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Abstract

The paper presents algorithms for the construction of features which are invariant with
respect to a given transformation group. Two complementary approaches are considered.
On the one hand we apply infinitesimal techniques (based on Lie theory) for constructing
invariants for the group GL(3,IR). This has applications for 3D data sets. On the other
hand we examine an alternative to the infinitesimal approach which is based on integral
calculus. The basic idea is to calculate appropriate averages over the transformation
group for a given function. We show how to extend these techniques to the construction of
features for noncompact groups like GL(n,C'). The methods are not limited to parametric
groups but can be applied to finite groups as well. However, the major advantage is that
it is not necessary to solve any differential equations which is a shortcoming of many
infinitesimal techniques. Explicit formulas are derived for groups which are especially
important in applications. We show how to treat continuous signals in this framework.
Finally we apply the presented methods to establish the existence of complete feature
sets for arbitrary compact groups. In the second part we present an algorithm which
eliminates successively all parameters of the full linear group G'L(3, IR) acting in the space
of bounded functions R* — Rt with compact support, thus yielding a complete set of
affine invariant features for arbitrary compact threedimensional intensity images. The
algorithm starts by computing the 3-D moments of the image up to the highest desired
order and uses the so called infinitesimal method relying on the theory of Lie groups
and Lie algebras. For each group parameter to be eliminated we solve a linear partial
differential equation and express its solutions in terms of an integral over the image itself.
By repeating this process for a special subset of group parameters in a specified order we
firstly achieve a reduction of the problem to the orthogonal case. For the elimination of
the remaining three parameters of the group SO(3, IR) we apply the same principle. The
resulting invariants can be grouped together in subsets consisting of invariants of equal
order, as the original moments do. For the computation of an invariant of n-th order we
use exclusively moments up to n-th order. We obtain closed analytical, easily computable
expressions for all invariants of any order. We obtain seven affine invariants of order three

and M affine invariants of order n for every n > 3.



1 Introduction

Using features with appropriate invariance properties is an approach which has attracted
considerable interest in the pattern recognition and computer vision communities during
the last few years (cf. [1, 2]). A popular application of such invariant features is for
recognition purposes. The seminal paper [4] demonstrated how to utilize affine invariant
features of discrete point sets for model-based object recognition.

Many researchers concentrate on invariance with respect to the affine or projective group.
That is natural if one is interested in general viewpoint invariance; e.g. in computer vision.
However, it must be emphasized that the intended application is the decisive factor for
the transformation group. For applications in quality control or visual inspection affine
or projective invariance can be too general and only invariance with respect to rotations
and translations may be useful. Therefore it is desirable to have algorithms to construct
invariant features for arbitrary transformation groups.

We first present algorithms based on integral calculus for the construction of invariant
features. The basic idea is to calculate appropriate averages over the transformation
group for a given function. The corresponding mathematical techniques (the so called
Haar integrals) are well established but it appears that they have not yet found the
attention in the pattern recognition community they deserve. We show how to extend
these techniques to the construction of features for noncompact groups like GL(n, ().

The methods are not limited to parametric groups but can be applied to finite groups
as well. However, the major advantage is that it is not necessary to solve differential
equations which is a shortcoming of other techniques. Explicit formulas are derived for
groups which are especially important in applications. We show how to treat continuous
signals in this framework. Then we apply the presented methods to establish the existence
of complete feature sets for arbitrary compact groups.

Most authors addressing the problem of constructing invariant features assume that the
transformation group is a parametric group (Lie group) and apply so called infinitesimal
methods from Lie group theory (cf. [14] as an excellent reference for Lie theory). That
normally results in systems of differential equations which are often hard to solve. We
apply these techniques for constructing invariants for the group GL(3,IR). This has
applications for 3D data sets. An algorithm is presented which eliminates successively
all parameters of the full linear group GL(3, IR) acting in the space of bounded functions
IR? — IRt with compact support, thus yielding a complete set of affine invariant features
for arbitrary compact threedimensional intensity images.

We assume that the objects at hand are genuine 3D data which may have been obtai-
ned by computer tomographic reconstruction, passive 3D sensors, active range finders,
stereoscopic backprojection etc. The algorithm starts by computing the 3D moments of
the image up to the highest desired order and uses the infinitesimal method relying on
the theory of Lie groups and Lie algebras. For each group parameter to be eliminated we
solve a linear partial differential equation and express its solutions in terms of an integral
over the image itself. By repeating this process for a special subset of group parameters



in a specified order we firstly achieve a reduction of the problem to the orthogonal case.
For the elimination of the remaining three parameters of the group SO(3, IR) we apply
the same principle. However, the emerging differential equations become more and more
complex. We have found that they can be simplified and solved by decomposing the func-
tion space at this stage in the smallest invariant subspaces in which SO(3, IR) is acting
through its irreducible representations. This is done by using spherical harmonics.

The resulting invariants can be grouped together in subsets consisting of invariants of
equal order, as the original moments do. For the computation of an invariant of n-th
order we use exclusively moments up to n-th order. We obtain closed analytical, easily
computable expressions for all invariants of any order. The completeness of our system of
invariants becomes plausible by noting that for the elimination of each group parameter
we sacrifice only one degree of freedom. We obtain seven affine invariants of order three
and w affine invariants of order n for every n > 3.

