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Abstract

Modeling objects using formal grammars has recently
regained much attention in computer vision. Probabilistic
logic programming, such as Bilattice based Logical Rea-
soning (BLR), is shown to produce impressive results in ob-
ject detection/recognition. Although hierarchical object de-
scriptions are preferred in high-level vision tasks for several
reasons, BLR has been applied to non-hierarchical object
grammars (compositional descriptions of object class). To
better align logic programs (esp. BLR) with compositional
object hierarchies, we provide a formal grammar, which can
guide domain experts to describe objects. That is, we intro-
duce a context-sensitive specification grammar or a meta-
grammar, the language of which is the set of all possible ob-
ject grammars. We show the practicality of the approach by
an automatic compiler that translates example object gram-
mars into a BLR logic program and applied it for detecting
Graphical User Interface (GUI) components.

1. Introduction

Stochastic rule models for images have recently regained
much interest in computer vision community. Several
works [1, 3, 7] have proposed methods to model objects
or scenes using stochastic rules for decision making pur-
poses (e.g., recognition). One important characteristics of
these studies is that they describe an object/scene in a hi-
erarchical fashion where each entity is recursively decom-
posed into smaller constituent parts. Parts at the same level
of hierarchy generally have some sort of semantic (geomet-
ric) relations among them.

Intuitively, a stochastic hierarchical model for objects
seems more appealing than both holistic models and in-
dependent part-based models such as bag of features ap-
proach [2]. Hierarchical models are less likely to miss an
object than the holistic models due to occlusion or misdetec-
tion. At the same time, a hierarchical description is difficult
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to be deceived by a meaningless organization of parts. The
agglomeration of smaller parts into a composition in a hier-
archical model also reduces the complexity for any search
to be conducted on them. Similar compositional models
for recognition can also be found in [8, 4]. Although the
compositional tree structure described in these models are
closely tied to some grammar, none of [8, 4] employ logic
programs for inference.

Recent probabilistic logical model Bilattice based Log-
ical Reasoning (BLR) [6] exploits a mathematical struc-
ture, namely bilattice framework, to incorporate uncertain-
ties into first order logic description of an event/object.
Each rule describing an event is associated with a quan-
titative measure of degree of belief. Given several such
rules, each of which would ideally define components of an
event/entity, the BLR framework combines them to make
a decision (with a certain degree of belief) regarding the
whole event/entity. Unlike other logic based frameworks,
BLR is able to utilize stochastic rules describing the absence
of a certain event or entity, i.e., they allow implications such
as ¬A ← B. Such implications facilitate BLR to act as a
discriminative model rather than a generative model (e.g.
Bayesian Networks [5]).

However, the BLR framework itself does not enforce the
user to adopt a modular definition of the object of inter-
est. Therefore, the framework by itself does not enjoy the
merits of a hierarchical model. In this paper, we propose
a principled way, i.e., a meta-grammar, to write rules in-
tended for general extended logic programs for object de-
tection/recognition. The proposed meta-grammar guides
(and constrains) users to define the rules hierarchically. In
many ways, the resulting object description rules orients it-
self towards the AND-OR structure of [9] and [4] , while
extending this concept by a few notable aspects (e.g., a for-
mal integration of negation and function definitions, as will
be explained). It should be noted here that, although we de-
scribe the proposed grammar to be primarily applicable to
BLR, it is not specific to a certain implementation or lan-
guage. In general, a grammar instance can be generically
translated into a variety of different logic programs and lan-
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guage of choice.
In their survey on stochastic grammar of images, Zhu

and Mumford [9] describe several studies that represent the
knowledge about an object structure in a so called AND-OR
graph. These studies introduce a hierarchical description of
an entity. An object or entity is considered as a combina-
tion or conjunction of several components (children in the
graph). For example, a wall clock is made up of a dial and
hands to indicate hour, minute and second. Therefore, a
clock is a conjunction of dial and hands and is represented
by an AND node in this AND-OR graph.

Each component or part can be of different shapes or
sizes. This diversity of configurations is captured by model-
ing the parts as a disjunction of several configurations. For
example, continuing with the example of clock description,
the dial of a clock could be rectangular, circular or even
hexagonal. Therefore, the dial or the set of hands corre-
spond to OR nodes in the graph.

These alternative configurations are further divided into
smaller components and thus become an AND node of the
graph. This process is continued recursively until we reach
the elementary features extracted from the image. The in-
tuitive top-down disintegration of parts facilitates an easy
procedure to construct a model for an object.

