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Abstract. In this paper we derive a minimal set of sufficient constraints
in order for 27 numbers to constitute a trifocal tensor. It is shown that,
in general, eight nonlinear algebraic constraints are enough.This result
is in accordance with the theoretically expected number of eight inde-
pendent constraints and novel since the to date known sets of sufficient
constraints contain at least 12 conditions. Up to now, research and for-
mulation of constraints for the trifocal tensor has concentrated mainly on
the correlation slices and has produced sets of constraints that are nei-
ther minimal (> 12) nor independent. We show that by turning attention
from correlation to homographic slices, simple geometric considerations
yield the desired result. Having the minimal set of constraints is impor-
tant for constrained estimation of the tensor, as well as for deepening
the understanding of the multiple view relations that are valid in the
projective framework.

1 Introduction

The last decade has seen a great number of publications in the area of multi-
ple view vision and consequently an enormous progress in practical as well as
theoretical aspects in this field. One of the most interesting and intriguing the-
oretical constructions is the trifocal tensor that appears as the connecting block
between the homogeneous coordinates of image points and/or image lines over
three views. It is already very difficult even to try to cite all scientific work that
has been published in the last years around this topic. The trifocal tensor has
appeared first in disguised form in [13] in the calibrated case and in [15]. Tri-
linear relationships in the uncalibrated case were first published in [11] and the
tensorial description in [4], [12] and [14]. Simultaneous using of corresponding
points and lines has appeard in [5] and necessary and sufficient conditions were
formulated in [3] and [9].

In this paper we will focus attention on deriving a minimal set of constraints.
It is seen that eight nonlinear constraints are enough. This is a very satisfying
result because the theoretically expected number has been eight and the minimal
set to date known contained 12 constraints (not independent).



In order to make the material as self contained as possible we give in Section
2 a derivation of the trifocal tensor. Overlap with existing literature is unavoid-
able, however many things appear in new form. In Section 3 we describe the
so called correlation slices ([1], [2]) of the tensor that have been the basis for
developing sufficient constraints. In Section 4 we turn attention from correlation
to homographic slices ([1], [2], [12]) and show that this is the key for obtaining a
minimal set of constraints. In Section 5 we formulate our geometric and algebraic
conditions and we conclude in Section 6.

2 The trifocal tensor

In this section we will give a derivation of the trifocal tensor in closed factored
form in dependence on camera matrices and at the same time fix our notation.
We note here already that we are not going to use tensor notation and that the
indices I, J and K that will appear are not tensorial indices but just a means to
distinguish the views.

2.1 One view

Consider a scene point in the threedimensional projective space P> represented
by a fourdimensional vector X containing the homogeneous coordinates of the
point. A projective camera I represented by a 3 X 4 matrix P; will map the space
point onto a point x; € P2 of the image plane I containing its three homogeneous
coordinates. This mapping looks linear and reads

XINPIX . (1)

Since by using homogeneous coordinates the scale is unimportant and unrecov-
erable we use the sign ~ instead of = . We will be using the = sign only if strict
numerical equality between the two sides is meant. If our knowledge about the
location of a space point is limited only in the knowledge of its image x5 we
can only say about X that it must lie on the optical ray B(xs) containing the
image point x; and the camera center C; € P3. The camera center fulfills the
equation P;C; = O since it is the only point in P2 for which there isn’t any
image (of course under the idealizing assumption that the camera “sees” in all
directions). We obtain a parametric representation of the possible locations of
X if we try to “solve” the equation above. Since Py is not square it does not
have an inverse. However, using the pseudoinverse [16] P} of P; we obtain

X ~Pix;+CrA

and every that way computed point X satisfies equation (1). We will always
assume that camera matrices have rank three. In that case we have P} =
PT(P;PT)! and C; ~ (P}"PI — I,)v where I, is the 4 X 4 identity and v
may be any arbitrary 4-vector (not in the range of P7T) since (PyP; — I4) has
rank 1. All possible different solutions X are obtained by varying the parameter



A. We note that P?x; is a point on the ray B(xy) that is guaranteed not to be
coincident with C;. That enables us to write down the nonparametric equation
of the ray By(x;) based on two distinct points Pfx; and C; that define the
ray:

