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Abstract

In this work, we propose a contour and region detector
for video data that exploits motion cues and distinguishes
occlusion boundaries from internal boundaries based on
optical flow. This detector outperforms the state-of-the-art
on the benchmark of Stein and Hebert [24], improving aver-
age precision from .58 to .72. Moreover, the optical flow on
and near occlusion boundaries allows us to assign a depth
ordering to the adjacent regions. To evaluate performance
on this edge-based figure/ground labeling task, we intro-
duce a new video dataset that we believe will support fur-
ther research in the field by allowing quantitative compari-
son of computational models for occlusion boundary detec-
tion, depth ordering and segmentation in video sequences.

1. Introduction

Vision systems make use of optical flow for a number of
purposes, such as egomotion estimation and scene structure
recovery, the latter including both metric depth estimates
and ordinal relationships like figure/ground. In this paper,
we focus particularly on the role of motion for grouping and
figure/ground assignments. The importance of motion cues
in these tasks is a classic point in the psychophysical litera-
ture. Koffka stated the Gestalt principle of “common fate”
where similarly moving points are perceived as coherent en-
tities [15], and grouping based on motion was emphasized
by numerous other works including Gibson [12], who also
pointed out occlusion/disocclusion phenomena. In contrast
to color and stereopsis, which also help to separate differ-
ent objects, motion is a cue shared by basically all visual
species - a fact that emphasizes its importance in biological
vision systems.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 
our method
Sargin et al.
Stein et al.
He et al.

Figure 1. Occlusion boundary detection benchmark.
Precision-recall curves for the occlusion boundary detection task
reported by Stein and Hebert [24]. We show results reported by
[24], Sargin et al. [21], He et al. [14] as well as our own results.
For performance numbers, see Table1.

The algorithm presented in this paper combines static
boundary cues produced by the boundary detector from [17]
with low-level motion cues and motion cues derived from
optical flow [6]. For each point on the boundaries produced
by the static detector, we compute the motion difference
δ between the two regions adjacent to the boundary. The
computation ofδ involves both spatial and temporal aggre-
gation of the optical flow. We then combine theδ feature
with the static detector output into the final contour classi-
fier f , which can be turned into a set of closed regions. In
addition, by comparing the optical flow on boundary points
with that of regions adjacent to the boundary, we can assign
figure/ground labels to edges. Figure2 illustrates this pro-
cedure. Compared to previous techniques, our approach is
very simple and transparent. Hence, we find it particularly
remarkable and rewarding that we perform so much better
than previous, far more complex methodologies.
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Figure 2. Overview. Top: Keyframe from the rocking horse sequence of [24], along with ground truth and the output of the static
boundary detector of [2]. Bottom Left: Our motion featureδ, computed on boundaries.Bottom Center: Resulting boundaries combining
δ and static cues.Bottom Right: Figure/ground classification results on detected regions, figure in green.

The present paper makes three distinct contributions.
First, we extend the current state-of-the-art static boundary
detector from [17] to exploit motion cues in videos, using
both low-level motion cues and optical flow. We evaluate
our algorithm on the current leading benchmark introduced
in [24], and show that it improves the state of the art as mea-
sured by average precision from.58 to .72, as shown in Fig-
ure1. This is a very significant performance improvement
despite our very clean and transparent approach. Second,
we introduce a new, larger, and more difficult dataset for oc-
clusion boundary detection and figure/ground assignment.
The dataset contains 102 HD video sequences with seg-
mentations and depth ordering labels, separated into train-
ing and test sets. This dataset can be regarded as a video
counterpart to the Berkeley Segmentation dataset on static
images [19]. Third, we show how to assign figure/ground
labels to detected occlusion boundaries based only on the
motion of edges and their adjacent regions, getting 84% ac-
curacy on the dataset from [24] and 69% on our new, more
challenging dataset.