In a rule-based environment, we use a formal grammar,
which is referred as object grammar, to represent an object.
In this grammar, the low level image features constitute the
set of terminals. Contrary to monolithic models where an
object is expressed with these low level features straight
away, a hierarchical model defines some intermediate (and
may even be hypothetical) parts/components of the object
and defines the object as a semantically constrained set of
these parts. These parts are the non-terminals in the object
grammar.

In order to formally restrict the object grammar, we are
proposing a specification grammar for object grammars. We
wish to constrain the object representation to be expressed
in a hierarchical manner with the options for accommodat-
ing the diversity in the construction. The resulting object
grammar much similar to an intuitive graphical object rep-
resentation. Each sentence of the the specification gram-
mar is an object grammar with the aforementioned desired
properties. In order to ground the proposed object grammar
to an particular application case, we implement a compiler
that parses and translates example object grammars into a
PROLOG implementation of a BLR logic program.

The proposed technique is evaluated for software GUI
(Graphical User Interface) component detection in an at-
tempt to partially automate software testing process. Our vi-
sion based GUI parsing relies on mid- and high-level com-
positions of the low level features. The compositional hier-
archical model is particularly suited to the GUI detection
problem, as elements in a GUI are often constructed by

sharing and agglomerating simple features. Neither holistic
nor the bag of features model is appropriate in this scenario
respectively due to large degrees of freedom in variation and
substantial overlap among different GUI elements.

2. Grammar Based Object Description
The proposed syntax encourages the user to describe an

object model hierarchically with AND-OR nodes. Any ob-
ject is considered as a collection of its parts tied up together
by semantic relationships. Each of the parts can assume
any of the several alternative configurations. The proposed
syntax explicitly suggests how the semantic relationships
among the parts should be defined. We also have a provi-
sion for a set of relations and functions that verify and cal-
culate properties of the parts to be utilized by the reasoning
at a higher level of the graph. For this purpose, we main-
tain a dictionary of relations and functions which are shared
among the set of rules we are writing. Once the model de-
scription is complete, it is the task of logic program to an-
alyze and combine all the facts with the rules to evaluate a
decision.

In the following, we will discuss the role of the gram-
mar formulation on two different levels. For ease of un-
derstanding we show examples of objects of our interest in
Figure 2(a). This is a screenshot of a GUI appearance –
the objects we wish to detect are pushbutton, radiobutton,
cehckbox etc. as shown in this figure. We first provide in
Section 2.1 an example of object grammars that we intend to
generate. Section 2.2 then describes the specification gram-
mar we propose in this work.

2.1. Object Grammar

The object grammar takes the form of a first order logic.
In this syntax, the low level image features become the ter-
minal symbols. For the problem of GUI recognition, we are
using simple features, such as, line, text, circle, etc. as over-
laid on an example GUI with colors blue, purple, green re-
spectively in Figure 2(b). These basic features are combined
and augmented by a set of geometric relations (i.e., predi-
cates) and functions to form non-terminal symbols, such as,
Rectangle, TextCluster etc.

The non-terminals are the intermediate parts of the ob-
ject itself and are referred to as entities. The relations, such
as, is close, is inside, etc., define the geometric re-
lations among the features. We also use functions, such as,
compute center, compute intersection, etc.,
to calculate necessary quantities that are used by the re-
lations, entities and configurations. The semantic of the
grammar is defined by the symbols C,∨,∧,¬, and [Ef, Ea],
which correspond respectively to implication, disjunction,
conjunction, negation, and uncertainty values Ef and Ea as
numerical evidence for and against a proposition in the logic
program (see [6] for details).



i. PushbuttonStart(a,b) C Pushbutton(a,b).

ii. Pushbutton(a,b) C RectangularTextual(a,b) ∨ CircularTextual(a,b) ; [1, 0].

iii. RectangularTextual(a,b) C Rectangle(a,b) ∧ TextCluster(e,f)
: is inside(a,b,e,f) ∧ is close( compute center(a,b), compute center(e,f))
: ; [0.9, 0].

iv. Rectangle (a,b) C CompleteRectangle(a,b).

v. CompleteRectangle(a,b) C OrthogonalLinePair(p1,r1) ∧ OrthogonalLinePair(p2,r2)
: is close( compute far endpoint(p1,r1),compute far endpoint(p2,r2))
: compute intersection(r1,r2,a,b) ; [0.9, 0].

vi. TextCluster(a,b) C TextClusterSimple(a,b).

vii. TextClusterSimple(a,b) C . . ..