2 Invariant Features

In this section we introduce the basic concepts and fix our notations. The signal space S is
a subset of a complex vector space V. We call the elements of S patterns and denote them
either by vectors ¢, @ or by f(.), ¢(.) if we consider function spaces. GG is a group acting
via a representation on V; i.e. for every g € (G exists a linear operator 7(g) : V — V and
for these operators the following composition law is valid

T(91)7T (92) = T (9192) V91,92 € G. (1)

Note that gig2 is the group product in GG whereas the left-hand side of (1) denotes the
product of two linear operators. The group G is called transformation group. Furthermore
we assume that the signal space S is stable under the action of the group G;i.e. T(g)v €
SVge G, 7€ 8.

The action of G introduces an equivalence relation ~ in S. Two patterns v, @ are called
equivalent, ¥ ~ 0, if a g € (G exists with ¥ = T (g)wW. The equivalence classes of this
equivalence relation are called orbits of G in S. An orbit O(%) is a subset of S of the form

O0) ={T(9)v | g € G} (2)

Note that it is possible to generate all elements of an orbit O(¥) by applying all group
elements ¢ € G to an arbitrary element @ € O(?).

We denote by €'[S] the set of all complex valued functions f : S — € defined on the
signal space S. We want to avoid a discussion of mathematical subtleties concerning the
admissible class of functions. For most practical purposes it is sufficient to assume that
the functions f € €'[S] are rational functions.



A G-invariant feature (or only feature for short) is a function f € €' [S] with the invariance
property

(T (9)0) = f(8)Vge G, T e S. (3)

The set of all G-invariant features on the signal space S is denoted by €'[S]%. A set of n
features fi, f2,..., fn is called complete if for oy, v, € S

fi(v1) = fi(U2) Y1 < ¢ < nimplies 3g € G with 0, = T (g)¥s. (4)

The numerical values for features from a complete set coincide for two patterns if and
only if these patterns are equivalent.

3 Constructing Invariant Features

3.1 Invariant Integration

A G-invariant feature is a map which has the same value for all patterns in an orbit; i.e.
features are constant on orbits. Therefore they describe properties which are common to
all equivalent patterns. That suggests to construct features as appropriate averages. For
a given function f € €'[S] we try to calculate the averaged function A[f] by integrating f
over the orbits O(7):

AR = [ fds (5)
o)
For every @ € O(¥) a g € (¢ exists such that @ = 7 (¢g)v. Therefore the average (5) over
the orbit is equivalent to an average over the group G-

ALf)() = / F(T(g)7)dg. (6)

We call A[f] the G-average (or group average) of f. We assume furthermore the following
normalization condition
/ dg=1. (1)
G

Note that averaging over a group is a projection; i.e. A(A[f]) = A[f]. Tt is plain that
one must impose restrictions on the group G in order to ensure the convergence of the
integrals (5), (6), (7). We discuss these restrictions below and assume for the moment the
existence of the integrals. Our goal is to construct G-invariant features by the integral
process in (6) (i.e. A[f] e €'[S]%). That implies that the measure dg must obey a specific
constraint. Heuristically we can derive this constraint as follows:



AT (9)7) = / (T (9)T (91)5)dg =

| 1Teona = [ 700

Since A[f] should be a feature it must possess the invariance property A[f](7 (¢1)V) =
A[f](¥) Vg1 € G. That implies for the measure dg the condition

dg = d(gg7") Yor € G. (8)

Equation (8) can be interpreted intuitively as follows. The measure associates to every
small region dG of the group G a 'volume element’ dg. If every point in the region dGG
is multiplied by the group element g;* from the right then the volume element of the
'shifted region” d(7 - g;' is given by d(gg;"). For technical reasons it is convenient to
require that the measure has furthermore the invariance property dg = d(¢19) Vg1 € G.
These properties can be summarized in the statement that the volume elements must be
compatible with the group structure of G.

Integrating over the transformation group as a tool for constructing invariants was inven-
ted in 1897 by the mathematician Adolf Hurwitz ([6]). The technique was generalized to
the so called Haar integral (cf. [5]) and has found numerous applications in the represen-
tation theory of locally compact groups.

Note that the integral process (6) for constructing invariant features has the following
advantages compared to other methods which rely on differential (‘infinitesimal’) techni-
ques:

e it 1s not necessary to solve differential equations.

e if one is only interested in the value of A[f] for a finite set of nonequivalent patterns
(that is the most frequent case in model-based object recognition) it is not necessary
to solve (6) analytically. Instead, one can apply routines for numerical integration.

e by appropriately partitioning the integration domain it is easy to obtain an efficient
parallelization of the algorithm.
3.2 Finite and compact groups

The simplest case is that (7 is a finite group of order | ¢ | (order := number of elements
of ). Then a group average is given by

AN = 157 ATl )

geG



That is applied in [7] for the extraction of translation- and rotation-invariant features
from grey-scale images.

Now we assume that G is a compact topological group. Loosely speaking this means
that the group elements ¢ € G form a continuous and compact (i.e. closed and bounded)
manifold in the topological sense and that the group product g; - g, and the inversion g;*
are continuous functions of ¢;,g9, € . It is possible to prove the existence of a group
average (cf. (6), (7)) for compact groups (the so called Haar integral; cf. [5]). We now
derive explicit formulas for the group average for some illustrative cases.

A simple example is the planar rotation group SO(2, IR) which consists of all 2x 2 matrices
g of the form

= (55 ) eioan)

sing  cos @

SO(2, R) acts on the two-dimensional vector space IR? by matrix multiplication. A group
average for functions f: IR* — ', (vi,v2) — f(v1,vq) is defined by

. 1 27 ) )
A[f](¥) = oy / f (v1 cosp — vy sin g, vy sin p 4 vy cos ) de.
=0

—

The generalization to functions f(¥,,...) which depend upon several vectors 0,1, ... €
IR? is straightforward.