2. Previous Work

In the computer vision literature, many works have
dealt with the problem of optical flow estimation over
the past three decades, and there have been numerous ap-
proaches to make use of the optical flow field for grouping
[10, 22, 23, 28, 9]. Most of them are similar to the work of
Wang and Adelson, which proposes to partition the image

into motion layers by clustering similar optical flow vectors
according to a parametric motion model [26]. While this ap-
proach is attractive in the sense that it directly provides ob-
ject regions, there are many cases that are not properly cap-
tured by parametric models. To deal with this shortcoming,
[27] suggested a nonparametric version of layered motion,
where each layer is described by a smooth flow field. Sim-
ilar techniques based on level sets have been presented in
[1, 7]. A shortcoming of these nonparametric layer models
is the susceptibility of the EM procedure to local minima,
particularly in areas of the image with little structure.

An alternative strategy is to detect occlusion edges and
to infer layers from these edges afterwards, if needed. Such
a strategy has been shown to work very well for segmen-
tation of static images [2], and it makes even more sense
for grouping based on motion cues, where additional diffi-
culties due to the aperture problem limit the reliability of
typical EM style procedures.

Only a few works have dealt with explicitly detecting
occlusion boundaries based on motion cues and assigning
figure/ground labels to both sides of these boundaries. [25]
uses a low-level edge detector combined with optical flow
information to detect occlusion edges, using the result to
improve the overall quality of the optical flow field. In [4],
initial motion boundaries are obtained from a motion esti-
mator and then serve a probabilistic state model that can
distinguish occlusion boundaries from internal boundaries
and assign figure/ground labels to the regions on both sides



Figure 3. Boundary detection in the absence of static cues.
Consider a textured background (left) and an identically textured
foreground object (center-left) moving in front of it. Three frames
of this motion sequence are shown (center to right). Humans eas-
ily detect the moving square from the video sequence despite the
uniform appearance of any single frame. Our motion gradient cue
(shown in blue) successfully detects the object boundary. Ground
truth locations of the object center are marked in green.

of the edge. A particle filter approach is employed to deal
with the complex, multi-modal distributions in the high-
dimensional state space. [8] uses local motion information
only to infer boundaries and direction-of-figure. In [11],
tensor voting yields optical flow estimates together with an
uncertainty measure based on the homogeneity of the votes.
Occlusion boundaries are assumed to be maxima in the un-
certainty measure. Neither [4], [8] nor [11] make use of
static cues. Since the optical flow as a secondary feature
requires integration over a spatial domain to deal with the
aperture problem, edges based only on motion estimates are
usually inaccurate and dislocated.

In contrast, [23] presents a method that relies only on
static edges and their motion. Edges are computed by the
Canny edge detector and an affine motion model for edge
fragments is computed via block matching. The authors
also provide a depth ordering of both sides of an edge by
reasoning at t-junctions. The work of Stein and Hebert [24]
also makes use of a static edge detector from [18] to ob-
tain an initial set of potential occlusion boundaries. They
then learn a classifier that distinguishes occlusion bound-
aries from internal edges based on both static and motion
features. [21] shows improved performance on the same
dataset using a probabilistic detection framework defined
on spatio-temporal lattices, using joint analysis of multiple
image frames. [14] presents an alternate approach based on
pseudo-depth which performs roughly as well as [24]. We
show in this paper that such an approach is less powerful
that one which uses good motion cues directly.

3. Motion Cues for Boundary Detection

Edge detection was one of the earliest problems ad-
dressed in computer vision, yet current state-of-the-art
boundary detectors [18, 17] are designed for analyzing sin-
gle images and rely only on static cues such as brightness,
color, and texture. When working with video, we have the
additional cue of motion and would like to take advantage
of it at all levels of processing involved in figure/ground la-
beling, starting with the boundary detection task itself.

