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Abstract. It is well known that for the simpler problem of constructing
translation invariants of grey scale images (1D, 2D or 3D) central mo-
ments can be used. There are plain closed formulae expressing them in
terms of the ordinary geometrical moments. Moreover, central moments
are ordinary moments of the properly normalized image.

In this paper we present moment invariants for the more involved prob-
lem of rotations and reflections of 3D density objects, having exactly the
same qualities as those mentioned above of central moments.

The mathematical analysis of this problem is complicated mainly due
to noncommutativity of the group of 3D rotations SO(3). However, by
constructing basis functions using harmonic polynomials, rather than
monomials, we achieve a decomposition of the action of SO(3) in irre-
ducible representations acting on invariant subspaces, thus simplifying
the problem.

Using a suitable generating function for harmonic polynomials we work
out a novel and very compact description of these subspaces. In addition,
we introduce the notion of “spherical moments” denoting inner products
of the basis functions with an object, and we encode them using the same
generating function.

In conjunction with the Cayley-Klein parameterization of SO(3) we ob-
tain a simple relationship between the encoded spherical moments of two
rotated/reflected versions of a 3D object. This relationship enables us to
express the spherical moments of a uniquely normalized object in terms
of the spherical moments of the not normalized (actual) object, just as
we can express central moments in terms of ordinary moments. In doing
so we don’t lose any information and since moments uniquely charac-
terize an object with compact support we see that we have constructed
complete moment invariants.

The normalization process itself is carried out using exclusively moments
of third order and yields at the same time unique pose determination.
Keywords: 3D moment invariants, completeness, irreducible represen-
tations, harmonic polynomials, spherical moments, 3D pose determina-
tion.



1 Introduction

Modern imaging instrumentation is capable of providing images with complete
interior 3D detail. Examples are medical diagnosis systems based on computer-
ized tomography (CT), magnetic resonance imaging (MRI), positron emitting
tomography (PET) as well as active range finders, stereoscopic backprojection
etc. In all these instances automatic registration and recognition demands the
extraction of features which should be invariant to an arbitrary 3D motion of
the object.

The focus of this paper is on deriving for that problem closed analytical
formulae for a complete set of independent invariant features based on image
moments as well as efficiently solving the positioning problem. For that purpose
we develop a normalization scheme which uses only moments of third order.

It turns out that publications on this topic using moment techniques have
been rather sparse in the last two decades. This is in contrast to the correspond-
ing 2D problems where publications abound.

Dirilten and Newman [4] have utilized the method of contracting indices of
moment tensors. The resulting invariants are not complete and may even be not
independent. Similar remarks apply also for the tensor and matrix techniques
used in [3] and [12].

Sadjadi and Hall [11] have attempted to generalize results of the theory of
2D moment invariants. However, only second order moment invariants have been
explicitly derived.

Using tensor algebra Faber and Stokely [6] could estimate an affine transfor-
mation lying between two medical objects known to be similar. Even so, they
need fifth order moments which may be more vulnerable to noise contamina-
tion than lower order moments. For a comprehensive study of the behaviour of
various 2D moments in the presence of noise cf. [13].

Finally, Lo and Don [10] have recognized the need for invoking the represen-
tations of the group SO(3). Again, only low order invariants are derived (< 3)
without pursuing completeness.

We present here a self contained closed mathematical solution for the problem
of unique pose determination and computation of complete moment invariants
for general orthogonal transformations of 3D objects. We assume that the object
is lying entirely within a compact region of the 3D Euclidean space and that it
is described through its voxel intensity representation well separated from the
background. However, point sets or sets of line segments can be considered too
within this framework by modelling them as sums of Dirac distributions. The
pose determination is carried out through a unique normalization procedure.
Therefore, no known point correspondences are required.

The paper is organized as follows: In Sect. 2 we summarize the needed math-
ematical background concerning harmonic polynomials, spherical moments and
representations of the group SO(3). In Sect. 3 we develop the concept of {-coding
which simplifies the analysis considerably. Section 4 deals with the normaliza-
tion procedure and the unique pose determination and in Sect. 5 we formulate
explicitly the complete invariants. Section 6 contains our concluding remarks.



