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Abstract

Guided by the results of much research work
done in the past on the performance of 2D image
moments and moment invariants in the presence
of noise, suggesting that by using orthogonal 2D
Zernike rather than regular geometrical moments
one gets many advantages regarding noise effects,
information suppression at low radii and redun-
dancy, we have worked out and introduce a com-
plete set of 3D polynomials orthonormal within the
unit sphere that exhibits a ”form invariance” prop-
erty under 3D rotation like the 2D Zernike polyno-
mials do in the plane. For that reason we call this
set 3D Zernike polynomials. The role of the angu-
lar exponential function in the 2D Zernike polyno-
mials set is now played by the spherical harmonics
on the surface of the unit sphere. Spherical har-
monics and spherical moments are introduced in a
very succinct, self-contained and compact way us-
ing algebraically powerful tools like ’'power substi-
tutions’ and generating functions. Unambiguous
affine normalization and unique affine pose deter-
mination using 3D image moments of degree not
greater than three as well as derivation of com-
plete, uncorrelated affine invariants are naturally
accomplished using the concepts we introduce in
the present paper.

1 Introduction

Using image moments for 2D image analysis and recog-
nition has a history of almost forty years. The major
drawbacks of the ordinary or geometrical moments have
been, noise sensitivity, redundancy and information sup-
pression at low radii. To overcome these difficulties, so
called Zernike moments have been developed and ex-
perimentally tested (cf. for example [1], [10], [13] and
[18]) using the set of Zernike polynomials that is com-
plete and orthonormal in the interior of the unit circle
in 2D [2]. Since the experiments and the analysis have
shown that 2D Zernike moments do not suffer from the

abovementioned shortcomings we develop in this paper
the extension of Zernike polynomials and moments to
3D in order to have also in 3D a useful all-round tool
for image analysis and recognition that may be utilized
for such different 3D objects like those ranging from
sparse points sets to dense volumetric MRI or PET im-
ages. Some attempts of extending the theory of moment
invariants to 3D have been [14] where only second de-
gree invariants were explicitly derived and [12] where the
need for invoking the representations of SO(3) has been
recognized but no completeness has been pursued. The
need for 3D affine invariants may arise in all instances
where one has to work with 3D data that have resulted
from an affine reconstruction of the scene. Affine invari-
ants will then absorb this ambiguity and can be used for
recognition purposes. Further applications of 3D affine
transformations are to be seen in approximately mod-
elling non-rigid transformations, especially in conjunc-
tion with non-rigid registration algorithms. The major
difficulty in developing the theory has been encountered
in the treatment of the representations of the group
SO(3). Although there is of course a great deal of scien-
tific literature even in conjunction with vision covering
the relevant topic (cf. for example [7], [9], [11], [16]
and [19]) we felt that there was still lacking some alge-
braically convenient tool for this subject. After some
first attempt in [3] we describe in this paper the needed
algebra using so called ’power substitutions’ to be de-
fined in the next section and generating functions which
greatly simplifies the subject and allows the derivation
of explicit algorithms given by compact formulas.

1.1 Power Substitutions (PS)

Given a d-dimensional vector x with components
Z1,T2,...,xq we form all n-th degree monomials in the
components of  and arrange them lexicographically in
a new vector which we denote by []™ and call the n-
th power of x. It is not difficult to prove by induc-
tion that [2]™ will consist of ("*? ') components, i.e.



dim([z]*) = ("*%"!). Thus, any expression homoge-
neous in & of n-th degree may be written with a row
vector ¢T of suitable dimension as ¢T[z]". Now con-
sider some linear substitution Az of  and let us form
the n-th power of Az. The result of this operation will
obviously have components that are homogeneous in x
of n-th degree and hence [Az]" will be linear in [z]™.
We denote the linear substitution lying in between with
[A]™ and obtain

[Az]" =: [A]"[z]" . 1)