Figure 4. Motion gradient. Top: Three consecutive frames
from video of a tennis player. The large frame to frame dis-
placement of the tennis ball, tennis racket, and person’s arms
and legs make this a challenging sequence.Bottom Left and
Right (red): Gradient operator applied to the temporal differ-
ences between the center frame and those immediately before
and after. We showMG−(x, y) = maxθ{MG−(x, y, θ)} and
MG+(x, y) = maxθ{MG+(x, y, θ)}, respectively. BothMG−

andMG+ contain double images of the moving boundaries.Bot-
tom Center (blue): A motion boundary in the current frame
should be detected as differing from both the previous frame
and subsequent frame. We computeMG using the geometric
mean ofMG− andMG+ as a soft “and” operation and display
MG(x, y) = maxθ{MG(x, y, θ)}. Double boundaries are elim-
inated and those surviving inMG are correctly aligned with the
current frame.

Figure3 illustrates the extreme case of a uniformly tex-
tured object moving in front of a background with the same
uniform texture. Here, there are no static cues, yet humans
easily perceive the motion of the foreground object when
viewing the video sequence. We compute a new cue, which
we refer to as the motion gradient, that correctly detects the
boundary of this moving object in each frame.

Our motion gradient signal can be thought of as a tem-
poral analog to the brightness, color, and texture gradi-
ents used in the boundary detectors of [18] and [17]. To
compute the motion gradient for grayscale video frameIt,
we first compute temporal derivatives with respect to the
previous and subsequent frames:D− = It − It−l and
D+ = It − It+l. Then, we consider the gradient opera-
tor Gr(x, y, θ) defined in [18] which measures theχ2 dif-
ference of the histograms of values in the two halves of a
radiusr disc centered at(x, y) and divided by a diameter at
angleθ. We sampleθ for 8 orientations in the interval[0, π]
and apply this gradient operator toD− andD+ to produce
motion gradientsMG−(x, y, θ) andMG+(x, y, θ), respec-
tively.

GradientsMG− and MG+ both contain double re-
sponses to moving boundaries as there is a large temporal
difference between any two consecutive frames at both the
old and new locations of a boundary. However, these dou-
ble responses occur at different spatial locations inMG−

andMG+. Each moving edge is detected at three spatial
locations, two of which appear inMG− and two of which



appear inMG+. The detection common to bothMG− and
MG+ is the true location of the edge at timet. By taking
the geometric mean of these signals we suppress the spuri-
ous responses while preserving the correct one, resulting in
the motion gradient

MG(x, y, θ) =
√

MG−(x, y, θ) ·MG+(x, y, θ) (1)

Figure4 shows an example of the motion gradient ap-
plied to a real video sequence. Note that it is not our inten-
tion to detect occlusion boundaries at this stage. Rather, the
motion gradient is designed to respond strongly at any edge
which moves in the image. For this reason,MG picks up
the surface markings on the tennis court. At the same time,
it serves to enhance the actual occlusion boundaries on the
person and provides robustness against cases in which static
cues are weak or nonexistent (Figure3). The main concern
is to utilize the motion gradient to improve the quality and
reliability of the boundary map upon which our occlusion
reasoning machinery will depend.

Following the framework of [17], our boundary detector
adds the motion gradient as an additional channel alongside
the static brightness, color, and texture cues from [18], and
passes these local cues through the same sequence of steps
for combining them with the result of a spectral partitioning
process. Adopting the notion from [17], we usegPb (global
probability of boundary) to refer to contours created using
only static cues andgPb+mg to indicate those created from
both the static cues and our motion gradient.

We then utilize the machinery of [2] to transform the
output of our boundary detector into an Ultrametric Con-
tour Map (UCM). The UCM is a weighted contour image
that can be thresholded at any level to produce a set of
closed curves. The corresponding sets of regions bounded
by these contours define a hierarchical segmentation. This
data structure determines the edge fragments and associ-
ated regions that we classify in occlusion reasoning and fig-
ure/ground stages.