2 Preliminaries

Basic facts contained in this section can be found for example in [8] or [5].

2.1 Harmonic polynomials and spherical moments

The subspace

1

Qn =<z, 2" y,...,xPylz",....2" > ; pH+qg+r=n,

spanned by all n-th order monomials in three cartesian variables z, y and z is
obviously invariant with respect to every linear transformation R; i.e. if ¢,(x) €
Qn then g, (Rx) € Q. The dimension of @, is W Now, it is well known
that if we restrict R to be orthogonal, R € O(3), then we can find within @,
further invariant subspaces which are irreducible. We denote these subspaces by
M,,; and obtain a decomposition of @), in a direct sum

M, if n even

Q" = Mnn @ Mn,TL*Q @ Mn,nféi @ e @ {Mnl lf n Odd

The basis elements of M,,; are of the form

lz|"Y,™ (39, ¢) = |m|l+2d}’}m(19,¢) = |m|2delm(a:) = |:z:|”’le;"(:z:) , where

T sin ¥ cos ¢
z=|y | =|z|-| sindsing | , (1)
z cos v

Y,;™(¥, ¢) are spherical harmonics of degree [,
e (@) = 2|V (9, ¢) (2)

are [-th order homogeneous harmonic polynomials and n—I! = 2d are nonnegative
even integers. The dimension of M, is 2/ + 1 and we can verify

dim(Mpy) + dim(My p—2) + --- + dim(Mpg or Mp1) =
=2n+1)+2n-3)+2n-7)+ --- + (1 or 3) =
(n+1)(n+2)

=—a (in both cases ) =dim(Qn) .

We use indices m running from +I to —I and ask for an explicit expression for
the spherical harmonics ¥;™(¢, ¢). The result most frequently reported in the
vision literature ([8], [9]) is based on the Rodrigues formula for the associated
Legendre functions P/ ()

Y7(9,9) = P"(9) - &/™  and (3)

m . o3 m dl+m 2 l
) ~ (jsind)™ - <o [(u? = 1)] ,

u=cos ¥
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where j2 = —1. We shall make use of the sign “~” instead of “=" every time
we are neglecting constant factors. Now, the point is that this expression for
spherical harmonics is of little value if we want to study how are harmonic
polynomials changing under the action of a rotation. Of course, there is the
representation law stating that if we collect all I-th order harmonic polynomials

»”

in a (2] + 1)-dimensional vector e;(z) := (e}(z), e ' (z),- -- ,el_l(:z:))T then we
have [5]
el(Pz) = o/(P)ei(z) ; P eSO@3) (4)

with 0;(P) being a (2+1) x (2/+1) unitary matrix if the e]"(z)’s are normalized
to be orthonormal on the unit sphere. But now we need the matrix elements of
0;(P) in dependence of the rotation parameters and we have not been able to
find in the literature a really succinct description for that.

Not to be discouraged we can help things if we start from an integral formula
for the associated Legendre functions P/"(¢) found in [5] or [14]:

1 27 '
P (9) ~ %/0 (cos® +jsin19cosﬂy)leﬁm~r dy .

Expanding the binomial expression and integrating the appearing trigonometric
functions using Euler’s formula yields in conjunction with (1), (2) and (3)

4 iy \™ _ 22 £ 2\ #
o~ (S5 (1) (1) (F) =
()
The sums are extended over all indices for which all appearing combinatorial
symbols (7) are defined, i.e. 0 < v < n. In (5) we have defined on the right side
modified harmonic polynomials & (x) that are orthogonal but not orthonormal
on the unit sphere. It can be shown that the connection to the orthonormal
harmonic polynomials e]*(x) is given by e*(x) = ¢]* - €] (x) where

o = \/(2l+1)(l;;m)!(l—m)! —em ©)

We note here the symmetry relation of the so represented harmonic polynomials:

g M) = (=1 e (@)]" - (7)

Inserting m = 0 we obtain from above e (z)* = (=1)'e?(z) i.e. if [ is even €Y (x)
is real and if [ is odd e?(z) is imaginary. More details about these facts can be
found in [1].