We call [A]™ the n-th power substitution (n-th PS) of
A [15]. Note that in the relation above the matrix A
may be rectangular or even a single row vector. The
following properties of the n-th PS of matrices A and
B are easily verified:

 [AB]" = [A]"[B]"
o [A1]" = ([A]")"" =: [A] ™ if A square regular
e [I™ = I where I denotes the identity matrix with
appropriate dimension
o [MA]™ = A\"[A]" for some scalar A
o [A"=[B]"iff A=AB and A" =1
These relations show that [A]™ defines a representation
(homomorphic map) from the algebra of matrices into
itself. Further properties of the concept of power sub-
stitutions may easily be derived. We only list here some
of them which are of importance in the sequel:
o [diag(a)]" = diag([a]")
o det ([A]") = (det(A))r (™)
where p(n,d) = ("t%7") if A is d x d square
We note that the above defined PS concept does not
handle rows and columns of A in a symmetrical manner.
n
To find the relation between [A]™ and [AT] we first

determine this relationship for the case of vectors and
consider to this end the n-th power of the inner product
between d-dimensinal vectors ¢ and x:

(cTz)" = (;j:l ci:ci) " =
- %

vi+--trvg=n
If we now define a vector p} containing the polynomial
. | . . .
coefficients s oo in lexicographic order then we may
write:

n!

ul.-. Vd—. ul--- Vd
‘1 Cd vilvgl 1 Ty -

n T ..
(c"z)" = [d"" diag (p}) [2]" .

On the other hand, since ¢’z is a scalar its n-th

power may be interpreted as the n-th power of a one-

dimensional vector and we obtain
(c"z)" = [c"z]" = [¢"]" [z]" .
Comparing we arrive at

[c"]" = [d]"" diag(p}) - 2)

Now considering the above equation for some product
Ac instead of ¢ we eventually get for a d; x dz matrix
A the relation:

n
A7) = diag(py,) "t (A" diag(p}) - (3)
From this equation we see that if we define

A"l = [diag(p2 ) [A]" \/diag(p},)~t  (4)

then we will have the symmetric result

AT — 7lRIT

We call A" the n-th symmetrized power substitution
(SPS) of A. Note that all properties that have been
given for PS remain valid also for SPS and we addition-
ally have:

o If A is orthogonal or unitary then so is also Al
e If A is diagonal then A™ = [A]"

As alast remark of this section and since it is needed
later we want to see what happens if we raise a vector
twice in some power. In particular, we are interested in

the case [[C]z]l where ¢ € C2. Obviously, [[(]2]l will
consist of monomials in the components of { of 2/-th
degree. However, since dim ([¢]?) = 3 we will have

dim ([[¢]*)') = (l J; 2) > 20 + 1 = dim ([¢]%) .

Since [¢]* contains all such monomials only once there
must be (%) — (20 + 1) = (%) repetitions in [[C]z]l and

we may define an (*}?) x (21 + 1) sparse zero-one matrix

T, that contains in the i-th row only one nonzero entry,
namely a 1 that picks from [¢]* the monomial that is

present in the i-th component of [[C]Q]l:

1
[[CIP] =: Tu[¢]”" ()
Switching to SPS this equation reads:

¢l — o120 (6)

with V; := /diag (pl3)\/diag(pg)[l]T”/diag (pgl)*1

again only with a single nonzero entry in each row.
Since it is not difficult to infer from the scalar equa-

[2][7] [21]
tion (CTC) = (CTC) that V;‘FVZ = I we also get
from above
VITC[2][l] - C[2l]

and for any 2 x 2 matrix A we obtain

APy, = v, AP ang v APy, = A0



2 Moment vectors and reduction
to the orthogonal case

Using the formalism introduced in the last section we
can now define normalized moment vectors containing
all geometrical moments of n-th degree (scaled appro-
priately as below) of any function f(z) defined in the
interior of the unit sphere in the following manner:

M, = /f(:z:):z:["]da:/ / f(x)dz .

