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Abstract

Point trajectories have emerged as a powerful means to
obtain high quality and fully unsupervised segmentation of
objects in video shots. They can exploit the long term mo-
tion difference between objects, but they tend to be sparse
due to computational reasons and the difficulty in estimat-
ing motion in homogeneous areas. In this paper we intro-
duce a variational method to obtain dense segmentations
from such sparse trajectory clusters. Information is propa-
gated with a hierarchical, nonlinear diffusion process that
runs in the continuous domain but takes superpixels into ac-
count. We show that this process raises the density from 3%
to 100% and even increases the average precision of labels.

1. Introduction

Current learning frameworks for visual recognition rely
on manual annotation including manual segmentation of ob-
jects. Taking the best vision system solution to-date – the
human brain – such annotation should not be necessary. In-
fants learn the visual appearance and shape of objects with-
out being provided bounding boxes and segmentations by
their parents. There is convincing evidence that infants ob-
tain such object segmentations via motion cues [22, 17] and
one could argue that computational vision systems should
finally work in a similar way.

Motion analysis of point trajectories is a reasonably ro-
bust tool to extract object regions from video shots in a
fully unsupervised manner, as recently demonstrated, e.g.,
in [20, 7]. However, these approaches have to struggle with
the fact that motion estimation requires structures to match.
In homogeneous areas of the image there are no such struc-
tures. This results in point trajectories to be sparse. Al-
though the work in [7] is based on point trajectories derived
from dense optical flow and the obtained trajectories could
be made dense, trajectories in homogenous areas are less

Figure 1. Object segmentation in videos based on point trajecto-
ries [7] yields sparse object labels. We propose a hierarchical
variational model that propagates these labels preferably in ho-
mogenous regions. As a result we obtain a dense segmentation
that reveals an even higher classification accuracy than the sparse
labels and overcomes the over-segmentation issue of static image
segmentation approaches [1].

reliable and can hamper their clustering. Moreover, com-
putational constraints require reducing the number of tra-
jectories being analyzed. Spectral clustering of dense point
trajectories would be far too slow. Hence, [7] yields tra-
jectory clusters that look very appealing but are sparse – a
severe problem, for instance, when aiming to learn shape
priors or detectors from the segmentation.

In this paper, we present a variational method that creates
dense segmentations from sparse clusters of point trajecto-
ries, as shown in Fig. 1. At first glance, this appears to be
a simple interpolation problem. Our brain can easily fill the
areas between the dots. However, a second glance reveals
significant challenges. The point trajectories do not cover
some of the most critical areas, especially near the object
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boundaries. Those trajectories that exist near object bound-
aries are often assigned wrong labels because the underly-
ing optical flow is imprecise in occlusion areas. Finally, in
large homogeneous areas there is hardly any label informa-
tion.

For a good label propagation, the key is to exploit color
and edge information, which is complementary to the infor-
mation used for generating the trajectory labels. Notably,
segmentation based on color works the best in homoge-
neous areas, which are the problematic areas for motion
based segmentation. We achieve this by spreading infor-
mation depending on color homogeneity. To this end, we
propose a hierarchical variational model, where we have
continuous labeling functions on multiple levels. Each level
corresponds to a superpixel partitioning at a certain granu-
larity level. In contrast to a single-level model we have ad-
ditional auxiliary functions at coarser levels which are op-
timized in a coupled diffusion process. To the best of our
knowledge, this is the first continuous hierarchical model.
The advantage of such an approach is that we obtain a
structure-aware label propagation thanks to the superpixel
hierarchy, while the final solution can be extracted at the
finest level and is free of metrication errors or block arti-
facts known from discrete MRF models.

2. Related work
The problem we consider here is related to interactive

segmentation, where the user draws a few scribbles into
the image and the approach propagates these labels to the
non-marked areas. Several techniques based on graph cuts
[4], random walks [12], and intermediate settings [21] have
been proposed. The latest techniques are built upon vari-
ational convex relaxation methods [23, 18, 14, 16], which
avoid the discretization artifacts typical for classical MRFs
defined on a graph. The variational technique we propose
here in fact builds on the regularizer from [14].

