR2

i is minimum for i = k. SSR1
i ,

i.e. the SSR of the fitted correspondence matrix projected into the
row-space of Ki, is equal to ‖KT

i ·Ki ·E‖2. As we assumed that the
noise was isotropic, its projection into the row-space of Ki does not
depend on i. As a conclusion, the SSRi is minimum for the i for
which SiR is the most correlated with X. For shapes which belongs

to the linear object class, this correlation is given by λi/
√

T (see
Equation (3)), i.e. by the Frobenius norm of Si. PCA asserts that the
correlation is maximum for i = 0, the average shape (and decreases
exponentially). As an example, the norm of Si for i = 1,2 relative to
S0 for the 3D Morphable Face Model is 0.0232 and 0.0168. Hence,
R̂0 (see Equation (15)) is the best estimation of R.

This result can be seen in yet another way. The signal-to-noise
ratio for the ith estimate is:

SNRi =
‖(Ki ·Si)

+ ·Ki ·X‖2

‖(Ki ·Si)
+ ·Ki ·E‖2

=
SNRn

SNRd (21)

For the aforementioned reasons, the denominator of Equation (21),
SNRd , is similar for all i, but its numerator, SNRn, depends on the
correlation between X and SiR which is maximum for i = 0.

Non-rigid parameters Now that we have found a good esti-
mate for R, R̂0, we can plug this estimate into the imaging equation
and obtain a linear system in α and f . Omitting the noise, Equa-
tion (6) can be rewritten as:

vec
(

X−1 · tT
)

= f ·
(

vec(S · (R̂0 ⊗ IM))
)(2N) ·α (22)

and hence,

f ·α =
(

(

vec(S · (R̂0 ⊗ IM))
)(2N)

)+
·vec

(

X−1 · t̂T
)

(23)

and f is obtained using the constraint that α0 = 1.

3.3 Comparison: Selective vs. Global

We denote by P = P̂ − P the error made in estimating the ma-
trix P (Equation (10)). We showed in the previous Section that
the error made on the estimate R̂0, i.e. the first column of P̂,
is much lower than the one made on any other estimate R̂i. We
now investigate how this error is propagated to the global estimate
computed in Section 3.1. The following developments are based
on [Sun et al. 2001]. Let us define the square matrix W whose
eigenvectors are the columns of the matrix U (of Equation (10))
and the eigenvalues are λ 2

i :

W = P ·PT = U ·Λ2 ·UT (24)

Due to the noise, there is a perturbation P and henceforth a per-
turbation on W, W = P̂ · P̂T, and to a first order approxima-
tion W ' P · PT + P · PT. Now, we would like to compare

P·,1/‖P·,1‖, the error made on vec(R̂0)/‖vec(R̂0)‖ (i.e. the selec-
tive estimate), to U·,1, the error made on the first singular vector
of P (i.e. the global estimate of vec R̂). The error which has lowest
norm is to be selected. It is shown in [Weng et al. 1989] that, to a
first order approximation:

U·,1 ' U ·∆ ·UT · W ·U·,1 (25)

where ∆ = diag(0,(λ2 − λ1)
−1, . . . ,(λ6 − λ1)

−1). To be able to
compare this error with P, we need to express W · U·,1 as a
matrix right-multiplied by P. Using Equation (8) p. 31 of
[Magnus and Neudecker 1999], W ·U·,1 = (UT

·,1 ⊗ I6) · vec( W).
Then using Equation (7) p. 31 and Equation (1) p. 47, of the same
reference:

vec( P ·PT) = (P⊗ I6) ·vec( P) (26)

vec(P · PT) = (I6 ⊗P) ·K6,2 ·vec( P) (27)



where K6,2 is the 12 × 12 commutation matrix which trans-
forms vec(A) into vec(AT) (see [Magnus and Neudecker 1999;
Minka 2000]). Then,

U·,1 'U ·∆ ·UT · (UT

·,1 ⊗ I6)