x|<1 1z|<1

Similar expressions, as well as moment matrices

Mi,,q = / f(@)zPlzld” dw/ / f(z)dz

|z|<1 |z|<1

have been used in [17] for the derivation of various in-
variants. However, we are interested here primarily in
the determination of a complete and canonical set of
invariants with respect to the group of 3D affine trans-
formations. Reduction of the affine to the orthogonal
case is easily accomplished and has been repeatedly re-
ported in the literature (cf. [6], [17], [5]). It amounts
first to compute central moments and to suppose that
the affinely normalized image is such that its scatter
matrix M 1 is the identity matrix, M[;,,) = I. The
scatter matrix M, ;; and the moments M, of any im-
age f'(x) = f(L 'z) will then read:

My, ;= LL" and (7)

M =L"Mm, . (8)

Now, unique Cholesky decomposition of M f1,1] gives
a lower triangular matrix C with M{l,l] = cc”’

and hence we will have CCT = LL" or equivalently
(C'L)(C'L)T =I. That means C" 'L = R or

L=CR 9)

where R must be some 3D rotation/reflection, i.e.
RR" = I. Thus, we have already computed the linear
part L of the affine transformation up to an orthogonal
transformation. Equation (8) will then read

M! = (CR)™ M, or

c MM’ = R M, (10)

and we see that by multiplying each moment vector
M, by the unique and known matrix C~™ we ob-
tain the moment vectors of the normalized image mul-
tiplied by the SPS of some unknown orthogonal matrix
R. Note that R™ will then be orthogonal as well and

that ¢~ M 7, will be the moment vectors of the im-
age f(R™'z) , R € O(3). This is the essence of the
reduction of the affine problem to the orthogonal case
and in the next section we will have to investigate the
appropriate system of basis functions in order to reach a
normalization with the maximal possible economy, i.e.
without losing degrees of freedom on the way of com-
puting the invariants and exploiting as much moments
of low degree as possible.

3 Formulation of P ¢ SO(3) in
terms of A € SU(2) and their
irreducible representations

The study of functions or images on IR? under 3D rota-
tions is greatly facilitated if we decompose the underly-
ing function space in its irreducible (minimal) subspaces
that are invariant under the action of the rotation group
SO(3). To derive the suitable system of basis functions
we exploit the affinity of SO(3) to the special unitary
group SU(2) i.e. the group consisting of all 2 x 2 com-

plex matrices A = a ;* ) with aa*+bb* =1 and

—b*
hence A~! = A*T" | where the asterisk denotes complex
conjugation. We quickly review some basic facts in ele-
mentary but explicit form.

Suppose X and Y are 2 x 2 complex matrices related
by

Y =AXA'=AXxA4"T . (11)

We will then have:

o tr(X) = tr(Y) and det(X) = det(Y)

e If X is hermitian then sois Y:
X=XTeyvy=v"".

Denoting the elements of hermitian X and Y according
to

X:( T3ty T + jxo )and

Ty —J)T2 —T3+ T4

Y:( Ys T4 Y1t gy ),Wherej2:—1
Y1—JY2 —Y3+ s

we see from tr(X) = tr(Y) that y4» = z4 and from
det(X) = det(Y') that yj — (y +y3 +y3) = 21 — (21 +
z}+23) and hence also y? +y3+y3 = 2+ z3+23 . That
means that (11) defines a 3D rotation P that sends the

T U1
3D real vector x = T toy = Y = Px and
zs3 Ys

it may be verified that this concept produces all possible
3D rotations, i.e. it generates the whole SO(3) group
[9].! Now if we concatenate the rows in equation (11)

Tn fact we get SO(3) twice because A and —A yield according
to (12) the same rotation.



by forming 4-vectors we obtain:
vec(Y) = (A ® A% )vec(X)

where ® denotes the Kronecker product of matrices.