Br(x7) ~ Pfx;Cf — CixfP}”

B;(x7) is a 4 x 4 skew symmetrical matrix of rank two that contains the Pliicker
coordinates of the ray [10]. This representation has the advantage that one can
immediately give the intersection point of the ray with some given plane 7.
Thus, if we know that the space point X is on the plane 7 (XT#w = 0) then we
will have:

X~B I(X [)71'

2.2 Two views

Next we consider a second image x; ~ P ;X of X provided by a second camera
J with camera matrix P ;. For the above considered point we then obtain the
relation x; ~ P B(xr)m ~ P;(Pfx;CT — CxFP;T)m. As it is easily seen,
the dependence of x; on xy is linear. To make this linearity explicit we make
twice use of the algebraic law vec(ABC) = (A ® CT)vec(B) where vec denotes
the row-wise convertion of some matrix to a column vector and ® denotes the
Kronecker product and obtain

XJ NHJ[(ﬂ')X[ (2)
where H () is given by the following formula:
HJ[(TI')N(PJ®7TT)(I4®CI—CI®I4)P-I|— (3)

H;;(m) is a homography matrix that assigns to every point x; of image plane
I an image point x; of image plane J due to the plane w. Put differently, by a
homography mapping x; ~ H;r(7)xs the two optical rays Br(x;) and Bs(x;)
are guaranteed to intersect on the plane 7. Multiplying out we also obtain for
the above homography:

Hj/(m) ~P;P} @ a7 C; —P;CnTP}
NHJI@WTCI—GJ]WTP—; (4)

Here we have denoted by e;; := P ;C; the epipole of camera center C; on image
plane J and by H s (without argument) the product P ;P} which is a special
homography due to the plane with the same homogeneous coordinates like Cy
(m ~ Cg) as it is easily seen from above. This is a plane that is guaranteed not to
contain the camera center C;. Now multiplying equation (2) on the left by the
3 x 3 rank two skew symmetrical matrix [esr]x that computes the cross product
we obtain [ejr]xxs ~ [esr|xHr(m)x. The product [e 7] xHy(7) referred to
as the fundamental matrix F ;r

Fr ~ [esr]|xHy(m) (5)



is easily seen from (4) not to depend on the plane 7 (at least up to an unim-
portant scale factor). Furthermore, it is invariant with respect to projective
transformations of the space P3. As such, it is well known that the fundamen-
tal matrix encapsulates the projective structure of two views and computes for
every point x; on image plane I the epipolar line denoted A in image plane J
on which x; is constrained to lie:

Ayt~ [egr]xxg ~ Frxp (6)

Not less well known is the fact that the fundamental matrix depends on 7 in-
dependent parameters (2 x 11 for the two camera matrices minus 15 for the
projective freedom) and that consequently the nine elements of F;; are not
independent and should fulfil one constraint besides the free scale. As it is ap-
parent from equation (5) this constraint must be det(F yr) = 0 since [esr]x and
consequently also F' ;7 has rank two. What in the case of two cameras has been
so easy to derive, is in the case of three cameras to be described below by far
not as trivial.

Concluding this short two-views exposition we also mention some well known
but important facts concerning homographies and fundamental matrices that
will be useful in the sequel:

— Homographies are in general regular matrices

— The inverse of a regular homography is a homography due to the same plane
but with interchanged image planes: H7(w)™! ~ Hys(mw)

— Any homography H ;;(w) maps the epipole er; onto the epipole ey

— The map of a point x; under a homography H () is on the epipolar line
A, e AT Hy(m)x; =0 Vo=

— The transpose of a homography maps corresponding epipolar lines onto one
another, i.e. HJ[(ﬂ')TAJI ~ A1J

— The right and left null spaces of the fundamental matrix F ;; are the epipoles
ers and ey respectively

— Transposition of a fundamental matrix yields the fundamental matrix for
interchanged image planes: F%; ~ Fr;

2.3 Three views

Now we assume that the knowledge about the plane 7 on which the space point
X has been assumed to lie is provided by a third view K. If the image point
xg ~ PgX is known to lie on the line lx of the image plane K then one
deduces from 1%xyx = 0 that 12 PxX = 0 and consequently that this plane
is described by  ~ Pﬂl k- Now plugging this specific plane into equation (3)
and using elementary calculational operations concerning Kronecker products
we obtain