·
(

P⊗ I6 +(I6 ⊗P) ·K6,2
)

·vec( P)
(28)

Denoting by A the matrix which maps vec( P) into U·,1, the se-
lective method yields a better estimate if:

‖A ·vec( P)‖ > γ · ‖
[

I6 06×6M

]

·vec( P)‖ (29)

where γ = 1/‖P·,1‖. Note that the right side of the inequality is
equal to 1/SNR0. From Equation (28), it can be seen that the er-
ror made on the first singular vector of P is a linear combination of
the error made on all P·,1. Therefore, the selective estimate will in
general be better. In the Monte-Carlo simulations presented in Sec-
tion 5, the selective method yielded always more accurate results.

4 Efficiency

The speed bottleneck of the algorithm presented here is the com-
putation of the kernel K0. Naturally, we could compute this ker-
nel off-line if we selected a constant set of N vertices of the 3D
Morphable Model on which to perform the computations. Unfor-
tunately these N vertices may not be visible on all images, as the
set of visible vertices depends on the pose of the object and hence
varies from images to images. So, instead of pre-computing a sin-
gle K0 for one set of vertices, we compute several ones for ver-
tices visible at different poses and choose at run-time the kernel
with the minimum number of hidden vertices. As, generally, this
kernel would still be computed with vertices hidden for a particu-
lar image, it must be updated on-line such as the updated kernel,
K∗

V−3M×V
, would be the same as the one computed on the set of V

visible vertices only. The rational is that it is much more efficient
to update the kernel rather than to compute it from scratch. The
kernel of a matrix S can be computed by performing a QR Fac-
torization [Golub and van Loan 1996] (the kernel is the transpose
of the N − 3M columns of Q associated to the zero diagonal ele-
ments of R). Now, we wish to obtain the updated matrix Q∗ which
would factor the matrix S∗ obtained by deleting the N −V rows of
S associated to the hidden vertices. There is an algorithm for doing
exactly that in Section 12.5.3 of [Golub and van Loan 1996] based
on Givens rotations, whose complexity is O((N−V ) ·N). Note that
for a reasonable discretization of the pose sphere, N −V is usually
two orders of magnitude lower than N. For increased performances
the Givens rotations are implemented using the Fast Scaled Givens
Transformations algorithm [Anda 1995]. Then, the pseudo-inverse
is computed by QR factorization implemented again using the Fast
Givens Rotations whose complexity is O(P), recall that P is the
number of kernel vectors. So, the global efficiency of the recovery
is determined by the matrix-matrix multiplication and is O(PN). A
MATLAB implementation of the whole algorithm (recovery of the
rigid and non-rigid parameters), using N = 1000 vertices among
which 10 are hidden, runs in 0.5s on a 2GHz Pentium computer.

5 Experiments

Using a 3D Morphable Model [Blanz and Vetter 1999] of faces, we
can render photo-realistic images of faces. A 3D Morphable Model
is constituted by a shape model and a texture (or color) model. It
adheres to the linear object class formalism and, as a result, the
shape model is that described by Equation (4). We rendered images
of faces using Equation (5) by performing Monte-Carlo Simulation
on the parameters α,R, f and on the noise E (see Figure 5). As

these images are synthetic we dispose of a large number of exact
correspondence points. Additionally, we can easily measure the
accuracy of the recovery as the ground truth is also known exactly.

Two 3D Morphable Models are computed, each on a training set
of 100 different individuals. The first 50 principal components are
retained for both models. The first model is used to generate the
ground truth face images (and their 2D correspondence points), the
second is used in the recovery algorithm. We adopt this scheme
to ensure that the method could cope with novel instances of the
object that do not exactly belong to the linear object class.

We verified that, when there is no noise and when the same Mor-
phable Model is used for the ground truth and for the recovery, only
N = 3M +3 (i.e. 2 kernel vectors) are sufficient to recover the 3 ro-
tation angles, the scale, the translation and the non-rigid parameters
perfectly.