0 0 1 1
With the constant matrix T := Ly . 00
1 -5 0 0
0O 0 -11

this equation reads

T(i):(A@A*)T(gZ)

whence since y = Px and y4 = x4 we finally obtain
T ' (A® A")T = ( (f; (1) )

This equation says that the similarity transformation
induced by the constant matrix T simultaneously block-
diagonalizes the (reducible) representation of SU(2)
given by the Kronecker product A ® A* for all A €
SU(2). In the language of representation theory we say
that this Kronecker product is irreducibly decomposed
in a 3 X 3 representation given by P and in the iden-
tity representation given by 1. On the other hand it
is well known that the unitary representations Al of
SU(2) form a complete list of all irreducible representa-
tions of SU(2) [16]. That means that P and A must
be equivalent representations and it remains to find the
similarity transformation which transforms one to the
other. We obtain it by comparing (12) with the easily
verified decomposition

(12)

- ) APl o
Qlasare=(4 ). @
0 —-1/v2 0 1
where Q := (1) 8 _01 8 . The very impor-
0 1/vV2 0 1

tant result reads

P=U"'APlU ac UP = APlU (14)
1 0

with U := % 0 0 —V2 a constant unitary
-1 3 0

3 X 3 matrix.

3.1 Irreducible invariant subspaces and

their generating functions

The subspace L; consisting of all linear functions on
IR? is of course spanned by the components of & and
a 3D rotation P is naturally acting irreducibly and in-
variantly on L1 by Px. We consider the change of basis
given by

eil(x)=Ux .

Now due to (14) P is acting according to
e1(Pz) = UPz = APlUz = AP, ()

via its equivalent unitary representation Al with ¢ e
C? we define the following generating function e; (x; ¢)
for ey (x):

e1(x;¢) := ¢Pley (x)

Note that e;(x; () is a scalar. Furthermore, it is easily
seen from above that the action of a rotation P on the
generating function eq (x; () is given by

e1(Pz;¢) = ex(z; ATC) . (15)

Now we will show that we obtain irreducible invariant
subspaces consisting of I-th degree homogeneous polyno-
mials in & gathered together in e;(x) simply by raising
the scalar e;(x;¢) in the I-th power and by extending
the definition of a generating function for eq(x) to a
generating function for e;(x) according to

ei(®;€) = ("ey(m) = e1(w;¢)" -

Since eq(x;¢) is a scalar, exponentiation may also be
conceived as the vector exponentiation defined in 1.1.
This allows us to write:

CT[Ql]el(w) _ [CT[z]el(w)][l] — CT[2][l]el(w)[l]

(16)

and since we know from (6) that ¢ = v ¢l we
finally obtain from above

e(z) =V5ie(x)l = vIulgl (17)

Note that the dimension of e, (x) is 2n+ 1 whereas that
of z™ is ("}?) (V' is not square). So we don’t have
yet achieved a decomposition of the whole space of n-
th degree homogeneous polynomials in . However, we
will see below that this can be accomplished by aug-
menting the vector e,(x) with all vectors of the form
|2 |* en—on(x) = |z|** e ().

The action of a rotation P on e;(x) is best determined
using generating functions. We get from (16) and (15)

el(Px;¢) = e1(Px; €)' = e1(; A7) = ei(w; A7)
which again using the definition (16) gives

e;(Px) = APe(z) . (18)

The invariance of the subspace spanned by the compo-
nents of e;(x) w.r.t. 3D rotations is thus established.
As we mentioned earlier the representations given by
Al A € SU(2) are irreducible for all integer I. We ob-
serve that here there appear only representations with
an even exponent [21], i.e. of dimension (21+1). Now, in
order to be able to give the transformation that decom-
poses the whole space of n-th degree homogeneous poly-
nomials in its irreducible invariant subspaces we need a



last definition. Since |z|**[x]' consists of homogeneous
polynomials of (2k + [ = n)-th degree we may define
another sparse matrix S, that compiles |z|?*[z]' from
[z]™ by setting

|z|**[z])! =: Spn[x]™ .
Switching to SPS we obtain

jaP*all = 8,20

Sl =/ diag(p}) Siny/ diag(py)~! .