Of special importance for the application of the invariant integral in section 3.3 is the
special unitary group SU(n, ) which is defined as the group of all n x n-matrices g with
complex entries and ¢g = I, detg = 1 (g¢" is the transpose of g and g is the complex
conjugate; [ is the unit matrix). SU(n, ') is a compact group ([5], p. 69). Let us derive
explicitly the invariant integral for the group SU(2,C"). Every g € SU(2,C) may be
written as (cf. [5])

g:(_az 2)a,beCWithdetg=|a|2+|b|2=1. (10)

We write a = z1 + 129, b = x3 + 124 with real parameters z;,1 <1 < 4 which gives

detg=|al’+ b =a?+a2+al+a2=1 (11)

Equation (11) shows that SU(2,€') as a manifold is isomorphic to the unit sphere S5 in
IR*. Integration over Ss is done most effectively in four-dimensional polar coordinates:

r1 = rsinthsinvycos

xy = rsindysindysinp



T3 = rsintd; cos Vs

T4 = TrCOSVq.

The equations are invertible for

r>0, 0<d,dy<m, 0<p<2rT.

The Jacobian J(r,9¥1, s, ¢) for the transformation to fourdimensional polar coordinates
is

J(r, 91,0, 0) = r’sin ¥, * sin V5.

Therefore we get for the average over the group SU(2, ') the following expressions (since
we integrate over the unit sphere we can set r = 1):

1
dg = —sm'ﬂl sin ¥ydpdddi;.

ane = [ s "

3.3 Invariant Features for the general linear groups

Compact groups are the only groups of practical relevance for which the invariant inte-
gral of section 3.1 can be directly applied. However, many groups occuring in practical
applications are noncompact. The most prominent examples are the groups G L(n, IR) of
n X n matrices with real entries and nonvanishing determinant. They are relevant e.g. in
computer vision applications for the extraction of viewpoint independent image features
(cf. [2, 1]).

We will see that it is advantageous to consider the group GL(n, (') of all n x n matri-
ces with complex entries and nonvanishing determinant. It contains the compact group
SU(n,C) as a subgroup. For SU(n,C') it is possible to generate features by invariant
integration. We now show how to use such SU(n, €' )-features for building GL(n, ') in-
variants. We denote by D(n,C') the set of all n x n diagonal matrices with complex
entries and nonvanishing determinant. D(n, ') is called dilation group. The first step is
to show that invariance with respect to the groups SU(n, '), D(n,C') implies invariance
with respect to the group GL(n, ().

Lemma 1 Let the group G = GL(n,C) act as a transformation group on the signal
space S. Let f € C[S] be a function which is invariant with respect to the groups
SU(n,C), D(n,C). Then f is a G-invariant feature; i.e. f e C[S]°



That is a consequence of the polar decomposition in G = GL(n,C) ([5], p. 28). We
omit the details of the proof. Lemma 1 suggests a two step strategy for the construction
of GL(n,C )-features. The first step is to calculate SU(n,C") invariants by invariant
integration. The second step is to derive from these invariants D(n, ' )-features which
yields by Lemma 1 automatically GL(n, ' )-features. For step two no general applicable
algorithm is known. However, it is often possible to get dilation invariants by forming
quotients of homogeneous SU(n, €' )-features (cf. below).

In order to illustrate our results we now discuss in some detail how to construct features
for the group GL(2,C). We construct features for the subgroup SU(2,C") by using the
invariant integral of equation (12). A function f € €' [S]is called homogeneous with degree

k if

fla®) = " f(F) Va e € \ {0}, € S. (13)

Now we assume that the functions in €'[S] are rational functions (i.e. quotients of poly-
nomials). By integrating homogeneous polynomials f € €'[S] over the group SU(2,C') we
get homogeneous features for this group. The next lemma shows that the quotient of two
such homogeneous polynomial SU(2, €' )-features with the same degree is invariant with
respect to the full group GL(2,C").

Lemma 2 Let fi, fo € €[S] be two homogeneous polynomials with the same degree which
are invariant with respect to the group SU(2,C). Then the quotient f = % s a feature

for the group G = GL(2,C'); f e C[S]°.

Proof: We use the parameterization (10) with the real parameters z;,1 < ¢ < 4 for
the group elements g € SU(2,C"). Let fi, fa € €[S] be two homogeneous polynomials
with the same degree which are invariant with respect to the group SU(2,'). We define
f = ;—; For a given ¥ € V we consider the following polynomial F(Z) (the vector
Z := (x1, 22, T3, x4) contains the parameters of the group elements g € SU(2,")):

F(Z) := [(T (9)7) - f2(0) = (T (9)7) - f(©).

Since fi, fy are invariant with respect to the group SU(2,C') we have F(¥) = 0 VZ with
2?+ 23+ 224+ 23 = 1 (cf. equation 11). Due to the homogeneity and continuity of F' this
implies F/(Z) = 0 VZ € IR*. Since F is a polynomial we may conclude

F(Z)=0VZeC" (14)

By an appropriate choice of ¥ € €'* we can represent any element g € GL(2,C') in the
form (cf. equation (10))

g—< 1 + 129 $3+i$4>

—Ta 1Ty Ty — 1Ty



Therefore (14) implies that f = ;—; is a feature for the group G = GL(2,C). O

Please note that it is essential here that we consider the complex groups SU(2, '), GL(2,0").
The assertion of Lemma 2 is manifestly false for the real groups SO(2, IR), GL(2, IR).