We now define “spherical moments” F)} being inner products of a function

f(zx) € (IRT)®’ with the basis functions of M,

te= [ f@lel e @) da ®)



and collect all spherical moments of order n and degree | = n —2d in a (2] + 1)-
dimensional vector

- -nT n— *
Fo = (FL, FiTl . F3) :/Rsf(m)|m| ley(x)* do . )

Due to the representation law (4) we can compute the effect of a rotation of
f(x) on Fry: (Fp),, = [ps f(P'z)|z|" e (x)* de, P € SO(3) . Since
|Px| = |z| we obtain from (4)

(Fp)y=0(P) Fp . (10)

This is already a great simplification of our problem since we have found the
smallest possible multiplets consisting of spherical moments that are transformed
exclusively among themselves under a rotation of the object. Very useful in this
context appears to be (5), which can be used to express spherical moments as
linear combinations of geometrical moments of the same order:

il—m ©
Am_] _1 l l_,u’ X
m=e 2 (1) (1) (5h)
n—1

' /zns f@)(@® +y* +2°)77 (2 +y*)(z — gy)m2 T dwe (11)

Note that the above integral and hence the whole expression (11) too is a linear
combination of n-th order geometrical moments. Thus, we can compute from
the geometrical moments spherical moments of any order and degree (and vice
versa). If we recall that the representation matrices o;(P) in (4) are unitary we
see from (10) that the norm of (F'p),, is invariant w.r.t. rotations:

|(FP)nl| = |Fnl| . (12)

However, this classical system of invariants is not complete since we get for
every (2[ + 1)-dimensional subspace M, only one single invariant. In the next
section we will look more deeply into the structure of the system of harmonic
polynomials.

3 The ¢{-coding

3.1 Definition

For every nonnegative | we define the (2] + 1)-dimensional vector

p(Q) == (¢L¢ e, cec, (13)

and form the product

éx; ) = p(Q)Teu(x) = D er(z)(™ . (14)



Thus, we have encoded the modified harmonic polynomials of order [ into the
coefficients of a polynomial of order 2/ in ¢ divided by ¢!. The result & (z;()
which we shall call {-coding of harmonic polynomials is a generating function
for the latter. Now it is straightforward to compute from (5) the above sum.
After some algebra the lengthy expression collapses to give

R 1
é(x;¢) = [p,(¢)" Sz] (15)
15 0
with §:=1 (0 0 —2j | a constant matrix, and therefore
1-j 0
é(@;¢) = [en(z; Q)" . (16)

The simplicity of this result is remarkable: The (-coding of the harmonic poly-
nomials of order [ equals the [-th power of the (- coding of the harmonic poly-
nomials of first order. Stated differently, é"(x) is the coefficient of (™ in the
expansion of [é}(z) - ( +&d(z) + &, () - C‘l]l. The above relationships consti-
tute a very compact description of the irreducible invariant subspaces of SO(3).
In the next subsection we will explore the effect of a rotation on the encoded
harmonic polynomials.

3.2 (-coding and rotation matrices

The purpose of this subsection is to evaluate é(Pxz;() ; P € SO(3). Due to
(16) it suffices to consider &, (Px; (). We first note that since we have from (15)
é1(z;¢) = p(¢)TSz and from the definition (14) é;(z;¢) = p;(()Téi(x), it
follows é;(x) = Sz and & = S~'é;(x) . Therefore

ée1(Pa;¢) = p () er(Pa) =p, ()T SPx = p,(()TSPS 'es(x) . (17)

The question now arises about the most suitable parameterization for the rota-
tion matrices P. It turns out that very good services in this respect offers the
Cayley-Klein parameterization. It may be obtained either by the stereographic
projection or by the homomorphism of the group SO(3) to the special unitary
group SU (2) [8]. Without further discussing here these concepts we confine our-
selves in merely giving this parameterization in the following form:

R{a? + b*} —=S{a? — b2} 2${ab}
P(a,b) = | S{a® +b*} R{a® -b*} —2R{ab} | ;a,beC , aa* +bb*=1.
23{ab*}  2R{ad*} aa* — bb*

P represents a rotation with axis (R{b}, ${b}, 3{a}) and angle arccos(2R{a}> —
1). It should be noted that the pairs (a,b) and (—a, —b) yield the same rotation
matrix. This ambiguity can easily be removed by considering only pairs (a,b)



with ®{a} > 0. Now using this parameterization and the constant matrix S we
evaluate SPS~! and obtain

a? ab b?
SPS™! = | —2ab* aa* — bb* 2a*b
(b*)2 —a*b* (CL*)2

Multiplicating this relationship on the left by p, ()T as required by (17) and
using the definition (13) with [ =1 yields

_1_ (a¢ = b*)(0C + a*) al —b*\"

* * * T
Therefore é; (Px; () = (ag—b )C(b<+a ) Py (‘gé;s*) é1(x) and with the definition

(14) & (Pa; () = (@) g (w; ;jg;j:) . Finally, (16) yields

(aC — b*)(bC + a*)]l . (w al — b*)

C 1 3 bC Fa*
We generalize these results in such a way as to be able to cope with reflections
too. Every 3 x 3 orthogonal matrix R can be written in the form

é/(Pa; ) = [ (18)

R=¢cP ; ec{+1,-1} ; PSOB), RcO(3) .

With the aid of (5) we can compute the result of reflecting harmonic polynomials
on the origin:
el (ex) =" (x) . (19)

Together with (18) and the definition (14) this gives
(aC — b*)(bC + a*)]l Py (m al — b*)
¢ "\t

Thus, the effect of a rotation/reflection upon the ¢-coded harmonic polynomials
is essentially a linear fractional transformation of the variable . This will enable
us to determine position and to derive invariants by purely algebraic means.

éi(Rz; () = |e

(20)

3.3 (-coding and spherical moments

The concept of (-coding is readily transferred to spherical moments. We con-
sider (9) with e;(x) replaced by modified harmonic polynomials &;(x) and F,;
replaced by modified spherical moments F',;:

~ N T
By o= (BL B By = /}R f@z| e (@) dm . (21)



Now we apply the definition (14) by analogy to the modified spherical moments
Ful@) = 20" Fu = [ f(@)lal"en@i )" do (22)

and examine the action of the orthogonal group O(3) on the encoded modified

spherical moments (ﬁ'R) l(() = [ f(R'z)|x|" ¢ (x; ¢*)* dx . Equation
n

(20) gives

(Fr) (©)= /}R f(@)|Ra|" & (Ra; ¢*)* da =

: "
and with (22) we obtain the fundamental result
- _[@¢=bp¢+a)] 5 (a¢=b
(f), (0 = | g, (HE20) e

This equation describes very succinctly the way modified spherical moments are
changing under the action of a proper or improper orthogonal transformation R
with parameters (a, b, £).

Let us now assume that F[L’l’ are the modified spherical moments of an object

~ m
lying in some standard position. (FR) will be the measured moments of the

nl
same object lying in a position described by the matrix R w.r.t the standard
position. If we know the parameters of R we may obtain the moments F)} (in-

" m
variants) from the measurements (FR) by inverting (23). That demonstrates

at the same time the power of the conce;?t of (-coding. Applying the substitution
¢ = (aC + b)/(=b*¢ + a*) we get

(o) = [E(aC+b)(Eb*C+a*)]’ () (_ZCC%) @

We may parallel this result with the familiar formula expressing central moments
in dependence of the measured moments and of the object’s center of gravity
describing position. As it is well known the latter is uniquely obtained from the
measured moments by normalizing central moments of first order to zero. This
imposition happens to correspond in that case with physical considerations. But
this is not necessary. It could have been derived as well from the mathematical
requirement of uniqueness alone.