We are now in a position to be able to give the square
regular matrix that achieves the desired decomposition.
Consider the vector

(19)

with

en(x)
|$|26n—2($)
E.(z) = | |zl'en-a(@)

|z|" e ()

where ¢ is 0 or 1 according to whether n is even or odd
respectively. We then obtain from (17) and (19)

E,(z) = Wz
VZ"U["]

vivbls;
invertible and we can switch back and forth between
E,(z) and z!"l. The action of a rotation P is seen
from (18) to be of the form

E,(Pz) =O,(A)E,(x)

Al27]
Al2(n=2)]
with O,(A) =

Al29]
a(26+1)+(20+5)+---+(2n+1) = ("}?)-dimensional
unitary block-diagonal matrix reflecting the irreducible
invariant decomposition that has been achieved. On the
other hand, since we also have from (20)

E,(Pz)=W,P""W1E, (z)

we see that the similarity transformation induced by
the known and constant matrix W, in fact block-
diagonalizes the n-th SPS of a rotation matrix:

w,.PRw-1=0,4) .

4 Normalization with respect to
the special orthogonal group

SO(3)

In this section we consider the moment vectors
C~ MM’ of an image that is offset from the normal-
ized image f(x) by some 3D rotation P. Although we
could carry out the normalization for general orthogo-
nal transformations R as well (i.e. also with det(L) < 0
and therefore with det(R) = —1) again without having
to use for compensation moments of higher degree than
three we will confine ourselves here to det(L) > 0 and
consequently det(R) = 1, i.e. in the sequel we will set
R = P € SO(3). As we have seen in (10) the moment
vectors will then relate as

cMpm! =P, .

The transformation W, that block-diagonalizes plnl
will then decompose also the moments space in mini-
mal subspaces that are stable under 3D rotations [5]:

w,c "M =0,(AW,.M, ,

and if we denote the resulting subvectors of W,, M, and
W,,C=" M, with m,,; and m!, respectively, i.e.

My.p

mn,n—z
wW,.M, =

my.s

)

and accordingly for the primed variables then we will
have

m!, = APm,, . (21)

We call m,,; the spherical moments of n-th degree and I-
th order. Thus, W,,M,, contains all spherical moments
of n-th degree with order n, n — 2, ---, 4.

Since A is unitary we first observe that all scalars
|y | will be invariant w.r.t. orthogonal transforma-
tions, i.e. |my| = |m],|. However, due to serious in-
formation loss such a system of invariants would not
be complete in the sense that we could not infere from
it structure information of the object. We are rather
interested in an implicit normalization that is applied
directly to the moments and allows the reconstruction
of the image in some affinely standard position. It is
expected that since the orthogonal group has 3 param-
eters the normalization will be achieved by fixing three
degrees of freedom (d.o.f.) of the spherical moments
mg31 and mas3. To this end we consider these moments
of third degree:

my, = APlmg, and mh, = Ay, .

If we denote the invariant |m}; | = |mgs1| with ¢, c € R,
and the components of mj; /¢ with (u,v,—u*), where



uweC,velR, 2uu*+v> =1and u =: |u|e’* then
it is easily verified that the matrix B consisting of two
unitary factors B; and B, of the form B = B2 B; with

-

(1—-v)/2e7 ¢ (14+v)/2
and iB
e 0
By = ( 0 eif

is such that
BPml, = (0,6,007 = mg

for any 3. Thus, the factor B[lz] normalizes mj; to

ms; = (0,c,0)7 by fixing two d.o.f. and the factor BY
does not affect this first partial normalization. Now we
apply the transformation B 21 to all spherical moments
m.,; and obtain forn =1=3

BB, -
= diag(e 908, =710, ¢=320 1,120 110 ¢i60) By,

If the third component of B[la]m'33 is denoted with
w = |w|e’¥ then we see that we can compute 3 too by
demanding that the third component of B[G]m'33 = Mmgs
be real and positive (due to symmetry the fifth compo-
nent will then be real and negative), thus fixing a third
d.o.f. as expected:

e 12l — 1 = eIB = £I¥/2

Note that the sign + does not mean any ambiguity
because matrices =B € SU(2) translate according to
(12) or (14) to the same 3D rotation. Now comparing
BPm! = m,,; with (21) where the computed unitary
matrix B achieves the normalizations for ms3 and mas;
demanded above we conclude A = B~ = B*? and the
linear part of the affine pose of the object f'(x) with
respect to the normalized object is obtained from (9)
and (14):
L=cUu~'B U .

