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Abstract

The aim of this report is threefold: First we generalize to 3D a long ago known fast
algorithm for the computation of ordinary geometrical moments of 2D fields starting
from what could be named cumulative moments. This is done by first reformulating
the 2D algorithm in terms of matrix operations and subsequently extending the result
straightforwardly to 3D.

Second, guided by the results of much research work done in the past on the performance
of 2D moments and moment invariants in the presence of noise suggesting that by using
orthogonal 2D Zernike rather than regular geometrical moments one gets many advantages
regarding noise effects, information suppression at low radii and redundancy, we have
worked out and introduce a complete set of 3D polynomials orthonormal within the unit
sphere that exhibits a ”form invariance” property under rotation like the 2D Zernike
polynomials do. For that reason we call this set 3D Zernike polynomials. The role of
the angular exponential function in the 2D Zernike polynomials set is now played by the
spherical harmonics on the surface of the unit sphere. We show how to directly compute
the associated 3D Zernike moments from the cumulative moments without the need to go
through the geometrical moments, thus avoiding the enormous dynamic range required
by the latter.

In the third part it is shown that a set of complete moment invariants for orthogonal
transformations of 3D objects that we had previously derived may be rebuilt to yield the
3D Zernike moments of the object in its standard position.

1 Introduction

The purpose of this article is to put together all pieces concerning 3D Zernike moments
to be introduced in this report, their fast computation and connection to the complete
set of moment invariants using spherical harmonics [4] we had derived in [3].

In [5] a fast algorithm and its single chip implementation for computing the ordinary
geometrical moments of a 2D image has been presented that achieved a saving of more
than 5 orders of magnitude regarding the number of multiplications needed compared to
the direct implementation if the task is to compute 16 moments of low order of a 512 x
512 image. Although the sequential implementation of the algorithm yielded remarkable
results as well, we feel that this algorithm does not appear to have found in the vision
literature the deserved attention. We argue that the reason might be the formulation of the
algorithm in terms of filter theory and the given weight to the hardware implementation
rather than to the algorithmic part. In order to describe the 3D fast moment computation
algorithm we are interested in here, we first reformulate the 1D version of the algorithm
above in terms of matrix theory and then proceed to its 2D and 3D generalization.

Besides, motivated by several results reported for example in [1], [6] and [8] indicating
that 2D Zernike polynomials [2] and moments are superior to the ordinary geometrical



moments regarding performance in the presence of noise, information suppression and
redundancy, we introduce 3D Zernike polynomials and moments and discuss their fast
computation with the intention to use them for 3D invariant object description.

2 The fast moment computation algorithm

2.1 The fast 1D moment computation algorithm

We start with the definition of the geometrical moments p, of a 1D discrete field f(n):

N-1
=Y nPf(n) = (n")Pf

n=0
where we have defined n” := [0,1,---, (N—1)] and (nT)? := [0P, 17,27, - -, (N —1)?]. Here
and elsewhere exponentiation of a vector to a scalar power or exponentiation of a scalar
to a vectorial power is always meant componentwise and yields a vectorial result. By
generalizing this notion, exponentiation of a row vector with an exponent being a column
vector or vice versa will accordingly give as result a matrix with row dimension equal to
the dimension of the row vector and with column dimension equal to the dimension of
the column vector involved. Besides, we have denoted with f the vector made up from
the N samples of f(n) at n =0,1,---, N — 1 and adopted the convention 0° = 1. Now we
denote the vector containing all moments of f from zero-th to P-th order with pp and
obtain

oy (o
pp = M B (ng) f=@mP-f
Hp (n")"

The hereby arising (P + 1) x N matrix (n”)P is Van der Monde and reads explicitly

11 1 1 1
01 2 3 -~ N-1
01 4 9 (N —1)2

T

mP=101 8 27 ... (N—1)
(0 1 27 37 ... (N-1)F |

Thus, the p-th row of (n?)P reads (nT)? = [0P,17,---, (N — 1)P] and the n-th column of
(nT)P reads nP = (n% nt,--- nP)T . We observe that the p-th row of (nT)P contains
N samples of the p-th degree monomial n? in the variable n considered continuous. So,
(nT)P contains N samples of each monomial in the variable n up to P-th degree. It is



well known that all monomials up to P-th degree form a basis of the (P + 1)-dimensional
vector space Vp of polynomials up to P-th degree in one variable. Now, it will be shown
that choosing a different basis for Vp the complexity of computing pp can be considerably
reduced. In particular, almost all multiplications may be spared. Indeed, consider the
basis b(n”) composed of binomial coefficients rather than monomials:

- 1T

. 1 1 1 1 1
(™ )T 2 3 4 N-1
bt = | ("3T) | = ° () )
_ (nT+PPT_1T) | _ 1 P+1 (P;L2) (P;—?») (P+11;7—2) ]

Here we have adopted the notations 17 = (1,1,1,---,1) , P* = (P,P,P,---, P) and the

componentwise formation of binomial coefficients (nZT) = [(TZO), (Tl), (";2), e ("”Z ‘1)]

if m” = (mgy, my, my,---,my_1). Thus, the p-th row of b(n”) contains N samples of a
polynomial in n of p-th degree without n° coefficient, namely (erZ*l) = (ntp _1)(;!+p =2)-m
forn =0,1,2,---,N — 1 . Our aim is to use b(n’) as a new basis for Vp and the next
question must concern the transformation matrix T'p between the two systems of basis
functions (nT)P and b(nT). Later on it will be shown why this new basis b(n’) offers

considerable computational savings.

2.1.1 Matrix elements of T'p

We define Tp by (nT)P = Tp - b(n?T). For a particular n we thus have

1 1

n n

n2 — TP n(n + 1)/2
‘P P+-n—1

n ( P )

Clearly, T'p must be lower triangular since n” may be linearly composed from p-th degree
polynomials in n and lower. It is then easy to see that T'p must be of the form

1
0 tn
_ 0 txn
Tr= 0 3
L 0 tp1

29
t32

tpo

t33

tp3

tpp




with ¢,, independent of n, whence we have

1 381 1
n to1  too (n+1)/2
n = | t3 ts ts3 . (n+1)(n+2)/6
nf-1 tpr tp2 tpz -+ lpp | (n+1)(n+2)---(P+n—1)/P! |

For the determination of ¢,, we therefore must solve the equations

n—+1 n+1)(n+2 n+1)(n+2)---(n+p—1 _
UL ES BN E S | (GRS BN RS (LRSI URY X |
2 6 p!
p=1,2,---,P .
Although we consider only integers n in the range [0, - - -, (N —1)] the polynomial equations
above must of course hold for any n. Upon setting for n the values n = -1,n = —-2,---

we obtain recursively from above

tp = (=17

tyo = (—1)P2(2071 — 1)

tyy = (—1)P~13(37~1 — 2. 2v-1 4 1)

tps = (—1)P4(4P 1 — 3. 301 4 3. 2071 _ 1)

Thus, the coefficients ?,, and hence the matrix T'p too are known constants that can be
computed beforehand for any p, ¢ and P.

2.1.2 Analysis of the 1D algorithm

As we will now see, since up = (n”)P . f = Tp - b(n”) - £, all multiplications needed
to compute pp have been moved to the multiplication by the (P + 1) x (P + 1) lower
triangular matrix Tp whereas the product b(n’) - f requires only additions. To show the
latter we introduce the N-vectors el := (1,0,0,---,0) and €% := (0,0,---,0,1) as well
as the V x N matrices



(1) 1 1 0 0 0 0

0 1 1 0 0 0 1

Cy = 0 1 1 1 andVy:=1] 0 0 0 1 0
001 1 1 e 1 0O 1 0 0 0

We now form powers of Cy and observe

- -
0 1
0 p+1 1
CY =1 o () p+1 1
| 0 (p+1;f—2) (p+1;’—3) o p+1 1

Comparing with (1) we see that with the exception of the zero-th row the p-th row of
b(n”) may be obtained from the last row of C&'™" after some trivial reordering. To be
specific, we have

6{ + G%CN
T (2
eNC’éV
T
b(n”) = eyCy Vi
T ~P+1
enCy

::BN

and hence

pp=TpBNV NS .

Since multiplication by C'y is essentially equivalent with building the series of partial
sums we may define the product BNV v f =: kp and call kp the ”cumulative” moments
of f up to order P. The connection to the ordinary geometrical moments pp is then
given by

rp=Tpkp .

