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Abstract

In this paper, we propose techniques to make use of two
complementary bottom-up features, image edges and tex-
ture patches, to guide top-down object segmentation to-
wards higher precision. We build upon the part-based pose-
let detector, which can predict masks for numerous parts of
an object. For this purpose we extend poselets to 19 other
categories apart from person. We non-rigidly align these
part detections to potential object contours in the image,
both to increase the precision of the predicted object mask
and to sort out false positives. We spatially aggregate object
information via a variational smoothing technique while en-
suring that object regions do not overlap. Finally, we pro-
pose to refine the segmentation based on self-similarity de-
fined on small image patches. We obtain competitive results
on the challenging Pascal VOC benchmark. On four classes
we achieve the best numbers to-date.

1. Introduction
As object detection is getting more and more mature,

there is growing interest in precise object localization that
goes beyond bounding boxes. Object segmentation pro-
vides the means for this. While bottom-up segmentation
at the object level is ill-defined in general static images, it
becomes a valid problem when supported by object detec-
tors.

In this paper, we contribute to the line of research on
how to combine bottom-up cues, as traditionally used in im-
age segmentation, with top-down information as obtained
from contemporary object detectors. Early works on this
are [4, 13]. We argue that an object detector with a rich part
structure, such as the recent poselet-based detector [5], pro-
vides an excellent basis for top-down object segmentation.
In particular, poselets can deal well with occlusion and al-
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Figure 1. Left: Image from the Pascal VOC challenge. Right:
Multiple object semantic segmentation with a person (light pink)
and a horse (magenta).

low for competitive segmentation of multiple, partially oc-
cluding objects without explicit depth reasoning.

The detector information needs to be accompanied by
bottom-up cues. Object detectors can mark coarsely where
an object of a certain class can be expected, but they lack
the power to exactly localize the object. This is primarily
due to the need of the detector to generalize over object in-
stances, which leads to a loss of precise shape information.
This missing information on the exact shape of the detected
object instance must be recovered by means of the image
itself. In this paper, we present two complementary ways
to exploit information in the test image: image edges and
self-similarity.

There are two main reasons why shape prediction by a
detector is not exact: (1) Due to efficiency reasons of the
scanning window approach, contemporary detectors are run
on a subsampled grid. Consequently, each detection may be
shifted a few pixels from the actual object location. (2) Due
to averaging across multiple object instances and articula-
tions, the detector only models a coarse shape that cannot
predict the particular shape of the object instance at hand.
Nonparametric shape models without such a shortcoming
are too expensive and currently not used. Hence, deforma-
tions and fine details of the shape are not predicted.
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In this paper, we suggest approaching the shift and defor-
mation issue by non-rigidly aligning each poselet activation
to the corresponding edge structures in the image. This ex-
tends the alignment strategy in [5], where the whole object
shape was aligned to the image. By aligning each activation
separately, we can allow for larger local deformations and
better deal with occlusion and articulation.

As the alignment can only shift and deform the contour,
it cannot regenerate holes or strong concavities in the object
region, such as the horse legs in Fig. 1. To recover such
shape details, we propose a process that can flip the labels
of superpixels based on patch-based similarity.

Finally, in multi-class segmentation, we have to deal
with multiple objects competing for the occupancy of a
pixel. We propose an extension of poselets from people de-
tection to other categories and a process that builds upon the
detection scores of the poselet activations and their spatial
distribution over the object area. While this process decides
on which object part is in the foreground, it also sorts out
many false positive detections. We show competitive re-
sults on the challenging Pascal VOC 2010 benchmark both
with regard to quantitative numbers and visually appealing
segmentations.

2. Related work
Shape priors in image segmentation have become popu-

lar based on the work by Leventon et al. [15] and the line
of works by Cremers et al. [8, 9]. In particular Cremers et
al. put much effort in a rich statistical modeling of shapes.
While the statistical shape models in these approaches are
very sophisticated, they assume that the class and coarse
pose of the object in the image as well as its existence as
such are already known. This is a strong assumption that,
apart from specialized medical applications, can be hardly
satisfied in practice.