In this section we first test, on synthetic examples, the accuracy
of the method as a function of the noise, then we measure it as a
function of the number of correspondence points. Additionally we
show an example of recovery of the parameters on a photograph
for which the correspondence were computed by an automatic al-
gorithm [ano n. d.].

Test Set for the Monte Carlo simulation As we tested our
method on synthetic images we know the exact correspondence
points given by Equation (6). We generated 50 sets of parameters.
We rendered 512×512 images in which the faces were scaled to oc-
cupy the entire image. We added a Gaussian noise with zero mean
and standard deviations σN = 0,1,2, . . . ,10 (i.e. 550 experiments
were conducted).

5.1 Selective vs. Global

In this section, we compare the accuracy of the global and the se-
lective methods. The experiments were conducted using N = 1000
corresponding points. Table 2 presents various statistics averaged
over all 550 experiments reflecting the accuracy of the selective ap-
proach. The quality of the selective and global recoveries are indi-
cated by the comparison of ‖ U·,1‖ = 0.747 to the last column of
the table.

i ‖R̂T

i R̂i − I2‖ SSR1
i SSR2

i SNRn
i SNRd

i SNRi
‖ P·,i‖
‖P·,i‖

0 0.029 2.744 96 13570 518 61.9 0.011
1 1.115 2.744 99 814 682 1.38 5.022
2 1.001 2.744 99 518 463 1.27 11.07
3 0.974 2.744 99 492 451 1.21 6.255
4 1.080 2.744 99 431 393 1.29 8.822

Table 2: Accuracy of the selective approach for different i.

5.2 Accuracy wrt the Noise

In this section we test the accuracy of the recovery of the rotation
and non-rigid parameters as a function of the noise. The experi-
ments were conducted using N = 1000 corresponding points. The
estimate of R, R̂0, is obtained using Equation (15) and normalizing
its columns. The α̂ and f̂ are recovered by Equation (23).

We show the mean and the standard deviation of the absolute
value of the error of the recovery of the rotation angles and the non-
rigid parameter as a function of σN in the Figures 1 and 2.

To measure the estimation error on the non-rigid parameters, we
chose the normalized correlation, which is a good measure used for
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Figure 1: Absolute value of the difference between the ground truth
rotation angles and the ones recovered by the algorithm (in degrees)
as a function of the standard deviation of the correspondence noise.

nearest-neighbor identification. If α are the ground truth param-
eters and α̂ the recovered parameters, the normalized correlation
is:

αT · α̂
‖α‖ · ‖α̂‖ (30)

−2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 c
or

re
la

tio
n 

of
 α

Figure 2: Normalized correlation between the ground truth αi and
the one recovered by the algorithm as a function of the standard
deviation of the correspondence noise.

5.3 Accuracy wrt the Number of Corresponding
Points

In this section we measure the accuracy of the algorithm with re-
spect to the number of correspondence points available for three
noise levels (σN = 2,5, and 8). Figures 3 and 4 show the results
for the rotation angle φ (azimuth) and the non-rigid parameters. In
these graphs, to increase the visibility, only the means are drawn.

Figure 5 shows renderings of the ground truth along with render-
ings of the recovered parameters for different number of correspon-
dence points and various noise levels.
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Figure 3: Error in φ as a function of N, the number of correspon-
dence points used, for three values of the noise.
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Figure 4: Normalized correlation between the ground truth αi and
the one recovered by the algorithm as a function of N, the number
of correspondence points used for three values of the noise.

5.4 Experiment on a Photograph

We present on Figure 5.4 an example of recovery obtained on one
of the CMU-PIE face image [Baker and Matthews 2001]. Corre-
spondences of more than 6000 vertices were obtained using an
extension of the Inverse Compositional Image Alignment algo-
rithm [ano n. d.]. Note that the synthetic image presented is the
result of not only a correspondence search (and rigid and non-rigid
parameters recovery, as explained in this paper) but also a texture
(or color) fitting as is common in 3D Morphable Model Fitting.