H;(PRlg) ~ (I3 01%)(P;@Pk)(L,® Cr — Cr L)P} . (7)

We define the part of the expression on the right that does only depend on
camera parameters to be the trifocal tensor T7%. Multiplying we also obtain
the tensor in a more familiar form:



T{% ~ (P, ® Px)(L4® C; — C; @ 1) P} (8)
~HjyQegr—ejr QHgkr (9)

As the fundamental matrix, the trifocal tensor is invariant with respect to projec-
tive transformations of P2 and encapsulates the projective structure of the space
given three (uncalibrated) views. Besides, it has been shown that one can have
in (9) homographies due to any plane that must be however the same for both
homographies, i.e. we have T7X ~H;/(m)Qexs —ejr@Hgr(w) V = .

Written in the form above the tensor appears as a 9 x 3 matrix. We will adopt
in this paper a sort of engineering approach and treat the tensor as a matrix.
We believe that in doing so, nothing is really lost and on the other hand some
properties of the tensor are in our opinion easier to grasp this way, avoiding
confusing tensorial indices. After all the fundamental matrix is a tensor as well
but mostly referred to as a matrix. Note however that there are cases where the
converse proceeding may well be reasonable, i.e. treat the fundamental matrix
as a tensor (cf. [2]). Particular contractions of the tensor that will be needed
later will appear as 3 X 3 matrices that can be extracted from the tensor either
as particular submatrices and linear combinations thereof or as 3 x 3 reshapings
of its three columns and linear combinations thereof. To be specific, we will be
using the following notation:

U
T{* ~(qr,s)=| V (10)
w

Here are q, r, and s 9-dimensional vectors and U, V and W 3 x 3 matrices. The
3 x 3 reshapings of the three 9-vectors q, r and s will be denoted Q, R and S
respectively, i.e. we define

{a}sx3 =:Q, {r}sxa=:R and {s}sx3=:S

with
vec(Q) =q, vec(R)=r and vec(S)=s.

To relieve the further reading of the paper for readers accustomed to the tensorial
notation we note that Q, R and S are the correlation slices of the tensor often
denoted YET$*, 7KT3* and KT respectively. These are the three classical
matrices of [13] and [15] discovered in the context of line geometry. Likewise are
U, V and W the three homographic slices 7KT1*, 7KT2* and 7KT3* respec-
tively described in [1], [2] and [12].

Perhaps one of the most striking properties of the trifocal tensor is that this
one entity links together corresponding points and/or lines in the three views
as well as corresponding points and lines through corresponding points. It is
immediately seen from equations (2), (7) and (8) that the corresponding image



points x7, x; and the image line 1 that goes through the third corresponding
image point xg are linked together by the relation

x; ~ (I3 @ 15)T7E x; (11)
—_—
HJ[(P’II;IK)
or, equivalently,
Xg {T{KX1}3X31K . (12)

Now, with any line 1; going through image point x; we will also have
17{T{¥xr}3x3lx =0 (13)

or, equivalently,
T 1E)T/¥%x;=0 .

If we would like to interchange the roles of image planes J and K we would have to
interchange the indices J and K everywhere in the formulas above, thus moving
also to a different tensor. However, it is easily seen that these two tensors do not
differ substantially from one another. In fact the one is a simple rearrangement
of the elements of the other. This can be easily deduced from equation (13) of
which the very symmetrical structure may lead either back to equation (12) or
to

{T7 xr}axs ~ xi (14)

thus computing the corresponding point in image plane K from the image point
x; and some image line 1; going through x; using the same tensor.

3 The correlation slices Q, R and S

We begin with describing the so called correlation slices Q, R and S of the tensor
since these entities have been mainly used in exploring the constraints that 27
numbers, arranged as in (10), must satisfy in order for them to constitute a
trifocal tensor. Starting with equation (12) and using (10) we obtain

xy ~ (z}Q + 23R + 238)lx .