In Leibe and Schiele [14] the detection of object-specific
patches indicates the local existence of an object class, and
its shape is derived from assembling the masks of these
patches. Shape variation is solely modeled by the assem-
bly of patches. Evidence from the test image is only used
for detection but not for segmentation.

Most related to our work is the approach in [19]. Build-
ing upon the strong part-based detector by Felzenszwalb et
al. [10], they refine the shape predictions of the detector
by using color and reasoning about the depth ordering of
objects.

Another related line of work is the one of texture-based
semantic segmentation, where a texture classifier in combi-
nation with a CRF model assigns pixel labels to a restricted
number of classes [18, 17]. While such approaches perform
well on background classes like sky, water, building, trees,
their performance on actual objects is usually significantly
lower (’Oxford Brookes’ in Table 2). Combined with image

classification, this approach has been quite successful [11].
Finally, [16] follow a strategy where a fairly large num-

ber of object region hypotheses is generated. Classification
is then done based on these segments using a set of color,
texture and shape features. Similar in spirit, but focusing
on a complex graphical model that makes more use of con-
text, is the work in [12]. [16] performs very well on the
Pascal VOC benchmark and is kind of complementary to
our approach since detection hypotheses are generated us-
ing image segmentation tools and a classifier is applied to
the features of these segments, whereas our approach de-
tects and scores hypotheses in a scanning window fashion,
and segmentation follows on the basis of these detections.

3. A baseline segmentation based on poselets

3.1. Poselets beyond people

We build on the poselet concept introduced in [6], where
class and pose specific part detectors are trained by means
of extra keypoint annotation. In particular, we use our
framework in [5] and extend it to categories beyond per-
son. To this end we must define class-specific keypoints.
This is straightforward for animal categories but becomes
more complicated for categories, such as chair, boat, or air-
plane, which show large structural variations. There are
chairs with four legs or one stem and a wide base and mil-
itary airplanes look very different from commercial ones.
We split such categories into a few common subcategories
and provide separate keypoints for each subcategory. This
enables training separate poselets for the pointed front of a
military airplane, the round tip of a commercial airliner, and
the propeller blades of a propeller plane.

Some categories, such as bottles, do not have a principal
orientation, which makes it difficult to assign keypoints in
the reference frame of the object. For example, what is the
front left leg of a table? Our solution is to introduce view-
dependent keypoints. For example, we have a keypoint for
the bottom left corner of a bottle, and we define the front
left leg of a table based on the current camera view.

In [5] we showed that keypoints can be effective even if
defined in 2D space. This helps tremendously when dealing
with other visual categories in which there is no easy way to
annotate the depth of a keypoint, but can sometimes intro-
duce ambiguities. For example, in 2D configuration space
the front view of a bicycle is almost identical to the back
view; the only difference is that the left and right handle
keypoints, which may not be visible in all examples, should
be swapped. This could result in mixing the front and the
back aspect, which are visually very different, into the same
poselet. To prevent this scenario we made use of the view
annotations of Pascal categories – ”frontal”, ”left”, ”right”
and ”back”. Specifically, we disallow the training examples
of a poselet to come from the view opposite to the one in its



(a) (b) (c)
Figure 2. The user interface for annotating the outer boundary of
the objects. (a) The user sees this inside the Amazon Mechanical
Turk environment. (b) Partial annotation by the user. (c) The user
closes the polygon and edits the boundary if needed and clicks the
submit button.

seed.
Lastly, the visual categories vary widely in aspect ratios

and using poselets of a fixed size and aspect ratio is sub-
optimal. We extended the framework to support poselets
of variable class-specific aspect ratios, and trained different
number of poselets for each category.

3.2. Annotation with AMT

We collected 2D keypoint annotations and figure/ground
masks for all training and validation images of the Pascal
VOC challenge on Amazon Mechanical Turk [1]. For the
keypoint annotation, 5 independent users are shown zoomed
images of objects from a category together with a set of
predefined keypoints. The users are asked to place these
keypoints at the right place on the object or leave them un-
marked if they are not visible due to occlusion, truncation,
etc. We assume that a keypoint is visible if at least 2 anno-
tators have marked its location.