4. Occlusion Boundary Detection

In contrast to other recent work [24, 21], our occlu-
sion reasoning stage utilizes a straightforward classification
technique whose power lies in its ability to exploit two key
components: the boundary detector discussed in the previ-
ous section, and the variational optical flow method of [6].
Given both a reliable set of prior boundariesgPb+mg and
a reliable, dense optical flow field(u, v)⊤ := w : (Ω ⊂
R

2) → R
2, we are able to judge whether an edge is an oc-

clusion boundary by looking at the difference between the
flows in the regions on either side.

We begin by estimating motions of the two adjacent re-
gions at each point on every edge fragment in the UCM. We
need to ensure that the estimate is not polluted by the motion

of the edge itself, or by the motion of the opposing region.
In order to do this, we define a weighted filterwi(x, y) for
each edge pointxi = (xi, yi) and regionR neighboringxi

as follows:

wR
i (x, y) =

1

Z
exp

−
(x−xi)

2+(y−yi)
2

2σ2
w δ(r(x, y), R)id(x, y)

(2)
whereδ is the Kronecker delta function,r(x, y) is the re-
gion assignment for pixel location(x, y), andid(x, y) is 1
for pixels internal to any region, defined as being at leastd

pixels away from any region boundary. In this work, we use
d = 2. While it is reasonable to varyσw, combining win-
dowing functions of different scales, in our experiments we
did not observe a significant change when doing so. This
is most likely due to the optical flow method from [6] al-
ready considering multiple scales. Experiments reported in
this paper all useσw = 3.5, and a circular window of radius
r = 2σw = 7 pixels.

Given the weightswi, we use weighted least squares to
fit a plane to theu andv flow components as functions ofx
andy, minimizing

eRu =
∑

(x,y)

wR
i (x, y)(A

R
u x+BR

u y + CR
u − u(x, y))2 (3)

eRv =
∑

(x,y)

wR
i (x, y)(A

R
v x+BR

v y + CR
v − v(x, y))2 (4)

and describe the flow of a regionR by an affine model:

(uR
i (x, y), v

R
i (x, y)) = (AR

u x+BR
u y+CR

u , AR
v x+BR

v y+CR
v ).

(5)
As a final step, we evaluate these two flows at the edge
point itself, computing the flow vectorsw+

i := (u+
i , v

+
i )

andw−

i := (u−

i , v
−

i ). This step is critical, since we do not
measure the region flow at any points closer thand pixels
away from the boundary, and many common camera and
object motions lead to flow vectors which vary spatially.

Intuitively, when the optical flow in two regions is sig-
nificantly different, the edge between them is likely to be an
occlusion boundary. To capture this notion, we define

δ = |(u+
i − u−

i , v
+
i − v−i )|. (6)

In addition, we also measure the value ofgPb at the edge
point, and combine the two using a simple linear classifier,
with the single weight trained using SVM training:

f = ρ ∗ δ + (1− ρ) ∗ gPb (7)

In this paper, we useρ = 0.7. To produce precision/recall
curves, we simply vary the cutoff threshold used forf .

4.1. Temporal Scale

In most cases, we have multiple frames of video to assist
in deciding whether or not an edge is an occlusion bound-
ary. Intuitively, we’d expect that using more frames would
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Figure 5. Effect of temporal scale.Using multiple frames when
computing the optical flow based feature delta helps, but only to
a point. If using too many frames, performance degrades due to
changes in appearance and errors in the optical flow field. The
best performance is achieved by combining results across temporal
scales.

allow us to make better decisions, especially when the mo-
tions involved are small. On the other hand, errors in the
optical flow and changes in object appearance and motion
may become significant at large temporal scales. Figure5
shows the performance on our dataset for flows spanning
1, 2, 4 and 8 frames in the forward and backward direc-
tion from a keyframe. By averaging results across temporal
scales, we achieve the best performance. Training a classi-
fier using logistic regression did not improve performance
on top of a simple linear average.