Thus, any linear combination of the matrices Q, R and S maps lines 1 in image
plane K onto points in image plane J. Since mappings from lines to points are
called in the mathematical literature correlations [10], we see that linear combi-
nations of Q, R and S are correlation contractions of the tensor. Moreover, we
observe that by fixing x; and varying 7 or, equivalently, varying lx arbitrarily,
xy must move along the epipolar line F jrx; ~ Ay in image J since x; remains
fixed. All these correlations and consequently Q, R and S themselves, which
have been called the Standard Correlation Slicing [2], must therefore be rank
two, singular correlations with left null space the epipolar line Aj; correspond-
ing to the image point x;. Furthermore, since all epipolar lines intersect at the
epipole e the left nullspaces of all correlations {T{Xx;}3x3 span only a two



dimensional space. This is especially true for the Standard Correlation Slicing
Q, R and S for which according to (6) the left nullspaces are respectively the
first, second and third column of the fundamental matrix F;; and fundamental
matrices are rank two.

As for the right null space of {T7%x;}3x3, by repeating the argument above
but starting from eq. (14) we find that it must be the epipolar line Agy ~
F kx5 in image K corresponding to the image point x;. Again, since all those
epipolar lines intersect at the epipole ex the right null spaces of all correlation
contractions {T7%x;}3x3 span a two-dimensional space as well. In particular,
the right null spaces of Q, R and S are the first, second and third column of the
fundamental matrix F g respectively.

It is perhaps very instructive to note that the whole discussion above may be
condensed in two simple algebraic formulas ((15) and (16) below) which can tell
us even more than we could deduce geometrically. If we rearrange the elements
of T7X in another 9 x 3 matrix defining

Q
e\ n) = {er,,

then it is not difficult to see from (9) that T will read as follows:

Q
T=|R | ~vecHY)ek; —Hg; ®eys
S

We observe that we can cancel the first term above by multiplying on the right
by F i obtaining

Q

TFxr~ | R | Fxr~HE,Fxr®eyr
S

and since HY Fxr ~ (FrxHgr)T ~ [erkx]x we eventually get

2
Q 0 —6§Ke.]1 ETK€JI
— 3 1
R Fgr~ [eIK]x Rejr = eTKeJI 0 —€erg€JI . (15)
2 1
S _eIKeJI eIKeJI 0

Hence, we first verify the result that the columns of Fg; are the right null
spaces of Q, R and S (diagonal entries in (15)). Furthermore, we also obtain a
generalized eigenvector of pairs of standard correlations and the corresponding
eigenvalues as it is easily seen. This is the line of thought we want to pursue,
however not for correlations but for the later to be investigated homographic
slices of the trifocal tensor.

Similarly, by defining

T:= (Q,R,S) ~Hy; ® ek, — esr(vec(HL )T



and multiplying on the left by F;; we cancel the second term and obtain
Fr;(Q,R,S) ~Fr/Hyr ® e ~ [ers]x ® ek (16)

which is the analogue of equation (15). Equations (15) and (16) are samples
of Heyden’s quadratic p-relations [6] but put in a much more informative and
appealing form. We note here in passing that all other quadratic p-relations
that are valid between the trifocal tensor, the fundamental matrices and the
epipoles may be obtained in a similar manner by cancelling one or both terms of
different systematic rearrangements of the tensor elements. Furthermore, tasks
like computation of all trifocal tensors from some particular one or from the
fundamental matrices and vice versa, can be very compactly formulated using
the formalism introduced above.

The preceding discussion shows that the correlation slices of the tensor ex-
hibit many striking properties and it is natural that they have attracted much
interest in the past. In fact, the constraints that 27 numbers must satisfy in
order for them to constitute a trifocal tensor have been formulated on the basis
of the correlation slices. Reversing the discussion above, it has been proved in [9]
(cf. also [6]) that all properties of the correlations we mentioned make up also
sufficient conditions and we adapt here a theorem in [9] in the following form:

Theorem 1 (Papadopoulo-Faugeras). If 27 numbers are arranged as in equa-
tion (10) then they constitute a trifocal tensor if

— all linear combinations of Q, R and S are singular and

— all right null spaces of Q, R and S span only a two-dimensional subspace
and

— all left null spaces of Q, R and S span only a two-dimensional subspace.