Figure/ground masks were collected in a similar way.
We ask the annotators to mark the outer boundary of the
object using a polygon-like tool shown in Figure 2. This
simple interface allows to quickly mark outer boundaries of
the object. We again collect 5 independent annotations for
each object.

3.3. Mask summation

The figure/ground annotation enables us to generate a
soft mask m ∈ [0, 1] for each poselet by averaging the bi-
nary segmentation annotation among all example patches
used for training the respective poselet classifier (Fig. 3).

At test time, each poselet activation i assigned to a
certain object hypothesis j now comes with a soft mask
mij : R2 → [0, 1] indicating the probability that a certain
pixel at the detected location is part of the object j or not.
We can build a very simple baseline segmentation by just
summing over all soft masks mij assigned to one object j:

Mj(x, y) =
∑
i

mij(x, y) (1)

Figure 3. Each row shows some training examples of a particular
poselet and its average mask.

and setting all points where the mask is smaller than a
threshold θm to zero. Since we aim at a disjoint segmen-
tation, i.e., each pixel can only be assigned to one object,
we simply select the object with the maximum score:

C(x, y) = argmaxjMj(x, y), (2)



Figure 4. Poselet contour before (blue) and after (red) alignment.

Figure 5. Summed poselet contours after alignment. Thanks to the
alignment, almost all contours agree and lead to a good prediction
of the object contour.

where we ignore all object hypotheses j with a score less
than a threshold θc to avoid considering false positive de-
tections in the segmentation. In Table 1 we compare this
baseline to the improvements we present in the following
three sections.

4. Alignment

As the soft masks m have been obtained by averag-
ing across multiple object instances and articulations in the
training data, they correspond only coarsely to the actual
shape of the particular object instance in the test image. The
information about the precise location of the object contour
has been lost in this averaging process. We aim at retrieving
this information by aligning the poselet contours to the edge
map of the test image. This assumes that (1) the true object
contour is a subset of the contours in the edge map (allow-
ing few exceptions), and (2) that the true object contour is
close to the poselet prediction.

We take the 0.5 level set of mij to obtain the poselet
contour gij : R2 → {0, 1} as predicted by the classifier
(Fig. 4). For the image edge set f : R2 → [0, 1] we use the
ultrametric contour map (UCM) from [3], which is among
the best performing contour detectors. We then estimate
the non-rigid deformation field (u, v) that locally aligns the

Figure 6. Summed poselet masks after alignment for 8 out of 20
object hypotheses. For visualization, values have been normalized
to a [0,255] range. Only the two hypotheses in the top left will
survive the competition in Section 5.

predicted silhouette g to the edge map f . This is achieved
by minimizing

E(u, v) =

∫
R2

|f(x, y)− g(x+ u, y + v)| dxdy

+α

∫
R2

(|∇u|2 + |∇v|2) dxdy.
(3)

with α = 100. This is done by a variational coarse-to-fine
minimization technique as used in variational optical flow
estimation [7]. The alignment yields the aligned silhouette
prediction. Moreover, the field (u, v) can be used to align
the soft mask mij as well. Fig. 4 shows two poselet silhou-
ettes before and after the alignment.

Again the aligned soft masks can be summed to generate
a prediction of the whole object. Since in contrast to the
baseline in Section 3.3 the masks have been aligned before
summing them, they mostly agree on a common contour.
This can be seen very well from the sum over the aligned
contours gij , as shown in Fig. 5.

5. Competitive smoothing
After aligning and summing the masks, we are con-

fronted with three challenges:

1. We would like to detect and remove false positives by
means of the consistency of the aligned poselet masks.

2. There can be multiple, partially overlapping objects in
one image. In such cases we have to decide, which of
the detections occupies a certain pixel.

3. Object labels should be spatially consistent. Therefore,
we must smooth the masks. In this smoothing process,
we would like to preserve the precise localization of
boundaries as established by the alignment procedure.

By preprocessing the aligned masks, we aim at the first two
objectives to obtain good initial masks for the variational



Figure 7. Left: Remaining mask predictions M ′′j after competition and damping. Center: Masks uj after spatial aggregation. Right:
Overlay on the image.

smoothing method that mainly deals with the spatial aggre-
gation while preserving the previously established proper-
ties.