3.4 Continuous Signals

Up to now we have assumed that the signal space is a subset of a finite dimensional
vector space V. But in many applications it is more convenient to model the patterns
as functions f(Z) depending upon the unknowns ¥ = (z1,22,...,2,). E.g. in computer
vision it 1s a common model to assume that the measured intensity distribution is a real
valued function f(Z) of the coordinates ¥ = (x1,x3). f(Z) is the luminance measured at
the location Z in the camera plane.

In order to cope with continuous signals it is necessary to relax the assumption that V
is a finite dimensional vector space. Instead, we assume that V is a Hilbert space. We
denote by (, ) the inner product (scalar product) in V and choose a basis {by,bs,...} € V
(the basis has in general infinitely many elements). The group (G acts on V' by operators

T(9):

T(9)f = for fold) = flg7'%) Vge G, Z. (15)

With this definition the composition law (1) holds for the operators 7 (g) (that is the
reason for taking the inverse g~ acting on the vector & in (15)). For f € V we denote by
mg, € ' the inner product of f with the basis element b,:

mq = <f7bq> vq:1727

The group action of G on V induces an action ’,]v'(g) of the group G on the coeflicients m,:

T(g)m, = (T(9)f.by) = (£, T*(9)b,) -

T*(g) is the adjoint operator of 7(g). Since the {b,} form a basis we can write

T*(g)by = Y agby with ag e €.
k

That yields for the group action on the coefficients m,:
%(g)mq = Z Aqk <fa bk> = Z AgrMg. (16)
k k

It is easy to prove by direct calculation that the composition law (1) holds for the operators

T(9g).



Generally the sum on the right-hand side of (16) has infinitely many terms. That is the
point to exploit the properties of the transformation group G. One tries to find a basis
of V which can be split in minimal finite subsets which are stable with respect to the
operators 7*(g):

b1,by,b3,b4, bs, b, b7 ...
S—— S——
T+(g)-stable 7+(g)-stable
Stable means that the operators 7*(g) leave the finite dimensional subspaces spanned by

the corresponding basis vectors invariant. Minimal means that these subspaces contain
no further stable subsets (this property is called irreducibility). That implies e.g.

4

T*(g)ba =) _ asby.

k=1

This induces a partition of the set of all coefficients {m,} which is stable with respect to
the operators 7 (g):

my, Mo, M3, My, M5, Mg, M7,...

F(o)—stable  F(g)—stable

E.g. for ms:

4

%(9)m2 =(f,T"(g9)by) = Zazkmk;

k=1

i.e. the subspace spanned by my, my,ms, my is stable with respect to f'(g) Therefore
the coefficients m, are elements of finite dimensional vector spaces which are stable with
respect to the transformation group . So we have reduced the problem to the scenario
of section 2 and can apply the developed methods for constructing features. Summarizing
we can devise the following strategy for determining features for continuous patterns:

o fix the transformation group and the transformation law of the patterns.

e embed the patterns into a Hilbert space. That means especially to find an appro-
priate inner product.

e determine the induced transformation law of inner products.

e find an appropriate basis and determine the minimal finite dimensional subsets
stable under the induced transformations.

e construct invariants for these finite dimensional subsets.



We mention that it is worthwile to apply this strategy in conjunction with the methods
from section 3.3 to determine features for continuous signals with respect to the transfor-
mation group GL(2,('). That results in a slight reformulation of the well known method
of algebraic moments (cf. [1], pp. 375 - 397). We will discuss this issue elsewhere.

4 Complete feature sets for compact groups

In this section we establish the existence of complete feature sets (cf. equation 4) for
compact groups. As shown in [3] it is sufficient for this purpose to prove that

a) the set of all G-invariant features €'[S] is generated by a finite subset.

b) for any two nonequivalent patterns @, € S it is possible to find a feature f e €'[S]¢

with f(¥) # f(0). In this case S is called separable.

€'[S]% is finitely generated since representations of compact groups are completely redu-
cible (cf. [5, 3]). In the next Lemma we prove that the pattern space is separable for
any compact group. Furthermore we will see that it is possible to find complete sets of
polynomial features.

Lemma 3 Let G be a compact group acting on V' as a transformation group. Then the
pattern space S is separable and it s possible to construct a complete set of polynomual
features.

Proof: Since €'[S]¢ is finitely generated it is sufficient to prove that for any two none-
quivalent patterns v, € S a polynomial feature f € €'[S]“ exists with f(v) # f(w). We
sketch the main argument from ([5], p.281). Denote by || . || the norm derived from the
inner product in V. Define a map dzz : S — IR by

dz,a(F) = min (|| F = T(9)5 ||) = min (Il F= T () ]})

Since (G is compact and every continuous function assumes its extrema on compact sets

—

an ¢ € IR, e > 0 exists so that the function dg (k) has the properties:

ds3(k) > 0 VkeO(d).
dzs(k) < 0 VkeO(®).

| dzg(k)| > & Vke O®),00d).

10



Note that dg,w(i_c’) is generally not a polynomial. But all involved sets are compact. Due

to the Weierstrall approximation theorem it 1s therefore possible to find a polynomial
p e C[S] with | dz.3(k)—p(k) |< e Vk € O(¥), O(w). The polynomial p has the properties:

p(k) > 0 Vke O®d).
p(k) < 0 VkeO(®).

By integrating the polynomial p over the group G we get a feature f = A[p] € €'[S]¢ with
f(¥) <0 and f(w)>0. 0O

11



5 A complete set of affine invariant features for 3D
intensity images

5.1 Introduction

In this part of the paper we consider the concrete pattern recognition problem obtained
by setting

S = {f(z): R - R | f(z) < oo, f() =0V |2|>)>0, A< oo}
G = GAG3,R).