Hence, the conditions given above are necessary as shown by our discussion and
was well known and sufficient as shown by Theorem 1. However, turning these
conditions in algebraic constraints that should be fulfilled by the 27 numbers
in order for them to constitute a trifocal tensor, has resulted in 12 constraints
[9] that are not independent since any number of constraints greater than eight
must contain dependencies.

In the next section we will elucidate the question of constraints for the trifocal
tensor from a new point of view that will enable us to formulate a new set of
conditions that will be necessary and sufficient and at the same time minimal.
Towards this end we now turn attention from the correlation slices Q, R and S
of the tensor to the homographic slices U, V and W.

4 The homographic slices U, V and W

In order to exploit these slices for the formulation of sufficient conditions for the
tensor we first have to study their properties in some detail. To this end, we



return to equation (14) and use the vec-operator on both sides. We then obtain
(17 ® I;)T{¥ x; ~ xx which reads more explicitly
—_— ————

HKI(PZIJ)
(BU BV +BW)x; ~xk .

Thus, any linear combination of matrices U, V and W with coefficients being
the homogeneous coordinates of the line 1; yields a homography from image I
onto image K due to the plane Pf‘;l 7. Generally, these homographies are regular
rank three. As with correlations, the Standard Homography Slicing ([1], [2]) of
the trifocal tensor is here defined by setting for 1; the unit vectors (1,0,0)7,
(0,1,0)T and (0,0,1)T that gives us respectively the matrices U, V and W
being homographies due to the planes m; ~ ((1,0,0)P )T, wy ~ ((0,1,0)P ;)T
and w3 ~ ((0,0,1)P ;)T respectively. These planes are therefore represented by
the first, second and third row of the camera matrix P ; respectively. Now, since
the matrices U, V and W are homographies from image plane I to image plane K
they must possess the homography properties given in Section 2.2. In particular,
they must map the epipole e;x onto the epipole ex; and hence the epipole e;x
is a generalized eigenvector for the three matrices U, V and W:

Ue[K NVGIK Nwe[K ~eKr . (17)
In the Appendix we also prove algebraically the following stronger result

JK (UeIK)T T
{T{"erx}sxs ~ | (Verx)T | ~esxek; (18)
(Werk)™

that gives us in addition the generalized eigenvalues in dependence of the epipole
ejK:

2 1 3 2 1 3
6JKUeIK - eJKVeIK CJKVe[K - eJKWe[K eJKWeIK - eJKUe[K .

Now let us consider the space line Ly3 defined to be the intersection line between
planes 7o and 73 as defined above. Since these planes both go through C; so
does their intersection which is therefore an optical ray of image J. Furthermore,
these planes intersect the image plane J by construction in the lines (0, 1,0)7 and
(0,0,1)T which, in turn, intersect in the point (1,0,0)T. Hence, we obtain for this
optical ray Loz ~ B((1,0,0)T) and consequently its images onto image planes
I and K are the epipolar lines Fr;(1,0,0,)T and Fg(1,0,0,)T respectively.
Similarly, we obtain for the two other intersection lines: L3; ~ B 7((0, 1,0)T) with
images Fr(0,1,0,)7 and Fg;(0,1,0)7 onto image planes I and K respectively
and L1z ~ B;((0,0,1)T) with images F;;(0,0,1)” and Fx 7(0,0,1)T onto image
planes I and K respectively. Next consider some pair of standard homographies,
V and W say. Since they are due to the planes w2 and 73 respectively, the
restriction of both homographies to the intersection 7wy N3 ~ Log will give the



same line homography that maps points of the epipolar line Fr;(1,0,0)” onto
points of the epipolar line F ;(1,0,0)7. To be specific, we will have:

If xTFr;(1,0,0)T = 0 then Vx; ~ Wx; ~ xx with xxFx7(1,0,0)7 =0 .

Consequently, all points of the epipolar line F;7(1,0,0)T are generalized eigen-
vectors for the pair of standard homographic slices V and W. Hence, these points
span a two-dimensional generalized eigenspace for these two homographies. For
the sake of completeness we display the analogue result for the two other pairs
of homographies.