It should be noted that normalization of the optical flow
is quite important. We normalize all flows by their variance
across all pixels in the frame. Note that this normalization
scheme accounts for changes in image scale and sample
rate, while keeping our featureδ invariant to image trans-
lations.

5. Region Detection

In order to produce closed regions from the output of our
occlusion boundary classifier, we adapt to our framework
the method of [2], that converts any oriented contour sig-
nal into a hierarchy of regions. That method considers an
arbitrary contour detector, whose outputE(x, y, θ) predicts
the probability of an image boundary at location(x, y) and
orientationθ. By applying watersheds on the maximal re-
sponse ofE over orientations, an over-segmentation of the
image is initially computed, and each point in the watershed
arcs is then weighted by the value of the contour signal in
the orientation of the arc. In our case, the value of the con-
tour signal is given by a linear combination of the static cue
gPb and the motion classifier output:c = α·gPb+(1−α)f .

In all the experiments reported, we use a fixed value of
α = 0.2. Notice that one could use the raw output ofδ

rather than our combined classifierf . However, we empir-
ically found the estimation of the boundary strength given
by f to be more reliable.

6. Figure/Ground Assignment

Once we know that a moving edge is an occlusion edge,
we can determine which side of the edge is the occlud-
ing foreground object and which side belongs to the back-
ground, thereby obtaining a depth ordering of the attached
regions. There have been previous attempts on assigning
figure/ground labels to both sides of an edge based on static
cues [20, 13], which is a difficult task with many ambigui-
ties. Motion cues provide rich information to decide upon
figure/ground. Obviously, an occluding edge moves the
same way as the occluding region next to it. Thus, a de-
cision can be inferred from the motion of the two regions as
well as the motion of the occluding edge.

In the previous section, we discussed how the motion of
a region can be obtained from an optical flow field with-
out significant interference from edge motion. Thus, all we
need here for the figure/ground assignment is the motion di-
rectly on the edge. [23] and [16] both show how to compute
the motion of an edge. In particular [16] takes some effort
to estimate the edge motion from edge cues only. More-
over, they deal with special cases such as illusory bound-
aries. Here, we are interested in a methodology that is most
consistent with the way we estimated the motion of the re-
gions, in order for the comparison to be fair. Thus, it is
natural to simply consider the optical flow on the edge in or-
der to obtain the edge motion(u0

i , v
0
i ) at each edge pixeli.

Since the variational optical flow is most accurate on edges,
this is a reasonable thing to do.

For each edge fragment we therefore compute two dis-
tances, between the motion of the edge and each of the two
neighbouring regions. Again calling the two regions+ and
−, we compute

δ+ =
1

n

n
∑

i

√

(u+
i − u0

i )
2 + (v+i − v0i )

2 (8)

δ− =
1

n

n
∑

i

√

(u−

i − u0
i )

2 + (v−i − v0i )
2 (9)

wheren is the number of edge pixels on this edge fragment.
Finally, we assign the edge to the region with the smaller
distance.

7. Experimental Results

7.1. Datasets

We tested our occlusion boundary detector on the dataset
introduced by Stein and Hebert [24], consisting of 30 se-



Figure 6. Our dataset. Keyframe and segment annotation pairs. Depth ordering is also available, but not shown here.
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Figure 7. Benchmark performance. Precision-recall curves for the baseline algorithm from [2], using only static cues, as well as our
algorithm as a boundary detector usingδ, gPb + δ andgPb + δ +mg, and the closed region version of our algorithm. Both our motion
gradient cuemg and optical flow featureδ contribute to improving performance.Left: Results on the CMU dataset.Right: Results on
our dataset.