None of these approaches consider a hierarchy. More-
over, labels from point trajectories differ from user scribbles
in two ways. First, the labels are generated by an unsuper-
vised approach and are likely to be erroneous, whereas in-
teractive segmentation relies on the correctness of the user’s
input. This means, we do not have an interpolation but an
approximation problem. For this reason, we do not fol-
low the typical approach of estimating appearance statistics
from the annotated areas combined with a typical region
based segmentation. We rather formulate the problem as
a label diffusion problem, where diffusion takes place on
various hierarchy levels. Second, user annotation provides
dense finite annotation areas, whereas trajectory labels con-
stitute single points spread over the image. It is not imme-
diate that a variational model acting on such infinitesimally
small labels makes sense in the continuous limit. We show
that our continuous model satisfies certain regularity prop-

erties and thus is a proper continuous formulation of the
problem.

Our model is also related to image compression with
anisotropic diffusion [11], where only a small set of pixel
values is kept and the original image is sought to be restored
by running a diffusion process on this sparse representation.

On the task of dense motion segmentation, there are
many recent works that produce over-segmentations using
superpixels, label propagation by optical flow, or other clus-
tering methods [5, 13, 24, 15]. These over-segmentations
do not provide object regions. User interactive video seg-
mentation methods can avoid over-segmentation, but are no
longer unsupervised [3, 19].

3. Single-level variational model
Given a video shot as input, we apply the clustering ap-

proach on point trajectories using the code from [7]. This
yields a discrete sparse set of labels, which are consistent
over the whole shot. Fig. 1 shows an example frame and the
labels obtained with [7]. Approximately 3% of the pixels
are labeled.

Let ũ := (ũ1, . . . , ũn) : Ω → {0, 1}n, n ∈ N be a func-
tion indicating the n different point trajectory labels, i.e.,

ũi :=

{
1, if x ∈ Li

0, else,
(1)

where Li is the set of coordinates occupied by a trajectory
with label i and Ω ⊂ R2 denotes the image domain. For
simplicity, we focus on single images, although our model
could be easily extended to compute a temporally consistent
solution for all images of the video.

We seek a function u := (u1, . . . , un) : Ω → {0, 1}n
that stays close to the given labels for points in L :=⋃n

i=1 Li. This is achieved by minimizing the energy

Edata(u) :=
1

2

∫
Ω

c

n∑
i=1

(ui − ũi)2dx, (2)

where c : Ω→ {0, 1} is the label indicator function, a char-
acteristic function with value 1 on L and 0 else.

The above energy puts constraints only on points occu-
pied by trajectories. On all other points, the minimizer can
take any value. To force these points to take specific labels,
we require a regularizer

Ereg(u) :=

∫
Ω

g ψ

(
n∑

i=1

|∇BVui|2
)
dx, (3)

which is chosen such that it prefers compact regions with
minimal perimeter and such that labels are propagated
preferably in homogenous areas. The first is achieved by
the regularized TV norm obtained with ψ(s2) :=

√
s2 + ε2



and ε := 0.001, the second by the diffusivity function
g : Ω→ R+

g(|∇I(x)|2) :=
1√

|∇I(x)|2 + ε2
. (4)

Since ui is binary-valued, it lies in the space of functions
of bounded variation BV(Ω), which includes functions with
sharp discontinuities [2]. The ordinary gradient operator ∇
is not defined for such functions. Thus, we replace it by
∇BV , which is the distributional derivative and is defined
also for characteristic functions. In case of continuous func-
tions ∇BV ≡ ∇.

Convex combination of the energies in (2) and (3) yields

E(u) :=
α

2

∫
Ω

c

n∑
i=1

(ui − ũi)2 dx

+ (1− α)

∫
Ω

g ψ

(
n∑

i=1

|∇BVui|2
)
dx

(5)

s.t.
∑

i ui(x) = 1, ∀x with a model parameter α ∈ [0, 1)
that can be chosen depending on the credibility of the tra-
jectory labels. In the limit α → 1, the minimizer will be
an interpolation, otherwise it is an approximation that can
correct erroneous labels.