The normalization procedure relevant to the problem discussed in this paper
will be the subject of the next chapter. No physical aspects will be considered.
This is in contrast to the very frequently proposed normalization using principal
axes of the symmetric matrix of second moments. Due to ambiguities principal
axes don’t give unique normalization, so to resolve the ambiguities one has to




resort to higher order moments anyway. Instead, for the normalization to be
described in the next chapter only third order moments will be used. Moments of
order two should be reserved for affine normalization (shearing and nonisotropic
scaling). In fact, we have shown in [2] how to uniquely accomplish a reduction
of an affine deformation to an orthogonal transformation by normalizing all
moments of first and second order to specific standard values.

4 Normalization

Our starting point now is (24). We will derive a unique rotation/reflection with
m

parameters a, b and € depending only on measurements (ﬁ'R) such that certain
31

spherical moments of order three ﬁ’?fl” are normalized to specific standard values.
That will be achieved in two steps. We first look at n = 3 and [ = 1, i.e. spherical
moments of third order and first degree and use the following abbreviations

A\ 1 ~ \O0
= (FR) ju = (FR) C = Vauu + 0 . (25)
31 31
Here is C essentially the (nontrivial) invariant (12) of the subspace Ms;:

V3C = |(FRr)3,| = |Fs1| . That can be easily shown using (6) and (25). Also

~

N -1 0% N 0
note that (FR) = u* and (FR) =— (FR) i.e. v € IR. We assume C' > 0
31 31 31
excluding all images with C' = 0. Clearly, the latter is a set of measure zero
although it might contain important images exhibiting certain symmetries which
would require a separate investigation. We now ask which rotation/reflection
(24), if any, achieves

Fh=F'=0 and ES =jC 7 (26)

To answer this question we expand (24) with n = 3 and ! = 1 and obtain the
equations
au — jab*v + (b*)*u* =0 and

g[2abu + j(aa® — bb*)v — 2a*b*u*] = jC .

The first of the equations above is essentially a quadratic one in a/b* with the
solutions a = j%b* = j:jOZ—j;“b* =: jac‘;—;”b* where o € {+1, —1} denotes the
2uu* C—ov

sign. Inserting into the second equation we obtain bb* = OEG(Cror) = 9€ 30
C+ov

and hence aa* = oe=35*. Since C > 0 and C'+v > 0 we must have o = 1
i.e. o = ¢. Finally, after some algebraic manipulations we obtain the intermedi-
ate result

C+0'U : u* C—O'U : :
_ ja st ja —jarg(u)
a=/ 50 ¢ and b—gaca—]a 50 € e

with ¢ € {+1,—1} and @« € IR (mod 2w) yet to be computed from nor-
malizing constraints to be imposed on the subspace Msz3. To this end we note




that parameters (a,b,e) with arbitrary ¢ = o and « as above will give a rota-
tion/reflection which satisfies the constraints (26). We therefore use as a first
intermediate step the particularly simple pure rotation with the known param-

eters (a' := \/C;—Jg’,b' = j(’j;, = j\/%—g’e’j‘“g(“),s' := +1) . Denoting with

(@ R)le the spherical moments obtained after applying the above rotation to the
actual object we get

(Gl (©) = [NV CEDT (5 (VY )

with (GRr)s, (¢) =4C .
To derive the second step we look at n = 3 and [ = 3 and use the abbreviations

wi=(Gn)l /|Gy

,|UJ| = ]_7 q:= (GR)§37 € 1= sgn (%{qw*&}) )

It should be clear that (G R)§3 and (G R)§3 are obtained via (27) as linear combi-
~ m
nations of the (FR) with coefficients depending on o’ and b’ and are therefore
33
known numbers. Hence, so are w ¢ and e. Now it is easily seen that, in order for
the second rotation/reflection leading to the spherical moments F)} (invariants)
to preserve the normalization achieved in the first step it must be of the form

Fnl(o = (GR)nl (’Yeng’y)a 7 € {+1, —1} such that F31(C) = (GR)31 (’Yeng’y) =jC .