We denote by GA(3, IR) the group of affine transformations on a threedimensional real
Euclidean space. A group element g € (G is characterized by an arbitrary real 3 x 3 matrix
A with nonvanishing determinant and a real threedimensional vector b. The group action
of G in S is given by

T(9)f(w) = [(A™'% — b).

For the solution of this problem (albeit in an n-dim. space) it is first shown in [9] how
to accomplish a reduction of the action of the affine group to that of the orthogonal
group. To this end moments up to second order are computed. They are used to define a
transformation which is then applied to the actual pattern. The result is a pattern which
differs from a normalized reference pattern by an unknown orthogonal transformation.
Invariants are then derived by contracting indices of the new moment tensor. Thus, it is
necessary to compute image moments twice plus an additional affine transformation to
the full image. The resulting invariants are by no means complete and may even be not
independent. Similar remarks apply also for tensor and matrix techniques used in [10]
and [11] respectively.

For the computation of invariants of threedimensional images with respect to the ortho-
gonal group SO(3) the Clebsch-Gordan coefficients of tensor product representations are
used in [12]. Various invariants of low order (< 3) are derived without pursuing comple-
teness.

Instead, we compute the image moments up to a highest desired order once. This can
most effectively be done by using a straightforward 3D generalization of a fast 2D moment
generating algorithm for grey scale images [13]. Starting with the moments we define in
several steps intermediate variables and achieve also a reduction of the problem to the
orthogonal group. The algorithm used in each step is the result of solving a linear partial
differential equation obtained by applying the theory of Lie groups and Lie algebras. The
same procedure is then put forward in the irreducible invariant subspaces of the group

SO(3).

12



5.2 Preliminary Remarks
It is well known that for functions f(@) € S as above all moments

x
MPI" = fle)zPyiz"de ; =\ y
R? 8

exist and that due to the Weierstrafl approximation theorem they uniquely define a piece-
wise continuous function f € S. We can therefore use moments as an adequate description
of images. Since we can at once derive central moments as well as divide all moments by
the zeroth moment we may consider only images for which

M = / fl@)de=1  and
RS

100 0
M, = MO | = (g)xde=| 0
Moot R? 0

is valid. This amounts to a reduction of the affine group to the general linear group

GL(3, IR) with the group action

T(g9)f(z) = mf(A_lm) =: fa()
where
a1y diz a3 a1T
A= Qg1 Q22 G23 = a,’
@31 a3z @33 a/3T
det(A) =a,"(a; x a3) #0
and

|A| := abs(det(A)).
We can in principle represent an orbit
O(f) ={fal®)eS | AecGL3,R)}

by any of its elements. However, we choose as representative reference pattern the one
meeting certain conditions. Six conditions concern moments of second order and are
formulated with the aid of the covariance matrix:

M200  pg110 pgiol
Yu:=[ fl@eetde=| M M M | =1 (17)
R? Af101 011 7 r002

13



where I denotes the 3 x 3 unit matrix. Further conditions concerning moments of third
order can be derived from the elimination algorithm. However, we don’t need them here.
We will denote such normalized reference patterns without subscript, e.g. f(a).

Our aim shall be the derivation of a coordinate system for the function space S in which
the coordinates of f4(@) split in two parts:

a) between - orbits coordinates

b) within - orbit coordinates.

The between - orbits coordinates J; : S — €',2 € IN should be invariant within every
specific orbit as well as uniquely characterize it:

Ji(fal®)) = Ji(f(z)) ¥V A
Ji(h(@)) = Ji(f(e)) V i & h~ [
We readily recognize the set I := {J; | © € IN} as a complete set of invariant features
for the action of GL(3,IR) in S. It is possible through straightforward manipulations to
rebuild the set I in such a way as to obtain the coordinates of the reference pattern with
respect to an orthonormal system of polynomial basis functions. This orthogonalization
process will lead to a canonical set of invariant features. As within-orbit coordinates
of fg(x) we can define the parameters of the matrix A which transforms the reference
pattern f(@) to f4(«). They can be uniquely derived using moments of f4 (@) up to third

order. However, we discuss here only a) without going into the process of orthogonalizing
the invariants.

5.3 Reduction to the orthogonal group

As already mentioned we start with the moments of an actual image f4(@). Neither f(@)
nor A can be assumed to be known:

My = ./;SfA(m)xpyqzrdw _ (18)

- /,R f(@)(afz)(aj)'(ae) de. (19)

From the equation above we immediatelly recognize the subset of all moments of equal
order as being stable under GL(3, IR). For the covariance matrix consisting of moments
of second order we get:

Di, = | Salwen’de =

= fle)Aze™ATde = A | f(x)zxe de A"
R R

and due to (17)
Sy, = AA".

14



We seek functions J depending on moments M Z]T for which the invariance property
J(o MPT ) = (e M) (20)

is valid. In the sequel we will drop the subscript I: MPI" = 1\4?’”. The conditions for (20)
to hold are: 5 pqr
aJ 0!
A g =123 (21)
Z 0 Mpq a”

P,q,7

Now, Lie group theory shows [14]: Due to the fact that the parameters a;; build up a
group, here GL(3, IR), it suffices to demand

a.J 8M§f7”
oMrar 8aij

p,q,T

=0 ; 4,j=1,23. (22)
A=T

Omitting the proof we only note that functions .J which solve (22) will automatically fulfil
also eq. (21). This is essentially the only result of Lie group theory we need to make use
of here.