Let Mj denote the summed soft masks of object j. First
we run a winner-takes-all competition on each pixel inde-
pendently by setting:

M ′j(x, y) =

{
Mj(x, y), if Mj(x, y) = maxkMk(x, y)
Mj(x, y)−maxkMk(x, y), otherwise

(4)
If two objects j are of the same category and one of them
wins at pixel x, y, we add the loser’s value to the winner.
This ensures that we do not lose object evidence due to an
erroneous clustering of poselets. For a few typical confu-
sion cases, such as bus and car or cow and sheep, we bias
the decision on the winner by multiplying Mj by a pair-
specific value to normalize the relative strength of the pose-
lets of the two categories. Apart from the winner decision,
M ′j is not affected by this bias.

For each object mask we compute the accumulated pos-
itive mass

χj =

∫
R2

δMj(x,y)>0Mj(x, y) dxdy (5)

before and after the competition. Objects j that lose at least
half of their mass are removed. Their positive mass is reas-
signed to the winning object. This ensures that a removed
object does not leave a hole, as its mass in winning areas is
given back to the best competitor.

Like in the baseline method, we only consider objects
with a detection score larger than θc. This fast selection
of candidate objects is complemented by taking also the
summed soft masks M ′j into consideration. A high detec-
tion score might have been obtained by having several wide
spread poselet activations that did not align well to the same
contours. We can detect such cases by considering M ′j ,
which will then tend to be small for all x, y. We build a
normalized soft mask

M ′′j (x, y) =
M ′j(x, y)

λ+maxx,yM ′j(x, y)
, (6)

where λ is a damping parameter. This normalizes all soft
masks and ensures that the maximum of M ′′j approaches 1
in places of large confidence. Objects with M ′′j < 1

2 every-
where are removed. Apart from removing more false pos-
itives, this procedure also deals with false positive poselet
activations that have been erroneously assigned to the ob-
ject. As their soft mask does not agree with that of other
activations, the damping pushes M ′′j to a value close to 0
in these areas, which makes the area likely to be smoothed
away.

Finally, we determine smoothed versions uj of the masks
M ′′j with a variational method minimizing

E(u1, ..., uK) =∑
j

∫
(uj −M ′′j )2|M ′′j |+

2

Cj + 1
|∇uj | dxdy, (7)

subject to
∑

j δuj(x,y)>0 ≤ 1,∀x, y. This energy model
consists of an evidence term, taking into account the mask
predictions M ′′j , and a smoothness term that aggregates in-
formation from larger areas to agree on a specific class
label. The energy seeks to have the final labels close to
the predicted masks, while producing compact areas that
align well with the predicted contours Cj . Cj denotes the
summed aligned contours gij of an object normalized to a
range [0,255]. In areas where the mask prediction is uncer-
tain, we want the smoothness term to have more impact than
in areas where the mask label is already well predicted. This
is achieved by weighting the evidence term with the mask
magnitude, which is zero if there is no evidence if the pixel
belongs to that object or not.

Apart from the additional constraint that ensures disjoint
regions, this is a convex optimization problem, i.e., we can
compute the global optimum of the unconstrained problem
with a variational technique. The Euler-Lagrange equations

(uj −M ′′j )|M ′′j |+ div

(
∇uj

(Cj + 1)|∇uj |

)
= 0 (8)

yield a nonlinear system of equations, which we solve us-
ing a fixed point scheme with an over-relaxed Gauss-Seidel



Figure 8. Top row: Segmentation before refinement. Bottom row: Segmentation after refinement. Many details are corrected by means
of the object’s self-similarity. The second example from left shows that we can also separate multiple instances of the same category. This
more challenging problem is not covered in current benchmarks.

solver. The constraint is established by projecting back to
the constrained set in each fixed point iteration.

Fig. 7 shows the mask prediction M ′′j and the corre-
sponding mask uj after this aggregation. As the aligned
contour Cj is taken into account, we obtain sharp object
boundaries. The l1 norm in the smoothness term supports
this effect by closing gaps in Cj . In contrast, the l2 norm
would lead to leakage. The positive parts of uj yield the
binary object mask. Areas not occupied by an object yield
the background mask.