3.1. Minimization

The functions ui are binary-valued. For we can apply
variational methods we must consider the relaxed problem,
where we allow ui to take values in the interval [0, 1]. Such
relaxations have been suggested for many similar problems
[8, 18, 14]. Since both the energy and the relaxed feasible
set are convex, we find the global minimizer of the relaxed
problem. Except for the two-label setting in [8], project-
ing this minimizer back to the original feasible set gener-
ally does not ensure the global optimum but yields a good
approximation.

For the relaxed problem, we may assume that u is con-
tinuous differentiable, so we may replace ∇BV by ∇. The
Euler-Lagrange equations of the relaxed energy reads

0 = α c · (ui − ũi)

− (1− α) div

(
g ψ′

(
n∑

i=1

|∇ui|2
)
∇ui

)
∀i.

(6)

We solve this nonlinear system with a fixed point iteration
scheme, where the nonlinear factor ψ′(s2) = (s2+ε2)−

1
2 is

kept constant in each iteration. The resulting linear system
is solved with successive over-relaxation (SOR). The con-
straint

∑
i ui(x) = 1, ∀x is enforced in each fixed point

iteration by normalization as proposed in [9]. The obtained
relaxed result is projected to {0, 1}n via

ui(x) =

{
1, if i = argmaxi{ui|i = 1, ..., n}
0, else.

(7)

3.2. Model consistency

It can be argued that c and ũ, as indicator functions,
differ from 1 only on a discrete set, i.e., on a null-set.
Following the theory of Lebesgue measures, the energy
Edata ≡ 0. This problem can be avoided by a minor adap-
tion of the model. Replace c by its C∞-approximation
cε ∈ C∞(Ω, [0, 1]) satisfying cε → c as ε → 0 and the
mass conservation

∫
Bε(x)

cε(x)dx = 1, where Bε(x) de-
notes the ball with radius ε at x, e.g.,

cε(x) :=
∑
x̃∈L

δε(x− x̃). (8)

Define ũε analogously as such an approximation to ũ. Note
that the mappings cε and ũε are well-defined as mappings
with range [0, 1] and [0, 1]n, respectively. The assumption
of a discrete set of input labels assures non-overlapping
ε-neighborhoods, and thus implies the well-definedness.
Choosing ε > 0 small enough to satisfy this separation
property for all x̃ ∈ L yields the consistent regularised en-
ergy Edata,ε by replacing c and ũ by cε and ũε in (2). We
omit the ε due to notational simplicity.

4. Multi-level variational model
The Euler-Lagrange equations in (6) can be interpreted

as a nonlinear diffusion process subject to the constraint that
the points in L should stay close to their original label ũ.
These points serve as sources for spreading their respective
label information. The antipoles that consume this label
mass are other labels in the neighborhood. Depending on
how much label mass is consumed by neighboring points
and depending on α, a source point x ∈ L can also change
its label in the final solution u, but it still remains a source
of the original label’s mass.

Especially in homogeneous areas, the density of source
points is low, i.e., the information must be propagated over
large spatial distances, damped by noise and unimportant
structures. To overcome this problem, we propose a hierar-
chical model. The finest level in this hierarchy corresponds
to the single-level model we have introduced in the previous
section. Additional levels make use of superpixels obtained
with the approach from [1]. Fig. 2a illustrates the contin-
uous hierarchy. Fig. 2b shows the corresponding discrete
graph structure for helping readers who prefer to think in
discrete terms.

Each level k, k = 0, ...,K, in our variational model rep-
resents a continuous function that is partitioned into Mk

superpixels Ωk
m,m = 1, ...,Mk. For k = 0 we have the

functions u0 and I0 as defined for the single-level model.
For k > 0 we have the corresponding piecewise constant
functions uk and Ik, where Ik(x) = 1

|Ωk
m|
∫

Ωk
m
I0(x′)dx′

takes the mean color of the corresponding superpixel Ωk
m.

The idea behind these additional auxiliary functions at



Figure 2. Illustration of the multi-level model. Left: (a) Continu-
ous model, where each level is a continuous function. Coarser lev-
els are piecewise constant according to their superpixel partition-
ing. Right: (b) Corresponding discrete graph structure in terms of
pixels/superpixels showing the linkage between levels. Our model
is in fact not a graph, as each level is continuous.

coarser levels is to define a label diffusion process that bet-
ter adapts to the image structures at multiple scales.