We will proceed as follows: We first compute all functions B which exhibit such local
invariance with respect to only one parameter a,g:

p rar
0B_OMy = 0. (23)
IMPT Dagg
p,q,7 A:I

Next, depending on the solutions B?"" of (23) we compute functions C' which are in
addition locally invariant with respect to a second group parameter, and so on. We
demonstrate this process in some detail for the first parameter and confine ourselves to
merely giving the results for the next few steps. Choosing a3 as the first parameter to
be eliminated we have to solve

. par
OB OM} o (20)
&MW 8&23
P A=I
We obtain from (19)
par
agwA — qu,q—l,T—I—l ,
a23 A=T
so eq. (24) now reads
0B 1,
8Mpqqup7q =0
Pa,r

This linear partial differential equation of first order is equivalent to a system of ordinary
differential equations. Namely, by introducing an independent variable s we obtain

(MP7) = gMPO=I g =0,1,2,

15



where the prime denotes differentiation with respect to s.

We observe that this system splits into disjoint systems involving only moments of equal
order n = p4+q+r = p+(¢—1)+(r+1) which is no surprise since moments of equal order
are stable under GL(3, IR). In turn, these systems split further by keeping p constant in:

(MPon=r)' = g
<Mp,1,n—p—1)/ — Mp,O,n—p

p727n_p_2 ! — ¢ p717n_p_1
M = 2M

(MPm=P0) = (n — p) M

The solution of the equations above is obtained by a simple recursion: Starting with
MPOP = PP we get the formula

q
MPIT = E <q> cPavrty gy
v

v=0

which can be easily proved by induction. ¢??" denote here constants of integration. For a
general group element A we obtain accordingly

q

7\ pa-vr+ .

DY <V> T Y (25)
v=0

Now we can in principle eliminate s using any equation (25) linear in s (i.e. ¢ = 1):

plr 1
MA ci r
A/IZ,O,T+1 CZ,O,7'+1

However, we obtain a much more systematic parameter elimination process if we resort
every time to the lowest possible order. That is especially important taking into account
the increased noise vulnerability of moments of higher order [15]. Since moments of order
one are occupied by normalizing translation we are forced to consider p +r = 1. We

choose p = 0, r = 1 because 1\411401 could be zero, whereas 1\42102 not (/ 2102 > 0). Thus,

011 011

we eliminate s through s = 37w — 7. Inserting this into eq. (25) and separating M’ s
A A

from ¢’ s we eventually get

/g ] 2111 v . " /g O v N
P,a—v, TV __ p,q—v,rrv __ ¢
E <1/> _M—01402 L/WA = E (y) —60—122 CA = const (26)

v=0 v=0

which can also be easily proved by induction.
Now, we see that the left side of eq. (26) being a solution of (24) taken at a general group

16



element A is locally invariant with respect to ay3. So we define new variables by this very

expression:
9 q Mgln v
=3 () <_—M§f2) M )

v=0

Eq. (27) is at the same time the first step of our group elimination algorithm. It is
important to note that by combining moments as in (27) we don’t lose control about the
par

dependence of the new variables B}" upon f(z). Inserting (19) into (27) and interchan-
ging the order of summation and integration we get

: q Mglll ’ a;e . +
par T ‘ T ,
w= [ ey (0) ) (i) (@

3
R v=0

which is easily seen to give

q

(aze)" de. (28)

R3

My \"
Bif = f(:c)(afa:)p a,; — W&g €r

Thus, the variables B*{" are nothing more but moments of f4,(z): BY" = ]qu:, where

10 0
MOll
A= 01 - | A (29)
A
00 1
Since 1\42111 = ajaz and Mgf2 = |as|® we see that the second and third row of A;
are perpendicular. This indicates eq. (27) to be a first step towards reduction to the

orthogonal group. We note further 3?411 =0 and

200 002 101
B200 BllO BlOl MA V/MA MA
EBA — BllO BOQO BOll — V/M%Q U/AI%Q 0
l3101 f3011 l3002 A jh[ifl 0 jL[SF2

Here we denote by U, V and the later needed W the following minors in Z'MA =AA".

020 011

AgoIt p 002
A A

110 101
J\/[A MA

AoIt p 002
A A

110 101

A020  pg0I1
A A

U:= , V= , W=

Now, for the derivation of the second step of our algorithm we make use of eq. (28) and
repeat the outlined process for a second parameter a;3. We are led to the variables

P P Bifl v
LA —v,q,r+v P
o= 2 (1) () e 0

v=0

17



which relate to f(@) as

pqr h[]-Ol ) ’ 1‘42111 ) q T T
chy = /Raf(a:) a; — Mooz as | « ag—Wag x| (azz)" de

and have the property C%" = Afif;. In A, , second and first row are perpendicular to
the third row.

Omitting further details we give the next steps which are obtained by eliminating in the
same manner the parameters a1z, ay1, azy and ass:

quT . (Jllo Cp—l’qq+l’77" 31
A T Z Cozo A ) ( )

quT
qu'/‘ — A (32)

A - p/2 q/2 r/2°
200 020 002
(0%)" (%) (0%2)

Like all previous intermediate variables, E*/" are moments as well: E?/" = LM%‘“”; and
since Y, = RR" = I we see that we have achieved a reduction to the orthogonal
group. Examining R a little closer we find

LS|
R=| r, with
Ty
Ua1 — Va2 + Wa3 M002 MOH as

’,"1 — ; "'2 , .
A 002 002
|A[VT N N

A simple calculation shows:

det(A)
Al

det(R) = »,"(ry x v3) = = sgn(det(A)) =: ¢4

We observe that the information about the sign of det(A) (mirror images) has been
preserved in the “handedness” of the matrix R. Although e, is not yet known we define
variables

E7 = e BN = MY with (33)
e, 00

P=( 010 ]|R and PeSO(3). (34)
0 0 1

We will be using Eifr as if €, were known and return to this point at the end of our
computations to see how we have to modify here the resulting algorithm.