Figure 1. Example object grammar

(a) Input image

(b) Detected elementary features.

Figure 2. GUI component detection.

Figure 1 shows an example of an object gram-
mar. In the specific instance of this syntax, the
start symbol PushButtonStart infers another symbol
PushButton, corresponding to the entity to be modeled
(Rule (i)). One example of specifying several configuration
is given in Rule (ii) that states PushButton can be a rect-
angular entity with some text written in it or it can be a cir-
cular entity containing texts. Each of the configurations is a
collection of parts having some geometric or other relations
that bind them together. These parts (e.g., Rectangle
and TextCluster in Rule (iii)) become new entities to
be identified next. Geometric constraints like is close
in Rule (iii) enforces meaningful composition between two
parts: in this case, centers of two parts, Rectangle and
TextCluster.

2.2. Specification Grammar

The specification grammar, which generates instances of
an object grammar, is a context sensitive grammar G =
(T,N,R, S), with T and N being the set of terminal and
non-terminals, R being the set of rules and S is the start
symbol. The specification grammar is defined in Figure 3.
In this grammar, all the instantiations of entities and config-
urations, their relations and functions are considered as ter-
minals. The locations and parameters, which we refer to as
identities, are also terminals. The space-holders for these el-
ements, e.g., entity, config, constraint are all
non-terminal symbols. We introduce a nonterminal symbol
δ to imply the description of an entity or a configuration.
A string with δ followed by entity (or config)
implies the description of that particular entity (or
config). The symbols π and ρ denote a list of (seman-
tic, geometric, etc.) relations and that of functions, respec-
tively. These list of relations and functions are assumed to
be stored in a separate relation and function dictionary. Fi-
nally, ] corresponds to a ‘formatting’ variable implemented
by a newline followed and preceded by white-space charac-
ters. We are specifying some notations used in the grammar



i. S → compStart(τ) C entity(τ). ] δentity(τ)

ii. δentity(τ) → entity(τ) C γ | neg entity(τ) C γ | feature(τ);[Ef, Ea].]
| neg feature(τ) ; [Ef, Ea].]

iii. γ → config(τ)∨ γ ] δconfig(τ) | neg config(τ)∨ γ ] δconfig(τ)
| config(τ);[Ef, Ea]. ] δconfig(τ) | neg config(τ);[Ef, Ea]. ] δconfig(τ)

iv. δconfig(τ) → config(τ) C ν | neg config(τ) C ν

v. ν → entity(τ) ∧ ν ] δ entity(τ) | neg entity(τ)∧ ν ] δentity(τ)
| entity(τ) : π : ρ ;[Ef, Ea]. ] δentity(τ)
| neg entity(τ) : π : ρ ;[Ef, Ea]. ] δentity(τ)

vi. π → constraint(τ) ∧ π | constraint(τ) | ε
vii. ρ→ f(ι) ∧ ρ | f(ι) | ε

viii. τ → ι | τ , f(ι) , τ | f(ι) , τ | τ , f(ι) | f(ι)
ix. ι→ p , ι | p | ε
x. neg → ¬ | NotNBD | NotNAL

xi. ]→ WhiteSpace Newline Whitespace

xii. compStart → PushButtonStart, ...

xiii. entity → PushButton | Rectangle,...

xiv. config → CircularIcon | RectangularText, ...

xv. feature → Line | Circle | Text,...

xvi. constraint → is close | is inside | is perpendicular, ...

xvii. f → compute enter | compute corners | Perimeter, ...

xviii. p → LineParam | XY-coord, ...

Figure 3. Specification grammar.

in Table 1 as an easy reference for the specification gram-
mar.

C implication
feature elementary fetures

ν conjunction of entities
entity part of component

γ disjunction of config
config alternate configuration

∨ disjunction in object grammar
∧ conjunction in object grammar
neg negative operator in BLR
π list of constraints

constraint constraint among parts
ρ list of functions
f function defined on parts
τ parameter list
ι parameter

Ef and Ea numerical evidence of BLR

Table 1. Explanation of symbols in the Meta-grammar

For better understanding, the explanation of meta-
grammars will accompany corresponding instantiation of
the variables in the context of GUI objects. The start symbol
of this syntax is S. Rule (i) states the first rule of the object

grammar : a component is an entity. The non-terminal δ fol-
lowed by entity (or config) then provides the defini-
tion of the entity (or config), respectively. The white
space character ] acts as a delimiter between two rules of
object grammar.