An important point to note here is that kp requires typically a much less numerical
dynamic range than pp. This observation will lead us later to formulate the 3D Zernike
moments to be developed in this report directly in terms of cumulative moments, thus
avoiding to a large extend the numerical problems associated with using geometrical
moments, especially of high order.

Now, to assess the overall complexity we summarize:

- multiplication by Vy is a trivial reordering



- multiplication by el or e}, means simply the selection of the zero-th or the last

element respectively

- multiplication by Cy requires only N — 2 additions and hence multiplication by By
or equivalently computation of kp requires (P + 1)(N — 2) additions only

- multiplication by T'p requires P(P +1)/2 multiplications and (P —1)P/2 additions
as can be easily seen from the form of T'p .

Thus, the overall complexity is:

e Number of multiplications #M = P(P +1)/2
e Number of additions #4 = (P+1)(N +2)+ (P-1)P/2 .

We notice in particular that the number of multiplications does not depend on the amount
of the data, N. The figures above must be compared to the direct algorithm (n”)P . f
requiring P(N — 2) multiplications and (P + 1)(N —2) additions. Since in a typical appli-
cation we will have P << N we see that the number of multiplications has been reduced
from O(N) to O(1) and the number of additions remained approximately unchanged and
is O(N).

The achieved savings are indeed impressive in all cases where one multiplication is much
more expensive than one addition. However, in cases where one multiplication is almost
as expensive as one addition the described algorithm achieves a rather modest saving of
about 50%.

In the next section we extend the results above to 2D and 3D discrete fields.

2.2 The 2D and 3D fast moment computation algorithm

To simplify notation in the sequel we will assume quadratic fields in the 2D and cubical
fields in the 3D case. However, only minor modifications are required in the more general
rectangular and cuboidal cases respectively.

The definition of the geometrical moments m,, of a 2D discrete field f(n,!) is

N—-1N-1

Mpg = > Y. nPlif(n,1) .

n=0 [=0

Since this is a separable mapping we see that if we denote with F' the matrix made up
by the samples of f(n,[) at

(0,0) (0,N —1)
(n.1) = (1,50) : (1,N:— 1)
(N-1,0) --- (N—1,N—1)



and set F = (f,, f1,---, fy_1) we obtain

-1 N-1 N—1
T
Mpq = n? 1f(n,l) = (m")Pfl1 = (nT)pan
n=0 =0 =0
and hence
Moo MMo1 mop
miyp Mmn myp
Mpp = . = (nT)panT
mpg mpy --- Mpp

Since (n”)P is (P + 1) x N we see from the last expression that the complexity of the
direct 2D algorithm is (N + P + 1) times the complexity of the 1D algorithm . Now, the
fast 2D algorithm is obtained by using the factored form of (nT)p =TpByNVy

mpp = Tp(ByVyFVyBO)TT .

We observe that the part in parentheses of the expression above is (P + 1) x (P +1) and
may be computed by applying (N + P + 1) times multiplication by By on an N-vector.
Thus, it requires (P + 1)(N — 2)(N + P + 1) additions only. It corresponds to the 2D
cumulative moments kpp of F' . We define:

kpp = BNVNFVNBIIZ\;

and obtain

mpp = TPkPPTg . (2)

Thus, Tp must be applied 2(P + 1) times and this requires P(P + 1)? multiplications and
P(P? — 1) additions yielding the following overall complexity for the fast 2D algorithm:

e number of multiplications #M = P(P + 1)?
e number of additions #4 = (P +1)(N —2)(N+ P+ 1)+ P(P?>-1) .

We observe that the #M of the fast 2D algorithm still does not depend on N whereas
the direct one requires O(N?) multiplications. This is the reason for obtaining impressive
results under the assumptions made in Sec.(2.1.2.).

Concluding the exposition of the 2D moment computation algorithm we note that a
moment vector mg containing all 2D moments my, with the same order p + ¢ = @
arranged lexicographically may be traced from mpp above along a diagonal line lying in
the upper left part of mpp if Q < P. This operation can be conveniently written with the
aid of a one-zero sparse matrix D¢ selecting the moment values from vec(mpp) which is
a vector obtained from mpp by concatenating its rows. With respect to (2) we then have



vec(mpp) = (Tp ® Tp)vec(kpp)

where ® denotes Kronecker product and

mg = DQvec(mpp) = DQ(TP X TP)VGC(’CPP) .