quences. However, we found this dataset to be somewhat
limiting. The resolution and visual quality of many se-
quences is suboptimal, many scenes are somewhat artificial,
and the number of frames per sequence can be as low as
5. There is also no official split into training and test, and
the number of sequences is too low. To address these is-
sues, and to help set a new gold standard for evaluating fig-
ure/ground assignment on video, we created a new dataset
consisting of 102 challenging image sequences exhibiting
a large variety of scenes and actions. For the experiments
presented, this dataset was divided into 42 train and 60 test
sequences. One keyframe in each sequence was manually
labeled with occlusion boundaries, object instance labels
and region depth ordering. We intend to extend and release
our dataset to promote the quantitative evaluation of occlu-
sion boundary detection, segmentation and figure / ground
assignment in video data. An example of images and anno-
tations can be seen in Figure6.

7.2. Occlusion Boundary Detection

Figure7 presents the results on occlusion boundary de-
tection, separating the various components of the algorithm,
on both the CMU dataset [24] and our own. On both
datasets, our occlusion boundary detectors provide a large
improvement in precision when compared with the method
of [2], which is currently the state of the art on static im-
ages. These results demonstrate empirically the strength of
motion as a cue for perceptual grouping. Qualitative results
can be observed in Figure8. Figure1 shows our results on
the CMU dataset compared to existing approaches. Despite
its simplicity, our technique significantly outperforms the
state of the art on this dataset.

7.3. Figure/Ground

Table 2 shows the performance of the figure / ground
algorithm on the datasets used in this paper, and Figure9



Figure 8. Occlusion boundary detection results. From left to
right: Keyframe from the video sequence, boundary results using
gPb+mg only, and boundary results usinggPb+mg+δ.

Figure 9. Figure/ground classification results. We show fig-
ure/ground classification results for detected occlusion boundaries
with strength above0.3 for a subset of frames from Figure8.
Green and red markings indicate the figure and ground sides of
each boundary, respectively.

shows results on some keyframes. The results are far above
the chance level of0.5, especially on the CMU dataset.

F-measure AP
Stein et al. .48 .47
Sargin et al. .57 .58
He et al. .47 .43
Our contours .61 .72
Our regions .62 .69

Table 1. Results on the CMU benchmark. We report maxi-
mal F-measure and average precision for our methods and those
of [24], [21] and [14]. Average precision is computed only in the
recall interval [.25,.70], since the method of [21] does not produce
results outside this interval.

Dataset per-pixel aggregated
CMU 65.7 % 83.8 %
ours 63.0 % 68.6 %

Table 2. Figure/Ground classification results. Results on the
figure / ground classifier as evaluated on ground truth boundaries.
We benchmark two algorithms per dataset. In the first, each pixel
independently choses which side is figure. In the other, results for
all pixels in each edge fragment are combined, and the entire edge
fragment choses which side is figure, as described earlier.

8. Conclusions

In this paper we presented a framework for detecting
occlusion boundaries and assigning figure/ground labels to
both sides of those boundaries. To this end, we extended
the state-of-the-art boundary detector from [17] designed
for static images to make use of basic motion cues in video.
Our experiments on occlusion boundary detection clearly
show the improvement obtained due to this extension. We
also provide empirical evidence showing that optical flow
and these motion cues provide largely complementary in-
formation.

Our final results also clearly outperform all previous
works on occlusion boundary detection. This shows that
a good boundary detector and a reliable optical flow field
are powerful features for success in this task. The optical
flow further allows for assigning the edge to one of the two
attached regions, in a natural and intuitive way. In addition
to demonstrating the power of our approach on the existing
standard dataset, we have also collected a new, larger, more
diverse and challenging dataset to help advance the state of
the art in the field further. Our results on this dataset provide
an excellent baseline for future work.

We think that occlusion boundaries and the knowledge
about which side is figure are a very promising way to ex-
tract objects from video in an unsupervised fashion. Un-
supervised segmentation from static images is not currently
possible, but motion is a very reliable cue for this task. Fully



utilizing that cue would make learning of models for visual
recognition significantly easier and more natural.
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