We extend the single-level energy from (5) accordingly:

E(u) :=
α

2

∫
Ω

ρ c

n∑
i=1

(u0
i − ũi)2 dx

+ (1− α)

K∑
k=0

∫
Ω

gk ψ

(
n∑

i=1

|∇BVuki |2
)
dx

+ (1− α)

K∑
k=1

∫
Ω

gkl ψ

(
n∑

i=1

|uki − uk−1
i |2

)
dx,

(9)

where u := (u0
1, ..., u

0
n, u

1
1, ..., u

1
n, ..., u

K
1 , ..., u

K
n ) denotes

the label function of the whole hierarchy. The first term
is identical to the single-level model, except for an addi-
tional weighting function ρ : Ω → R, which will be ex-
plained later. Label sources exist only in the finest level.
They propagate their information to the coarser levels via
the third term, which connects successive levels. The level
diffusivity functions gkl have the same meaning as the spa-
tial diffusivities gk, but are defined based on the color dis-
tance between levels

gkl (x) :=
1√

|Ik(x)− Ik−1(x)|2 + ε2
, ε = 0.001 (10)

rather than the image gradient |∇I|2. The second term in
(9) is a straightforward extension of the corresponding term
in the single-level model.

What is the effect of the additional levels? The superpix-
els at coarser levels lead to regions with constant values Ik.
Consequently,∇Ik = 0 within a superpixel, which leads to
infinite diffusivities gk. 1 In other words, within a super-
pixel, label information is propagated with infinite speed

1These diffusivities are only made finite for numerical reasons by
means of the regularizing constant ε.

Figure 3. Difference between a discrete (top) and a continuous
model (bottom). The discrete model shows block artifacts since
its discretization error does not converge to 0 for finer grids sizes.

across the whole superpixel. Thanks to the connections be-
tween levels, this also affects points on the next finer level.
Rather than traveling the long geodesic distance on the fine
level hindered by noisy pixels and weak structures, informa-
tion can take a shortcut via a coarser level where this noise
has been removed.

The hierarchy comes with the great advantage that we
need not choose the “correct” noise level, which just might
not exist globally. Instead, we consider multiple levels
from the superpixel hierarchy and integrate them all into our
model. In theory, it is advantageous to have as many levels
as possible. For computational reasons, however, it is wise
to focus on a small number of levels. Our experiments in-
dicate that three levels are already sufficient to benefit from
the hierarchical model.

Since we formulated the hierarchy as a continuous, vari-
ational model rather than a common discrete, graphical
model, we have the advantage that we do not suffer from
discretization artifacts. This is shown in Fig. 3, where we
compare our continuous model to an implementation based
on the graph structure in Fig. 2b. Even though we have
to discretize the Euler-Lagrange equations to finally imple-
ment the model on discrete pixel data, this discretization is
consistent, i.e., the discretization error decreases as the im-
age resolution increases. Moreover, a rotation of the grid
does not change the outcome. These natural properties are
missing in discrete models.

In (9) we have introduced a weighting function ρ that al-
lows to give more weight to certain trajectories. The incen-
tive is that the approach in [7] tends to produce wrong labels
close to object boundaries due to inaccuracies of the optical
flow in such areas. Hence, it makes sense to increase the in-
fluence of labels that are far away from object boundaries,
whereas labels close to these boundaries should get less in-



Figure 4. Evolution of the label functions uk
1 on all three levels simultaneously. Intermediate states after 30, 300, 3000, and 30000 iterations

are shown. For this visualization we did not use the cascadic multigrid strategy, which requires far fewer iterations to converge.

fluence. Since we do not yet know the object boundaries,
the distance is approximated by the Euclidean distance to
the superpixel boundaries ∂Ωm at the coarsest level, which
can be computed very efficiently [10]. Based on these dis-
tances we define

ρ(x) :=
dist(x, ∂Ωm)

1
|Ωm|

∑
x∈Ωm

dist(x, ∂Ωm)
(11)

with x ∈ Ωm. This includes a normalization of the dis-
tance by the size and shape of the superpixel. In large ho-
mogenous regions, where optical flow estimation is most
problematic, ρ increases slowly with the distance. In small
superpixels, indicating textured areas, even points close to
the boundary are assigned large weights.