18



5.4 Invariants of the group SO(3)
Our starting point are now the moments

Eii" = M}g‘" = /B3 fp(e)z"y’2" de with P e SO(3). (35)
We choose the parameterization P(«, 3,v) =P,(v)P,(8)P.(a) with P, .(w) denoting

rotation around axis x,y or z respectively by an angle of w. Note that this parameterization
is unique for 0 < o,y < 27 and —7/2 < # < 7/2. The infinitesimal action of P in IR® is:

0 z —y
J(Px) | ’ J(Px) _ 0 ’ J(Px) _ . . (36)
8@ I y aﬁ I —r 67 I 0

Now, we can try to continue applying the infinitesimal method directly to the variables
Eﬁ". The subspace

o n n—1, p,.q.T n
Qn =<z 2" y,....xPy?2" 2" >

with dimension (+(n+2) spanned by all monomials of order n was invariant under
GL(3,IR). So it is a fortiori invariant under SO(3) C GL(3,IR) and we are left again
with finite dimensional problems. However, the differential equations emerging by trying
to eliminate successively the parameters «, 3 and ~ in (), are getting more and more
complex and we did not succeed in solving them directly. But we can do better: It is
well known that @), splits under SO(3) further in smaller invariant subspaces. @), is now
reducible. We call the irreducible invariant subspaces of @), under SO(3) by M,;. They
have been extensively studied in the past in conjunction with quantum mechanics [16]
and more recently with image understanding and processing ([17], [18]) so we outline here
only some needed basic results for easy reference:

Since SO(3) is compact (), is decomposed by a direct sum :

M1 it n odd

Mo if n even

Qn = Mnn D Mn,n—? @ Mn,n—4 o - D {

My = (22 4 y* + )02 K

K being the space of all homogeneous polynomials of order [ in three cartesian coordi-
nates which are eigenfunctions of the Laplacian operator (harmonic polynomials). The
dimension of K; and M,; is (2 4 1) and we verify:

dim(M,.,,) + dim(M,, n—2) + -+ +dim(M,; or M,) =
=2n+1)+2n=-3)+2n-T)+ - +(Borl) =

_ (n+ 1)2(n +2) (in both cases! ) = dim(Q,).
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We can represent basis functions ™ (@) spanning M, as follows:

152

-l = E (90 (57

(37)

if0<m<I
el (&) = (=1)" - eq(@)”

nl nl

er(e)=0if m| > 1

nl

where the asterisc denotes complex conjugation. These are spherical harmonic functions
on the sphere with radius (z* + y* + 22)”/2 (we omit the proof).

Since (n — ) is even and ({ —m) > 2- [==2], e7(x) are homogeneous polynomials in z,y
and z of order n. The invariance of M,; under SO(3) is reflected also by the infinitesimal
changes of 7} (x) with respect to the parameters «, 8 and v of SO(3). Using (36) and

(37) we can show:

J .. l-m+1 l+m+1 .
gosiPa) = T ) - T ) 3)
a . fl-m+1 [+m+1 .
greape) = (e« B @) e
9 .

EEZ(P“")I = Jmey(@). (40)

This is a result also known from analyzing the Lie algebra of SO(3) [19].

Prior to continue applying the Lie method in order to eliminate the remaining three
parameters «, 3 and v of the group SO(3), we now compute expansion coeflicients of
fp(@) with respect to the system of basis functions 7 (@), rather than to that of the
monomials xPy?z".

(Fali= [ Ip(@)ee) de. (a1)

It is important to note that we have not to compute the integral above explicitly. Thanks
to eq. (37) and to the fact that ™ (&) are homogeneous polynomials in z,y and z we can
express the (F4)}" s as linear combinations of the EP" s of equal order n = p+q+r. To
illustrate this point a little we display a few examples of low order which can be verified

using eq. (41), (37) and (35).

n=oJ:
(Fa)is = (1/8)[(BEY° — EF°) + j(EY" — 3E%")]
(Fa)i = —G/OUEY — EY) —j - 26"
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(Fa)y = —(/2UEY+ EX° + EY?) + 5(EY° + EY° + B

(Faly = B+ B4 B

(Fa)i, = (L/16)[(EX° — 6E%° + E%Y°) — j - 4(E5° — EY°)]

(o), = [90 4 00 4 000 4 o | fan | oy
We also note
(Fa)," = (=" ((Fa)y)" and (Fy)n =0 if [m[>1

Equations (38), (39) and (40) are transferred directly to the coefficients (F'4)}:

0 [—m+1 [+m+1

T R i it (12
9, m fl-m+1 I+m+1 _
gpEan| = =i (TR s ) )
o o

| = =imE (1)

We can use the phase angle of any coefficient with |m| = 1 to build y-invariants. However,
following a similar reasoning as in page 16 after eq. (25) we choose (FA)zln- With the
notation (F4)" =: ‘(FA)ZH ei(?4)n1 we immediately check that variables

(G Q)T = (F )T - emim(ea)n (45)

are locally invariant with respect to +. Of course, the definition above doesn’t work if
(FA);1 = 0. In this rather unlikely case we must resort to some other coefficient with
|m| = 1.