If xFF;;(0,1,0)T = 0 then Wx; ~ Ux; ~ xg with xEFg;(0,1,007 =0 .

All points of the epipolar line F7;(0,1,0)T are generalized eigenvectors for the
pair of homographic slices W and U and span a two-dimensional generalized
eigenspace for these two homographies.

If xX Fr7(0,0,1)7 = 0 then Ux; ~ Vx; ~ xg with xxFg(0,0,1)7 =0 .

All points of the epipolar line F7;(0,0,1)T are generalized eigenvectors for the
pair of homographic slices U and V and span a two-dimensional generalized
eigenspace for these two homographies.

This situation is depicted in Fig. 1 and Fig. 2.

o e o e
e 1J e

IK KI KJ

T T
FI J(0,0,1) F £0.0.1)
T T
F5(1.0.0) Fi £10.0)
T T

Image plane | FIJ(O’l’O) Image plane K FKJ(O‘l’O)

Fig. 1. Generalized eigenspaces of the ho- Fig. 2. Generalized eigenspaces of the ho-
mographies U, V and W . mographies U™, V™1 and W1 .

In summary, the generalized eigenspaces of any pair out of the three homo-
graphies U, V and W will consist of a one dimensional eigenspace spanned by
the epipole e;x and of a two dimensional eigenspace that is orthogonal to one
column of the fundamental matrix Fj;, i.e. it represents the points of the epipo-
lar line in image I of a point in image J that, in turn is represented by a unit
vector. In general, considering linear combinations of the homographic slices U,
V and W, i.e. homographic contractions of the tensor we see that essentially we
have already proved the following theorem:

10



Theorem 2. Given any two homographies Hi1(P%1;1) and Hi(PTls2) be-
tween image planes I and K that are due to the planes P?;ln and P?ng, defined
by the lines 151 and lj2 in image plane J and by the camera center Cy, the
generalized eigenspaces of the two homographies are

— a one dimensional eigenspace spanned by the epipole erx and
— a two dimensional eigenspace containing all points on the epipolar line
Frs(ly x Ly2).

For applications regarding the generalized eigenspaces and eigenvalues of pairs
of homographies cf. [7] and [8].

We note that from above follows that the second pair of epipoles on the image
planes I and K, namely er; and e is mapped by all homographies U, V and
W and linear combinations thereof onto one another as well, i.e. we have

UeIJNVe[JNWe[JNeKJ. (19)
Again, in the Appendix we prove the stronger result

JK (Uers) T
{T{¥ers}sxs~ | (Vers)” | ~ejre, (20)
(WeI_])T

that gives us now the following double generalized eigenvalues, since we are now
in two-dimensional eigenspaces:

2 1 3 2 1 3

The réle of the epipole ers is recognized as that of being the intersection of all
two-dimensional generalized eigenspaces of all pairs of linear combinations of the
standard homographies U, V and W.

After having explored the properties of the homographic slices of the trifocal
tensor that give us necessary conditions, we set out in the next section for finding
a minimal set of sufficient conditions.

5 The sufficient conditions

5.1 Geometric conditions
We begin with the following theorem:

Theorem 3. Any three homographies U, V and W between two image planes
which are due to three different planes w1, wo and w3, if arranged as in (10)
then they constitute a trifocal tensor.

Thus, we get a trifocal tensor without any reference to a third camera or to a
third image plane J. To see this we simply let the intersection of the three planes
play the réle of the camera center of a fictive third camera (7w; Ny N7y ~ Cy)

11



and let the intersecting lines between two planes at a time play the réle of the
optical rays that we have considered in Section 4.

Therefore, if 27 numbers have been arranged as in relation (10) then we only
have to ensure that the three matrices U, V and W could be interpreted as
homographies between two image planes. We claim that, for this to be the case, it
suffices that the generalized eigenspaces of pairs of matrices U, V and W should
be as shown in Fig. 1. This is essentially the content of the next theorem. In fact,
we will draw directly the conclusion from the eigenspaces constellation to the
trifocal tensor. The matrices U, V and W will then be of course automatically
homographies since this is a property of the tensor.

Theorem 4. Three 3 x 3 matrices U, V and W, arranged as in eq. (10) con-
stitute a trifocal tensor if and only if the generalized eigenspaces of pairs of them
are as shown in Fig. 3.