4.1. Minimization
Minimization of the multi-level model is very similar to

the single-level model. The Euler-Lagrange equations of (9)
for the levels k > 0 read

Dk
i := −div

(
gk ψ′

(
n∑

i=1

|∇uk
i |2
)
∇uk

i

)

+

(
gkl ψ

′

(
n∑

i=1

|uk
i − uk−1

i |2
)
|uk

i − uk−1
i |

)

−

(
gk+1
l ψ′

(
n∑

i=1

|uk+1
i − uk

i |2
)
|uk+1

i − uk
i |

)
= 0

(12)
for all i = 1, . . . , n, stating a nonlinear system with vari-
ables on multiple levels. Using this term and the Neumann

boundary conditions u−1
i = u0

i and uK+1
i = uKi for all i,

the Euler-Lagrange equations for k = 0 read

0 = αρ c ·
(
u0
i − ũi

)
+ (1− α)D0

i . (13)

Again we apply fixed point iterations together with SOR.
Intermediate states of the iterative method are shown in
Fig. 4.

4.2. Implementation details

As labels within a superpixel are propagated with infinite
speed, we can approximate the whole superpixel by a sin-
gle constant value. Treating each superpixel as a single grid
point, this leads to a considerable speedup as coarse levels
consist of only few superpixels. In order to keep the advan-
tages of the continuous model, the length of the interface
between two superpixels and their diffusivity must be mea-
sured in a consistent manner using a properly discretized
gradient operator. Such a discretization can be found, e.g.,
in [6, pp. 16].

At coarser levels, we further add non-local superpixel
neighbors. These enable labels to cross obstacle regions that
have a significantly different color, for instance the shadow
in Fig. 7. We connect all superpixels that are separated by
only one further superpixel. Since there is no direct inter-
face that would define the amount of diffusion between two
superpixels, we weight non-local diffusivities by the dis-
tance between the segments using a Gaussian function

wab := exp

(
−dist

2(a, b)

2σ2

)
(14)



Figure 5. Some examples from the benchmark dataset in [7]. Top row: Sparse results from [7]. Bottom row: Dense results obtained with
a 3-level model. Bright dots show the initial labels.

where a and b denote two superpixels and σ is a multiple of
the image size.

To speed up convergence, we run a cascadic multigrid
strategy on 4 grids. The coarser grids are obtained by down-
sampling with factor 0.5. Downsampling affects all func-
tions at all levels including the superpixels. For the vari-
ational model at hand, this simple multigrid strategy leads
to a significant speedup of factor 35. To allow others to
replicate our experiments and to run the code on other se-
quences, we will provide executables of our implementa-
tion.

5. Experiments

For evaluation we use the benchmark introduced in [7].
It contains 204 annotated frames on 26 real world se-
quences. The evaluation tool coming with the benchmark
allows to evaluate short term motion segmentation by run-
ning only on the first 10 or 50 frames as well as long term
segmentation by running on the first 200 or all frames. Ta-
ble 1 shows the density, the overall error (per pixel), and
the average error (per ground truth region). We compare
our variational model using different numbers of levels to
the sparse result obtained from [7]. Although we raise the
density to 100%, the errors do not increase compared to [7].
Even the contrary is true: the overall error drops from 6.68
to 5.33. This is quite surprising given that we assign labels
in difficult locations in the image, such as occlusion areas.
The numbers also show that the multi-level model always
outperforms the single-level one. In most cases it is worth
to use three levels. The results are slightly better than with
two levels and the costs for the additional level are low. The
good quantitative results are confirmed by the good visual
quality of the results. Some examples are shown in Fig. 5.

Figure 6. Left: Example from the dataset. Right: Detailed view.
Brighter dots show the initial trajectory labels, background color
the dense segmentation. Many erroneous initial labels are cor-
rected by our dense segmentation.

In most cases, the regions agree with the true object regions.
Compared to the sparse trajectory labels, the classifica-

tion accuracy increases due to the ability of the approach to
correct erroneous labels. As shown in Fig. 6 quite large ar-
eas change their label. The amount of label correction also
depends on the parameter α ∈ [0, 1) that controls the im-
portance of the initial labels versus compact regions. One
could think that the quality of the results is very sensitive to
the choice of this parameter. In fact, Table 2 shows that this
is not the case: as long as α is not too close to 0 or 1, the pa-
rameter can be chosen almost arbitrarily without affecting
the average quality of the results.