Straightforward generalization of the concepts above to 3D leads to the 3D geometrical
moments M, of a 3D field f(n,l,m) given by

N-1 N-1 N-1

My = > 0P > 19> m' f(n,l,m) .

n=0 =0 m=0

The three-dimensional field f(n, [, m) may be conceived as a series of 2D layers F,, each
with constant index m. We then have from above

N-1
Mpyr = > (0" Fpnim’” .
m=0
The field containing the moments M,, can also be conceived as a series of matrices
(M pp), for 0 <7 < P and this results in the expression

N-1
(MPP)T = Z (nT)meinm'l‘ .
m=0
Finally, the result of the fast 3D moment computation algorithm may be perhaps best
written in terms of Kronecker products in the form

vec (vec((Mpp)O), VeC((MPp)l), T, vec((Mpp)P)) = VeC(MPPP) = (TP®TP®TP)VGC(kPPP)
(3)

still requiring O(1) multiplications in contrast to O(N?) multiplications of the direct

algorithm.

3 3D Zernike polynomials and - moments

In this section we derive a set of polynomials in the three components x,y and z of
x ¢ IR?® which is orthonormal and complete in the unit sphere. Besides, it exhibits a
certain ”form invariance” with respect to 3D rotations much like the well known 2D
Zernike polynomials do in the plane. The motivation is to take advantage of the many
useful properties the 2D Zernike polynomials and the associated 2D Zernike moments are



known to enjoy, especially when compared to the ordinary geometrical moments. These
properties are among others: Noise insensitivity, no information suppression at low radii
and no redundancy, and are naturally expected to be valid also in the 3D case. Although
we will not apply these polynomials in the present report, we would like to derive them
in order to have some standard reference in the future.

If £ = |z|¢ = r¢& = r(sin 9 sin ¢, sin 9 cos ¢, cos $)T with |z| = r and |€| = 1 we demand
for a three-fold indexed member Z7(x) of the 3D Zernike polynomials to be of the form:

Zni(®) = R (r) - Y,"(€)

where Y;™(§) are complex valued spherical harmonics orthonormal on the surface of the
unit sphere with m ranging from —[ to [, n — [ is an even nonnegative integer, n — [ =:
2k, and R,,(r) is the real factor depending on the radius r we want to calculate so
that the Z(x) become a set of polynomials orthonormal within the unit sphere. If we
collect all 2] 4+ 1 spherical harmonics Y;™ (&) with the same index [ in a vector Y ;(€) =
(YH(€), Y1 (€), Y} 72(€),---, Y7 (€))T and all 3D Zernike polynomials Z™(x) with the
same indices n and [ in a vector Z,(z) = (Z,(x), Z5 (x), Z5%(x), - -+, Z} ()", then
with P a 3D rotation matrix we will have

Zy(Pz) = Ry(r)Y (P€) = Ry(r)oy(P)Y (§) = 0/(P)Z ()

where 0;(P) is the I-th representation of the group SO(3) being unitary [3]. The relation
above is the advertised ”form invariance” under rotation exhibited by the polynomials
Zni ().

In what follows we will determine the factor R, (r) . Since we know that r'Y;™(¢) =:
e*(x) is a homogeneous polynomial of I-th order in the components of x, it follows from
Zm(x) = Bl ptym(g) = Bult) . em(z) that Z240) must be an (n —1)/2 = k-th degree
polynomial in 72 in order for Z™(z) to be an n-th degree polynomial in the components
of . We denote Mr’lﬂ with Qg (r?) and obtain from the orthonormality condition of the
3D Zernike polynomials in the interior of the unit sphere

12w
3 m m’ * 2 . _ mm’
= 0/ 0/ 0/ 2 (@) 2™ ()" - 12 sin ) d9dpdr = G Od

the condition for the polynomials Q;:

1
3
= Qut)Qr ()t dt = Sy
2 0

Thus, the k-th degree polynomials Qg (t) may be obtained by orthogonalizing the mono-
mials 1,t,¢, - - - with respect to the weighting factor t+/2 for every [. Upon setting



k
Qu(t) =D apt”
v=0

we reduce the problem to the determination of the coefficients gy; for which the following
equation results:

14 k v
qr
3 “/ :5 /.
“Z::OQMZ::OQ(/L+I/+Z)+3 kk

We suppose without restricting generality &’ < k and consider the equations above for all
k' starting from 0 to k. This gives the following system of equations:

1 0 U S N QP S
2143 2F5 UAT 242+ ki 20+2k+3
2+5 247  2A+9 7 242k+3 Do | _ —gl, | 2T and
L L .. 1 k—1 1
2+2k+1  214+2k+3 245 21+4k—1 / \ Qg N Ak+1
~~ —_——
=1Akl =qy, =:Qp
k v
X ST T 3
kL =
=2v+1l+Ek)+3 3

which may be written compactly with the notations introduced above:

Apgy = —qp - an  and
k
k T i 1
la 4tk )
Ak ( K19kl 2l+4k+3> 3
and gives the solution
Y e )
Ay = — G Ay A with
1

ko
O = 1 T A-1
\/ 3 [2l+4k+3 —a Ay akl]

Omitting the proof we also give the formula for the coefficients ¢f; in explicit form for all
0<k, land 0<v <k:

,_ (0F rrakes Ry, ()R
Gkt = o2k 3 <k>(_1) (k+l+u) .

k

10



This result may be proved by induction and verified for any specific case testing for
orthonormality with respect to the weighting function #*1/2. Now with known coefficients
gy; the 3D Zernike polynomials are obtained in the form

k
m(®) = qplz[*e ()
v=0

where e"(z) = |z|'Y;"(x) is an [-th order homogeneous polynomial in & that has been
explicitly derived in [3] and can be written with known vector of coefficients k]* in the
following form:

e () = (k") [=]' .

In the expression above we have used the definition

2 = (@ 'y )T

Thus, [z]' is an (I + 1)(I + 2)/2 - dimensional vector containing all monomials of I-th
order in the three variables z, y and z arranged lexicographically. With the additional
definition

"] = [x|*[2]' =: Sinl2]"

for a one-zero sparse matrix S selecting from the vector [&]™ containing all monomials of
I-th order in @, the lower dimensinal vector |z|'[x]" ! we are now in a position to give
explicitly the connection between the 3D Zernike moments

n=o [ @7 de

@'<1

and the geometrical moments of a 3D object f(x) given by the vectors

M= [ f@)a] do

le|<t

k
= ()Y St Mo (@

v=0
We know from the Weierstrafl approximation theorem that any continuous function with
compact region of support may be uniformly approximated by polynomials. Since we
have derived a complete set of orthonormal polynomials Z7(x) in the unit sphere and
used them to build the 3D Zernike moments €27, the latter are essentially generalized

Fourier coefficients of f(x) and if we suppose f(x) continuous with region of support the
interior of the unit sphere we also get a Fourier series expansion for f(z):

11



/2]
>
k=

k l
S @lz® Y Qret(x)  with [ =n—2k .
0 v=0

= m=—I

o0

fl@) =3

n=0

This formula may be used to approximately reconstruct the shape of a general 3D object

from a small number of moments of low degree simply by considering only 0 < n < N for
some low N.

Now returning to the fast computation of the 3D Zernike moments we only have to
introduce like in the 2D case a one-zero sparse matrix D¢ that selects from vec(M ppp)
the vector Mg consisting of all 3D moments of order () arranged lexicographically by
defining

MQ = DQVGC(MPPP) .

Combining with (3) and (4) we finally get

3 k
nl = E(k;n)*T Z GSti+20Di12,(Tp ® Tp @ Tp)vec(kppp)

v=0

and we see that we can absorb the constant matrices T'p in the coefficients g;; thus getting
the 3D Zernike moments €27 directly from the cumulative moments kppp without the need
to first compute geometrical moments. As already pointed out, this results in increased
numerical precision.

Concluding, we note that since the complete moment invariants for orthogonal transfor-
mations of 3D objects we had derived in [3] were based on spherical harmonics and were
nothing more than spherical moments of the object in its standard position, it is plain
that this set of invariants is readily rebuilt to give the 3D Zernike moments of the object
in the standard position. In fact, only the factor R,; has to be taken in addition into
consideration. The expansion formula then computes from the invariants the object in
the standard position.

12
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