6. Refinement based on self-similarity

While the previous alignment process has improved the
consistency of the predicted shape with image boundaries,
the shape still lacks most concavities, e.g., the legs of the
horse. So far, we have made use of color and texture only
indirectly by considering color and texture discontinuities.
We suggest further refinement of the shape by means of self-
similarity of the objects. This refinement can flip the labels
of superpixels if they better fit to another object according
to their color and texture.

We start with the object masks we have obtained so far
and build a non-parametric appearance model for each ob-
ject and the background. For the appearance we consider
7 × 7 patches in the Cielab color space. We multiply the
L channel with factor 0.1 to reduce its weight in the patch
distances. We do not run a refinement on grayscale images.

Rather than flipping single pixels, we consider superpix-
els as provided by the UCM that we already used for the
alignment. In case the object boundary does not coincide
with a UCM boundary, we add such an edge and split the
UCM region accordingly. This ensures that the top-down
shape knowledge can still hallucinate boundaries that are
not visible in the image or have been missed by the UCM.

For each pixel within a superpixel, we find the 100 nearest
neighbors in the image with an approximate nearest neigh-
bor method. The labels found at these 100 nearest neigh-
bors vote for the desired label of the superpixel. Formally,
we can write this as an approximate density estimation with
a nearest neighbor kernel:

p(F (x, y)|j) ≈ N−
1
2

j

100∑
k=1

δuj(xk,yk)=1, (9)

where F (x, y) denotes the patch at the pixel of interest and
k = 1, ..., 100 lists its 100 nearest neighbors. Nj denotes
the size of object j. The label of the superpixelR is decided
according to the maximum a-posteriori principle:

C(R) = argmaxj
∑
l∈R

(log p(F (xl, yl)|j) + log p(j)) .

(10)
We use a uniform prior p(j), except for bicycles, which
are highly non-convex objects that often show much of the
background in the initial object mask. This can be seen in
the fourth example of Fig. 81. We determined the optimum
prior for this class on the training set.

In order to avoid flipping superpixels far away from the
actual object just because of similar color and texture, we
only allow superpixels to obtain a label that exists within a
10 pixel distance to this superpixel. Iteration of this process
ensures that labels can still propagate over long distances as
long as the object is contiguous. We stop iterations if there
is no further change in labels anymore.

Fig. 8 shows some results before and after the refine-
ment. In most cases we obtain more precise segmentations,
and we can avoid uncontrolled spreading of labels to the
background.

1Our AMT annotation did not include the holes in the wheels and the
frame.



full alignment+ alignment baseline
model smoothing model
Sec.6 Sec.5 Sec.4 Sec.3

background 79.23 78.77 78.76 78.58
aeroplane 36.26 33.25 26.14 26.63
bicycle 38.54 36.02 32.98 32.14
bird 16.57 15.78 13.46 12.70
boat 12.14 12.38 13.18 12.74
bottle 30.40 30.45 32.94 31.40
bus 33.20 32.28 28.43 29.24
car 42.15 41.88 39.84 39.25
cat 44.99 42.87 38.67 38.19
chair 10.33 8.99 8.27 7.89
cow 37.21 34.80 29.77 29.24
diningtable 10.69 9.90 11.61 11.37
dog 23.15 21.64 18.04 17.61
horse 43.92 40.71 36.34 35.41
motorbike 32.59 31.53 28.52 27.90
person 49.64 47.78 44.92 44.00
pottedplant 17.60 18.91 18.12 17.07
sheep 37.38 34.23 27.63 26.68
sofa 9.49 9.22 9.97 9.72
train 23.55 22.63 20.23 20.34
tvmonitor 47.50 47.19 38.87 43.51
average 32.21 31.01 28.41 28.17

Table 1. Segmentation results on the combined Pascal VOC 2007
training, validation and test set (632 images).