Fig. 7 shows a qualitative comparison of the single-level
and the multi-level model. In the multi-level model, infor-
mation can spread more easily across larger areas. This is
further supported by the non-local diffusivities we add at
coarser levels, which allows to fill the court area between
the legs despite the shadow and although there is not a sin-
gle trajectory in this area. The information is propagated
directly from other regions of the tennis court due to the



Density overall average
error error

First 10 frames
3 level 100% 7.53 26.3
2 level 100% 7.40 26.7

single level 100% 7.87 26.0
superpixel voting 98.6% 7.90 25.7

sparse [7] 3.32% 7.67 25.4
First 50 frames

3 level 100% 6.60 30.5
2 level 100% 6.62 30.6

single level 100% 6.94 30.6
superpixel voting 98.9% 7.26 30.6

sparse [7] 3.26% 6.91 32.5
First 200 frames

3 level 100% 6.34 24.2
2 level 100% 6.14 24.2

single level 100% 6.37 24.2
superpixel voting 98.5% 6.49 24.3

sparse [7] 3.46% 6.21 31.6
All available frames

3 level 100% 5.33 24.7
2 level 100% 5.35 25.2

single level 100% 5.37 24.5
superpixel voting 98.4% 5.72 24.3

sparse [7] 3.31% 6.68 27.7

Table 1. Evaluation on the dataset from [7] withα = 0.3. Our vari-
ational approach raises the density to 100%. At the same time the
error averaged over pixels (overall error) and over ground truth re-
gions (average error) decreases. The hierarchical model performs
better than the single-level model.

Density overall- average-
error error

All frames
α = 0.9 100% 5.33 24.7
α = 0.8 100% 5.37 25.4
α = 0.5 100% 5.32 24.5
α = 0.3 100% 5.33 24.7
α = 0.1 100% 5.55 26.3

Table 2. Robustness of the parameter α. As long as the initial
labels are not completely ignored (α = 0), the exact choice of α
is not important. Numbers were obtained with the 3-level model.

same color.
As our multi-level approach uses superpixels, we also

considered a naive voting approach that makes direct use of
the same superpixels as in our two-level model. Each tra-
jectory in a superpixel votes for its label and we assign the
label with most votes. In case there is no trajectory in a
superpixel or two labels get the same number of votes, the

Figure 7. Top row: Two frames from the tennis sequence. Sec-
ond row: Sparse labels [7]. Third row: Single-level model. Since
there is no label information in the area between the legs and no
direct connection to other parts of the tennis court, the single-level
model can only interpolate the labels on the legs. Bottom row:
Thanks to the better information flow inside superpixels and non-
local diffusivities, the multi-level model can handle this hard case
correctly. Remaining problems are due to incorrect motion clus-
tering of the feet in [7] and must be approached there.

superpixel is not assigned any label. Tab. 1 shows that the
variational approach clearly outperforms this naive voting
method. Even the single-level model performs much bet-
ter. This is because the finest level in the variational model
ensures that we can find all object boundaries. In contrast,
superpixel voting cannot recover from superpixels that erro-
neously cover two different objects. Moreover, the simple
voting procedure ignores majorities in neighboring super-
pixels. Typical failure cases are shown in Fig. 8.

6. Conclusions

In this paper we have proposed a variational hierarchi-
cal model for generating dense segmentations from sparse
sets of labels. The variational approach simultaneously op-



Figure 8. Segmentation by superpixel voting on the sample images
shown in Fig. 7. Homogenous regions with few trajectories are
dominated by false labels close to the object boundary.

timizes continuous functions on multiple superpixel levels
and is, to the best of our knowledge, the first variational
approach acting on multiple levels. We evaluated this ap-
proach on the Berkeley motion segmentation benchmark
and showed that we obtain dense object segmentations with
even higher accuracy than the original sparse input. We also
showed that the multi-level model outperforms a single-
level model as well as a voting approach based on super-
pixels. We believe this is another important step towards
unsupervised object segmentation in video that ultimately
may provide the technology enabling unsupervised learn-
ing.
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