(28)
The above corresponds to a rotation/reflection with parameters (eid’, 0,1)ify=
1 or (0,e7?,—1) if y = —1. We claim that by choosing v = € and /2% = ew*, i.e.

Fu(Q) = (GRr), (w*¢)

we achieve the final normalizations

Flhbe R" and R{FZ}>0. (29)
We verify this by considering the two cases separately (cf. also (28)). In addition,
using w* = % if lw| = 1 we give the result of both normalizing operations

(27) and (28) in terms of one single rotation/reflection and obtain the parameters
(a,b,€) by matching coefficients with (24)":
Case A: e = +1:

ﬁ'313 = |(GR)§3‘UJ’U)* = |(GR)§3‘ € R+ ,

F2 = qu*? = sgn (%{ﬁ’%}) —e=+1,

(Vw*a'¢ + Jwb') (—/w b + \/Ua')] l(ﬁ, ) ( Vw”a'¢ + Jwb!
1§ Bl \ =\ b*¢ + wd!
! Note that the symbol \/w is uniquely defined if we demand ®{y/w} > 0 and
S{vw} > 0 if R{/w} =0.

Fnz(C) = [

)



(a,b,6) = (Vw'd',vwb',1) .
CaseB:e=—1:

By = (Gr)s w = |(Gr)ls | w'w = |(Ga)ka| € B

B = (Gr)gy w? = —q'w® = —(qu'2)" = sgn (R{FR}) = —e=+1 ,

ﬁ' I(C) = [— (Jﬁblc +j\/a*al)(j\/aalc _j\/m*bl*)]l ‘
' ¢

~ ]ﬁblé-_'_']\/a*a,
. (FR)M <J'\/Ea’C—j\/E*bl*> R

(a,b,) = (jVwll, jv/w'a',-1) .

Since it is not difficult to show that the identity is the only rotation/ reflection
which preserves both normalizations (26) and (29) we conclude that we have
derived a unique normalization procedure using exclusively moments of third
order.

5 Complete moment invariants

In the previous section we computed uniquely all parameters of the orthogonal
transformation which sends an object from the actual to its standard position.
Now, to give the complete invariants, i.e. the moments of the object in its stan-
dard position we only have to return to (24). If we expand the expressions on
both sides of this equation according to the definition of the (-coding of spheri-
cal moments (22) and match the coefficients of equal powers of ( we obtain the
following;:

pi= et ()" 32 (87 () S (420) (70) (o)

Note that in the expression above no true divisions take place since it follows

from max(u,m) < k <1+ min(0, m + p) that all exponents of a, a*, b and b*
"

are nonnegative. With known parameters (a,b,e) and measurements (13'3) it
nl

is now clear that any desired invariant 13’,27 can be obtained.

6 Concluding remarks

In this article we have presented a unique pose determination procedure for
orthogonal transformations of 3D objects based only on moments of order three.
That means that moments of second order can still be used to normalize for



an affine transformation as proposed in [2]. This is not the case if one performs
normalization based on principal axes.

Furthermore, starting with geometrical moments we derived closed analytical
expressions for all spherical moments of an object lying in a uniquely determined
standard position. Since geometrical moments and therefore spherical moments
too constitute a complete description of an object the presented invariants form
a complete system.

We have not discussed computational complexity, but it is clear that since
existing fast algorithms for 2D moments computation [7] can be readily gener-
alized to 3D this problem will not be prohibitive for applications. Moreover, it
can be shown that the fast moment generating algorithm described in [7] may be
modified in such a way as to be able to compute the spherical moments directly
from repeated cumulative sums on the object without the need to go through
the geometrical moments. This results in increased numerical precision since
the extreme dynamic range which is characteristic for geometrical moments is
avoided. Finally, these considerations can be extended to 3D Zernike-like mo-
ments being orthonormal over a whole 3D region (e.g. the 3D unit sphere) and
having improved classification power. These issues will be discussed elsewhere in
due course.
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