Proof: The necessity has been shown in Section 4. To prove sufficiency we make
use of Theorem 1 and of Fig. 3.

Fig.3. The point a is a one-
dimensional generalized eigenspace
of all pairs among the matrices
U, V and W. Besides, every pair
owns a two-dimensional generalized
eigenspace represented by a line s; as
(VW) =s shown in the figure. All three two-
dimensional generalized eigenspaces
Wwu) =s, intersect in the point b.

Consider in Fig. 3 some arbitrary point x that defines a line 1 ~ axx. This line
intersects the lines s1, so and s3 in the points u, v and w respectively. Now since
u is element of a generalized eigenspace for the pair (V, W) and a is generalized
eigenspace for all pairs we will have: Va ~ Wa and Vu ~ Wu . We denote the
line Va x Vu by I’ and see that this line will be the same line as Wa x Wu
(i.e. ' ~ Va x Vu ~ Wa x Wu). Hence, since the point x is on 1 the points
Vx and Wx will be on I’ since V and W represent collineations. And finally,
by repeating the same argument for a second pair containing U we see that also
Ux will lie on the same line . That means that the points Ux, Vx and Wx are
collinear and hence we will have det({(q,r,s)x}3x3) = det(z'Q+ z*R + 2°S) =
det(Ux, Vx, Wx)T = 0 (cf. eq. (10)). Since the point x was arbitrary this result
shows that the first demand of Theorem 1 is satisfied. Now, as it is immediately
seen, the right null space of (z!Q+z?R+2z*S) = (Ux, Vx, Wx)T will consist of
I'. But I’ goes always through a’ ~ Ua ~ Va ~ Wa. Thus, all these null spaces
span only a two-dimensional subspace.

12



As for the left null space of the expression above, it is equivalent with the
right null space of the transposed expression, i.e. of (z!Q + z?R + 23S)T =
(Ux, Vx, Wx). To see how the right null space of the last expression looks like,
let the double generalized eigenvalue of the pair (U, V) be denoted with A2 and
of the pair (U, W) with po. Then the matrices (V — A2U) and (W — poU) will
have rank 1. Since (V — A2U)a ~ a’ then we will have (V- X, U)x~a' V x,
and similarly, (W —puaU)x ~a’ V x. There are therefore always two numbers
a and B such that a(V — A2U)x — (W — pyU)x = 0 or, equivalently,

(Ux, Vx, Wx)(Buz — ads, a, —ﬂ)T =0

and since (Bua — adz,a, —B)T = (0,8,a)T x (1, A, u2)T we see that this null
space is always orthogonal to (1, A2, 2)T and hence lives in a two-dimensional
subspace as well. Thus, all demands required by the Theorem 1 were shown to
be satisfied. Q.E.D.

A remarkable fact to note here is that, according to (21), the vector (1, Aa, p2)”
represents nothing else than the epipole esr: (1, A2, u2)T ~ eyr.

5.2 Algebraic conditions

The purpose of this section is the main scope of the paper, namely the formula-
tion of a set of algebraic constraints that are sufficient for 27 numbers, arranged
as in (10), to constitute a trifocal tensor. We know from the preceding section
that all we have to do is to give the algebraic conditions for three 3 x 3 matrices
U, V and W to possess the generalized eigenspace constellation shown in Fig.
3. Quite obviously, we demand:

— The polynomial det(V — AU) should have a single root A; and a double root
A2 and (V — A2U) should have rank 1.

— The polynomial det(W — pU) should have a single root p; and a double
root pp and (W — poU) should have rank 1.

— The generalized eigenvectors to the single eigenvalues should be equal.

Since the Jordan canonical form of U~V or U™!W in the presence of double
eigenvalues, as is here the case, could be not diagonal, the rank 1 demand in
the conditions above is essential. It is easy to see that if these conditions are
satisfied for the two pairs above then they will also be satisfied for the third
pair. Besides, the line representing the two-dimensional generalized eigenspace
of the third pair must go through the point of intersection of the other two pairs.
Therefore, there is no need to demand any further conditions.