7. Experimental evaluation
We evaluate the detection and segmentation approach on

the Pascal VOC challenge. The poselet classifiers have been
trained on the training and validation sets of the challenge
(excluding images from the 2007 challenge). We also used
these sets to optimize the parameters of our approach (e.g.
λ). In order to show the impact of the different parts of
our technique we removed one after the other until we end
up with the baseline method described in Section 3. We
compared these different versions on the combined training,
validation and test set of the VOC 2007 challenge. None of
the 2007 images have been used for training the classifiers
or parameter optimization2.

Table 1 shows the result of this comparison. Clearly,
each part of the full model improves the overall perfor-
mance. Compared to the baseline model we get an improve-
ment of 15%. The alignment of poselets has only a small
quantitative effect, as it affects only relatively small areas.
Moreover, the alignment has a negative effect on tvmoni-
tors, as the stronger boundary of the screen is preferred over
the correct outer boundary of the monitor. Nonetheless, the
alignment is very important in our model as it helps the ag-
gregation, which shows the largest boost.

In order to compare to alternative object segmentation

2For training horse poselets the 2007 training and validation sets were
used.

ours Barce- Bonn Chicago Oxford
lona Brookes

background 82.2 81.1 84.2 80.0 70.1
aeroplane 43.8 58.3 52.5 36.7 31.0
bicycle 23.7 23.1 27.4 23.9 18.8
bird 30.4 39.0 32.3 20.9 19.5
boat 22.2 37.8 34.5 18.8 23.9
bottle 45.7 36.4 47.4 41.0 31.3
bus 56.0 63.2 60.6 62.7 53.5
car 51.9 62.4 54.8 49.0 45.3
cat 30.4 31.9 42.6 21.5 24.4
chair 9.2 9.1 9.0 8.3 8.2
cow 27.7 36.8 32.9 21.1 31.0
diningtable 6.9 24.6 25.2 7.0 16.4
dog 29.6 29.4 27.1 16.4 16.4
horse 42.8 37.5 32.4 28.2 27.3
motorbike 37.0 60.6 47.1 42.5 48.1
person 47.1 44.9 38.3 40.5 31.1
pottedplant 15.1 30.1 36.8 19.6 31.0
sheep 35.1 36.8 50.3 33.6 27.5
sofa 23.0 19.4 21.9 13.3 19.8
train 37.7 44.1 35.2 34.1 34.8
tvmonitor 36.5 35.9 40.9 48.5 26.4
average 34.9 40.1 39.7 31.8 30.3

Table 2. Our segmentation results on the Pascal VOC 2010 test set
together with the top performing methods in this challenge. Latest
results of more methods are available from [2].

techniques we also run the full approach on the test set of
the VOC 2010 challenge. Table 2 shows our results next to
the top performing methods in this challenge. Our approach
ranks third on the average score and shows the best results
on 4 categories, among them the important person category.
Although in contrast to the other approaches in Tab. 2 we
have segmentation annotation on all training images, these
segmentations were quite coarse. In contrast to the pixel-
accurate VOC segmentations, they can be obtained easily
using [1].

Fig. 9 shows some example segmentations. We ob-
tain segmentations that align very well with the true ob-
ject boundaries and thus also look visually very appealing.
From the visual impression alone, one would actually ex-
pect even better quantitative numbers. However, as over-
all segmentation numbers are still relatively weak (even the
very best method produces more false positives and false
negatives than true positives), correctly detecting just one
more big object in the dataset has a larger quantitative ef-
fect than boundaries that are more accurate by a few pixels.
This is also the reason why in Table 1 we get the largest
boost with the competitive smoothing.

8. Conclusions

We presented an approach for object segmentation based
on a rich part-based detector combined with image edges



Figure 9. Results on the Pascal VOC 2010 test set are usually pixel-accurate if the object is well detected. Failure cases, as shown in the
last row, are mainly due to problems of the detector. Object completion requires a sufficiently homogenous object or background.

and self-similarity cues and we showed that this leads to
very competitive results on the challenging Pascal VOC
benchmark, where we could achieve the best numbers on
four classes. Even more striking is the visual quality of our
results due to the precise alignment of our predicted con-
tours to edges in the image. Another interesting observa-
tion is that we obtain significantly better segmentation re-
sults than methods building upon the detector in [10], such
as [19] or the Chicago entry in Table 2, although poselets
overall perform worse than [10] in the detection task.
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