The set of complete affine invariants may then be given
with the aid of (8) as moments of the normalized image:

M, = L~"M, (22)

5 3D Zernike polynomials and -
moments

In this section we derive a set of polynomials in the three
components z,y and z of x € IR® which is orthonormal
and complete in the unit sphere. Besides, it exhibits a
certain "form invariance” with respect to 3D rotations

much like the well known 2D Zernike polynomials do in
the plane. The motivation is to take advantage of the
many useful properties the 2D Zernike polynomials and
the associated 2D Zernike moments are known to enjoy,
especially when compared to the ordinary geometrical
moments ([1], [10], [18]). These properties are among
others: Noise insensitivity, no information suppression
at low radii and no redundancy, and are naturally ex-
pected to be valid also in the 3D case. Although we will
not apply these polynomials in the present paper, we
would like to have them derived in order to have some
standard reference in the future.

If ¢ = |x|¢& = r€ = r(sind cos ¢,sin¥ sin ¢, cos ¥) T
with || = r and || = 1 we demand for a three-fold
indexed member Z}(x) of the 3D Zernike polynomials
to be of the form:

ni(®) = R (r) - Y™ (€)

where Y;™(§) are spherical harmonics of I-th degree or-
thonormal on the surface of the unit sphere with m
ranging from —I[ to [ and n — [ being an even non-
negative integer, n — | =: 2k. Ry (r) is the real fac-
tor depending on the radius r we want to calculate so
that the Z7(x) become a set of polynomials orthonor-
mal in the interior of the unit sphere. We collect all
2] + 1 spherical harmonics Y;™(§) of I-th degree in a
vector ¥,(€) = (¥1(€), ;™1 (€), Y/ 2(&), -+, ¥, (€)T
and all 3D Zernike polynomials Z7(x) with the
same indices n and [ in a vector Z,(x) =
(Zle (112), Zijl(m% ZL?Q(CI}), ) Z;ll(w))T and get

Zn (ZB) = Rnl(T)Yl(g) .

It can be shown that Y;(€) is nothing more than the vec-
tor e;(£) that has been derived in section 3.1 containing
I-th degree basis functions, appropriately scaled:

@ +1)(%)

Yl(&) = ol

e(€) =: ke (€)

and the orthonormality property reads:

L / Yi(@)Yi()Tdz =1 .
4
@1

With a 3D rotation matrix P we will then have
Z,(Px) = Ry (r)Y (P§) =

= Rnl (T)A{ZI]YI (E) = A[2l] an (w)

with AP being the 2I-th irreducible unitary represen-
tation of the group SO(3) as we have seen in section 3.1.
The relation above is the advertised "form invariance”
under rotation exhibited by the polynomials Z ().
In what follows we will determine the factor Ry (r) .
Since we know that r'Y;™(¢) = Y;™(x) is a homogeneous



polynomial of [-th degree in the components of x, it fol-
lows from Z7(z) = Bt plym(g) = Builr) o ym gy
that "’l(r) rnust be an (n —[)/2 = k-th degree poly-
nomial in r? in order for Z™(z) to be an n-th degree

polynomial in the components of . We denote R%l(r)
with Q1 (r?) and obtain from the orthonormality con-
dition of the 3D Zernike polynomials in the interior of
the unit sphere

1 27w
w /]
47
0 0

the condition for the polynomials @Qg;:

/an ,l,(w) r2 sin ¥ dddedr = Sy 61 6™ m’
0

1
3 .
i/le(t)Qk'l(t)tl—i—l/z dtzdkkl .
0

Thus, the k-th degree polynomials Qg (t) may be ob-
tained by orthogonalizing the monomials 1, ¢, 2, - - - with
respect to the weighting factor #+1/2 for every I. Upon

setting
Z arit”

we reduce the problem to the determlnation of the co-
efficients gy, for which the following equations result:

32%'12

We suppose without restricting generality k' < k and
consider the equations above for all k' starting from 0
to k. This gives the following system of equations:

le

Qi

—5 .
20u+v+l)+ Kk

1 N 1 ay
243 2145 24T 20+2k+1 g
20+5 2047 2049 20+2k+3 kt
1 1 1 1 b1
20+2k+1  21+2k+3 20+5 20+4k—1 o
:ZAM =q,,
1
20+2k+3
20+2k+5
:_q]li)cl and
1
20+4k+1
=:Q 1
Y _1
CIkl

—~ 2 +k+v)+3 3

which may be written compactly with the notations in-
troduced above:

k
Arqy = —qg -ar and

k T O 1
Gt (“qul - m) =3

and gives the solution

qy = —qlkflAEllakl with

1

G =
-1
\/3 [21+ik+3 —-aj Ay akl]
Omitting the proof we also give the formula for the coef-
ficients gy in explicit form for all0 < k, land 0 < v < k:

—1)% [21+ 4k +3 (2k By (LR
(-1) /T + (k><‘”"(")((k+,g+'3) )

22k
This result may be proved by induction and verified for
any specific case testing for orthonormality with respect
to the weighting function #*+1/2. Now with known co-
efficients g}, the vectors of 3D Zernike polynomials are
obtained in the form

k
z) =Y qulz*Yi(z) .
v=0

[ A—
Qg =

We are now in a position to give explicitly the connec-
tion between the vectors of 3D Zernike moments

V= [ f@7u(@) //f

|T|<1 |z|<1

and the scaled geometrical moments M of a 3D object:

k
Qu =k ViU " q0,8) 110, Misay
v=0

(23)

Finally, using in the formula above the moments of
the normalized image computed in (22) we obtain the
Zernike affine invariants of a 3D object in dependence
of the measured moments M,

k
Qu =k ViU 8], 0, LMy,

v=0

We know from the Weierstrafl approximation theorem
that any piecewise continuous function with compact
region of support may be uniformly approximated by
polynomials. Since we have derived a complete set of
orthonormal polynomials Z7(x) in the unit sphere and
used them to build the 3D Zernike moments )7}, the
latter are essentially generalized Fourier coefficients of
f(x) and if we suppose f(x) piecewise continuous with
region of support the interior of the unit sphere we also
get a Fourier series expansion for f(x):

—

n/2|

3 o0 k l
)= 2SS Sl Y amye

n=0 k=0 v=0 m=—1



with [ =n — 2k.

This formula may be used to approximately recon-
struct the shape of a general 3D object from a small
number of moments of low degree simply by considering
only 0 < n < N for some low N. It computes from
the Zernike affine invariants the object in the standard
position.

6 Conclusions

In this paper we have extended the theory of two-
dimensional Zernike polynomials and moments to 3D in
order to take advantage of the many useful properties
they are known to enjoy. Complete orthonormal affine
invariants that allow the reconstruction of some 3D ob-
ject in an affinely standard position have resulted and we
called them 3D Zernike affine invariants. We note here
that if one is interested solely in 3D Euclidean invariants
the presented theory is easily adapted to this case simply
by leaving out the reduction to the orthogonal case part.
The relevant complexity considerations can be found in
[4] where we adapt a fast algorithm for computation of
2D geometrical moments [8] to the direct computation
of 3D Zernike moments and invariants starting from cu-
mulative moments of the object and without the need
to go through the geometrical moments, thus avoiding
the enormous dynamic range required by the latter.
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