Now we could proceed as in section 5.3., i.e. first compute the relationship between (G 4)”;
and f(«) and then derive formulas for the elimination of « and 3. However, that would
demand explicitly invoking the irreducible representations of SO(3). We would like to
avoid this here by computing the infinitesimal changes of (G 4)”, directly from eq. (42),
(43) and (45) and express the result in terms of the variables (G 4)”; themselves. A long
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but elementary calculation gives:

%(GA)Z ;= (mi%l- "= M%'G?ﬁv e —
_ (m% LGm Z_fl-l'l . G:l—l) e~ %k
n (m% LGm - Z_mf“ . Gm—l) e—y‘d%l] _

Unfortunately, it is not possible here to get rid of the coefficients e/ which belong to
the previous system of variables. However, we succeeded in solving the system above in
two steps: Firstly, we compute solutions of

GY . l+m+l

(:zn)I:m Ml T P
! aGL, 2

i m+1
Gnl

where the prime denotes again differentiation with respect to an artificially introduced
independent variable s. We solve this system in the manner outlined in section 5.3. for a
simpler case there. Omitting the details we present the solution in the form

l v—m
[+v Gy, G, _
SIS e

and use the left side of this equation for the definition of new variables (H 4)”,. However,
we observe from eq. (45) that

G _ (Fa)u
[(GA):I))J ’ [(FA):ln] ’

Therefore we can ignore (45) and define instead directly after eq. (41) of our algorithm:

=Y ()0 (—Lé‘)“) A (16)

v—m [(FA);J]D.

Examination of these variables for n = 3, [ = 1 reveals (HA);)1 =1, (HA)gl =0 and

(Ga)yy = (Fa)y, and

v=m

(Hp)y = - (%) +(Fh | = B = —C~. (47)
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(HA);)1 and (HA)gl are trivial invariants (equal for all objects) and indicate the degrees
of freedom sacrificed by executing eq.(46) of our algorithm. On the other hand H3;' turns
out to be the first true invariant of GL(3, IR). We simply check

It remains to investigate the behaviour of the variables (H 4)" under changes of a and f3.

Using (46), (42) and (43) we obtain

0 m I (l+m+1 " l—m+1

50 Ha) ;= (fcz Hit 4+ ————H] ) (48)
31

0 m J Z-I— m+ 1 m [—m+1 -

Because the overall common factors in eq. (48) and (49) don’t affect the derivation of
invariant functions depending on (H 4);, we see that we have to solve

) 1 [ — 1
(HZZL)/ _ + m + CQ Hm+1 _I_ m + H'm 1
2 2
in both cases. Thus, denoting by
0 1/2
!

Ha 1 0 0
H,,; the vector T_Ll and by A, the matrix (I—1/2)C* 0

]_].—l - - ]

" 0 1/2C? 0

we are faced with the linear problem (an)/ = A;-H,;. This equation can be diagonalized
by a transform matrix T; = diag(1,C,C?, ... ,C*).T; where T; = (7/%) and the matrix
elements 7/7 are given by the formula

m - I—m ! l =N T+
i = g (m)) a1 Z (-1) . (50)
2 G

The sgn-function is here defined by

1 if n>0
580(n) =9 1 it n<o

slightly departing from the usual definition. Furthermore, it can be shown that

Tt =272 diag(1,C7, C7%, ..., C™Tdiag(1,C71,C72, ..., C7%)
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and we obtain the eigenvalues of A; as entries of the diagonal matrix
T AT, = diag[iC, (1 - 1)C,...,-IC].

From the results above we see that the next step of the algorithm must be the definition
of new variables (I4)”; by

!
(IA)TLI
(T4), = : =T, (H ), (51)
-1
(IA)TLZ
Because now due to diagonalization (I™t)' = mCI™ we can normalize these variables in
a last step by choosing again some particular variable with |m| = 1 and use its real or
imaginary part:
m (LA)m :
() = l (52)

nl = m
[Re{(14)55}]
These are full invariants of the group GL(3,R) up to e,. Now returning to eq. (33) we

see that if we use instead of the unknown coefficients E%T the known ones E%T we can
compute the effect of ¢, on our invariants. It is easy to see that

ni(€a) = Re{ 1} + jealm{J 7}

If we want to discriminate between mirror objects, we can use the invariants J; directly.
Otherwise, we build

K77 := Re{J7} + jsgn(Im{J3;}) - Im{J"}. (53)

Note that defining K7 as Re{J”}} + j|Im{.J7}| would introduce ambiguities in the inva-
riants. The set {K} } is a complete set of invariants for the full group GL(3, IR).

5.5 Discussion

In conclusion we first indicate the equations which have to be really executed by a digital
machine:

a) A digitized form of eq. (18) using some fast algorithm.

b) Equations (27), (30), (31) and (32) will perform the reduction to the orthogonal group.
c¢) Computation of variables (F )", combining the E%T ’s linearly as equations (41), (37)
and (35) indicate.

d) Equations (46), (51), (52) and if also invariance with respect to reflections is desired

eq. (53).

We observe that all steps of our algorithm combine the variables of the preceding step
linearly with the exception of using one or two members of low order out of them nonli-
nearly for normalization. Every time this occurs one degree of freedom is sacrificed but
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not more. The reduction to the orthogonal group occurs by eliminating six parameters
out of nine of the full group GL(3,IR). Accordingly six moments (all moments of order 2)
are set to fixed values. Equations (41) and (51) introduce only a coordinate transforma-
tion in the function space. Eq. (46) sacrifices two degrees of freedom (double step) and
eq. (52) one (Re{(J4)ss} = 1) and finally eq. (53) normalizes to Im{K1,}> 0.
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