6 Conclusions

In this paper, we presented a new method which addresses the prob-
lem of Structure From Motion when a model of the non-rigid mo-
tion is available, i.e. the recovery of the rigid and non-rigid param-
eters of an image of a linear object class given the correspondences
between model vertices and image pixels. A closed form solution
of this problem existed already [Bascle and Blake 1998] which is
based on the low rank constraint of the problem. We call this esti-
mate global. We showed in this paper, that, up to a scale factor that
can be resolved using the constraints of the problem, a series of esti-
mates of the rigid parameters can be computed. We showed that one
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Figure 5: The first row shows the synthesis of two ground truth
faces and the next rows, synthesis using the parameters recovered
for different number of correspondence points (first column) and
level of noise (second column).

(a) Input (b) Overlaid Recov. (c) Synthetic

Figure 6: Example of one recovery on an image from the CMU-PIE
data set.

of these estimates is systematically better than the other ones. Then,
using this estimate, an improved estimate of the non-rigid parame-
ters is obtained by solving a linear system of equations. We call this
approach selective. We presented results on synthetic images and
on a photograph verifying the theory. Naturally, the analytic solu-
tion provided by this algorithm might be further refined by using it
as an initial estimate in an iterative minimization of Equation (5),
as suggested by the Bundle Adjustment theory[Triggs et al. 1999].

A Pseudo-Inverse as a function of Ker-
nels

Theorem 1. Partitioning an m× n, m > n, matrix S horizontally

into
(

S1
m×k

S2
m×n−k

)

and defining by K1 and K2 the kernels of S2

and S1, respectively, (i.e. K1 ·S2
.
= 0 and K2 ·S1

.
= 0) the pseudo-

inverse of S is:

S+ =

(

(K1 ·S1)
+ ·K1

(K2 ·S2)
+ ·K2

)

.
= B (31)

Proof. The unique pseudo-inverse of a matrix satis-
fies the four Moore-Penrose conditions (see for example
[Golub and van Loan 1996] p. 257). So we need to prove that B
satisfies these four conditions. As we have:

B ·S =

(

Ik 0k×n−k

0n−k×k In−k

)

= In (32)

the first two and the last conditions are trivial: (i) S ·B ·S = B, (ii)
B ·S ·B = B and (iv) (B ·S)T = B ·S. Proving the condition three,
that S ·B is symmetric is more involved. Let us define Km−n×m as the
kernel of S, K ·S = 0. Now let us take for granted that B ·KT = 0,
we will prove it hereafter. Then

(

B
K

)

·
(

S KT
)

=

(

In 0n×m−n

0m−n×n Im−n

)

= Im (33)

Hence,
(

B
K

)

=
(

S KT
)−1 and

(

S KT
)

·
(

B
K

)

= Im (34)

It follows that S ·B+KTK = Im, therefore S ·B is symmetric, which
proves condition (iii). As the four Moore-Penrose conditions are
verified by B, B is equal to the unique pseudo-inverse. To conclude
the proof, it remains to show that B ·KT = 0.

The row-space of K is embedded into the row-space of K1 and
K2, i.e. there exists matrices F and G such that:

K = F ·K1 = G ·K2 (35)

Then, solving for F and G and plugging the solutions back into
Equation (35) yields:

K = K ·KT

1 ·K1 = K ·KT

2 ·K2 (36)

Post-multiplying these expressions by S gives:

K ·S = K ·KT

1 ·K1 ·S = K ·KT

2 ·K2 ·S = 0 (37)

Hence,
K ·KT

1 ·K1 ·S1 = K ·KT

2 ·K2 ·S2 = 0 (38)

Then, utilizing the fact that (K1 ·S1)
+ =

(

ST1 ·KT

1 ·K1 ·S1
)−1 ·ST1 ·

KT

1 , it follows that K ·BT = 0, which was to be proved.

It is trivial to extend this proof to multiple partitions.
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