The derivation of the condition for a polynomial p(\) = aA® + bA2 + cA +d
to possess a double root is elementary. We give here the result. Introducing the
abbreviations

A:=b"—3ac, B:=bc—9ad and C:=c’—3bd
we have: p(A) will possess a double root if and only if

B?—4AC=0 . (22)
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If this condition is satisfied then the single root A; and the double root A2 will
read B b B

)\122—; and AQZ—ﬂ.
Thus both, the condition for a double root and the roots themselves (provided
the condition is satisfied) of a third degree polynomial may be given in terms of
rational expressions in the coefficients of the polynomial.

We know that the expression det(V — AU) may be expanded as follows:
det(V = AU) = — det(U)A3 +tr(U'V)A2 —tr(V'U) X + det(V) where tr denotes
the trace of a matrix and A’ denotes the matrix of cofactors with the property
A’A = AA’ = det(A)I3. Note that A’ will exist even if A is singular and that
the rows (columns) of A’ are cross products of the columns (rows) of A. Hence,
the coefficients of det(V — AU) are third degree and can be given explicitly as
outlined above, the coefficients A, B and C are sixth degree and the condition
(22) is of degree twelve in the tensor elements.

Denoting with a the common eigenvector corresponding to the single eigen-
values and with b the common eigenvector corresponding to the double eigen-
values we have: Testing for rank(V — A2U) = 1 is equivalent with testing
(V = AU)c ~ Ua for any c not on the line a x b and means two constraints.
Specifically, since the vector a X b as a point will not lie on the line a x b these
two constraints may be formulated as (V — A;U)(a x b) ~ Ua. Similarly means
testing for rank(W — poU) = 1 another two constraints.

In summary we obtain:

Two constraints by demanding eq. (22) for the two polynomials det(V —AU)
and det(W — pU)

generalized eigenspaces (a ~ a)
— Two constraints by demanding rank(V — A, U) =1 and
— Two constraints by demanding rank(W — poU) =1 .

Thus, we have presented a minimal set of eight constraints that is sufficient for
27 numbers to represent a trifocal tensor. It should be stressed that in this paper
we have treated the general case ignoring some singular cases that may arise.
Although they are of measure zero in the parameter space some of them might
well be of practical relevance and worth investigating.

6 Conclusion

In this paper we have derived a minimal set of eight constraints that must be
satisfied by 27 numbers (modulo scale) in order for them to constitute a trifocal
tensor. This result is in accordance with the theoretically expected number of
eight independent constraints and novel since the to date known sets of sufficient
constraints contain at least 12 conditions. Knowledge of sufficient constraints
for the trifocal tensor is important in constrained estimation from points and/or
lines correspondences. It is expected that working with fewer and independent
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constraints to be enforced will result in stabler and faster estimation algorithms.
The key for obtaining this result was shown to be turning attention from the
correlation slices to the homographic slices of the trifocal tensor.

Appendix

To prove equation (18) we start with (9) which after multiplication on the right
by erx and rearranging gives:

{T{¥erx}sxs ~ Hyrerxek; —ejr(Hirerx)”

Now we use the definitions given in sections 2.1 and 2.2 and employ some alge-
braic manipulations to get:

{T{¥erx}sxs ~P;PfPCx(PxC)T — P;C;(PxPiP;Ck)T
~P;P;P;CxCTPL - P,C,CLPPP%
~P;(P;P; -1, +1,)CkCTPL —P;C;CL(P/P; -1, + L,)PL
~P;(PIP;-1,)Cx C]P% +P;CxCTPY —
~Cjp
- P;C;CL(PIP; - 1,)P%
Nc}"

~P;CxCTPL ~e;xek; Q.E.D.
The proof of (20) is similar:

{T{%ers}axs ~ Hirersex —esr(Hirers)”
~P;P;P;C;(PxCr)" — P,;C; (PP P;C,;)"
~P;P;P;C;CTPL - P,;C;CIP/P/PL
~P;PfP; -1, +1,)C,;CTPL — P,C;CT(PIP; -1, + I,)P%
~P;(PfP; -1,)C;CTPL —P,C;CT(P/P; - 1,) P% —
- P,;C;CTPL
~P;C;CTPT ~e;el;, Q.E.D.
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