In terms of GUI object, compStart and entity cor-
respond to PushButtonStart and PushButton re-
spectively. The argument τ indicate the parameters, e.g.,
location coordinate, of an entity or config. Rule (ii)
invokes the description of an entity. Each entity can as-
sume one of the several different configurations recursively
defined in Rule (iii) with non-terminal γ, or one of the basic
logical features.

The neg operator allows to write negative implications
and the symbols , Ef and Ea, within square braces in Rules
(ii) and (iii) quantify the degree of belief for a rule to be
true and false, respectively. These two aspects of meta-
grammar are specific to BLR framework and can be re-
moved/modified for other inference tools.

Similarly, each configuration config is a conjunction
of parts or entitys, as expressed by Rule (iv) and by ν
recursively in Rule (v). The instantiation of config in the
context of GUI object are RectangularTextual and
CircularTextual. The constituent entitys such as



Rectangle and TextCluster are supposed to abide
by the constraints specified by the list π, which, in our ex-
ample, are is close and is inside. We also allow
users to compute new properties of the config, through
the list of functions in ρ ,e.g., compute intersection,
to be used at different levels of the hierarchy. Note
also that Rule (viii) allows the parameters τ to be
functions, enabling us to define constraints on func-
tions such as is close( compute center(a,b),
compute center(e,f)).

Rules (xii)–(xviii) state the possible instantiations of the
elements depending on the specific problem at hand. In
the present grammar formulation, the concrete entities, con-
cepts, etc. are not constrained to be identical on both sides
of an object grammar, e.g., in Rules (ii) and (iv). This can be
formally achieved with help of an attribute grammar formu-
lation. Having now formally defined the language of object
grammars, it is straightforward to parse object grammars
and translate them into an equivalent, low- level program,
such as a set of BLR rules.

The constraint to alternate between AND-OR en-
tity/configuration enforces one to produce modular,
reusable grammar that is similar to an intuitive graphical
representation and at the same time flexible enough to in-
corporate a wider formulation of the object. From the sys-
tem design perspective, the meta-grammar can a basis of a
graphical editing tool for object description.

2.3. Practical Consideration

Detection time of an object reduces when we use a hi-
erarchical model for the object as opposed to a monolithic
model of it. Let us consider an object is composed of p
basic features and hypothesize an intermediate part of this
object to comprise q < p features. If there are n basic fea-
tures detected in the whole image, detecting this intermedi-
ate part by a logic program has a time complexity bounded
by

(
n
q

)
= O(nq) and detecting the object itself from these n

q

intermediate parts has a time complexity
(
n/q
p/q

)
= O((nq )

p
q ).

Whereas, detecting the object from the basic features them-
selves requires

(
n
p

)
= O(np) time which is larger than

O((nq )
p
q ) +O(nq).

Breaking down larger objects into a deeper object hierar-
chy also allows us to maintain a more generic dictionary of
generic relations and functions. This substantially reduces
the size of object model description, increases modularity
and readability and further simplifies sharing of the rela-
tions and functions among different objects.

3. Application: Detection of GUI widgets
For GUI component detection experiment, we created

object grammars for groupboxes, pushbuttons, radiobut-
tons, droplists, and checkboxes, as shown in Figure 2(a).

Figure 4. GUI component detection output. Red: groupbox, purple: push-
button, green: radiobutton, blue: droplist

Figure 5. Dependence among parts.

A dependency graph of the main concepts in this grammar
is sketched in Figure 5. Starting from the initial features,
an arrow in the dependency graph implies constituent com-
ponent of a part or entity. The dependency graph clearly
shows how same elementary feature or intermediate parts
are shared by different GUI objects. We applied BLR infer-
ence on the object grammar generated by the meta-grammar
compiler.

3.1. Qualitative results

The result of the logical inference on the example image
of Figure 2(a) is shown in Figure 4. It can be seen that all
of the groupboxes (red), pushbuttons (purple), radiobuttons
(green), and droplist (blue) are correctly detected. In this
example, a single checkbox (orange) has been missed, and
false alarms for checkboxes and a pushbutton can be identi-
fied. Our object grammar descriptions of these components
were rather simple – we foresee a more accurate recognition
with a more detailed grammar.

3.2. Quantitative results

A quantitative experimental analysis has been performed
on a set of 6 images of resolution 1280 × 960, comprising
a total of 20-40 objects per category. Table 2 shows the de-



tection rate (true positive rate; TP rate) and the number of
false alarms (FP) per image. Good results were obtained for
pushbuttons, droplists, and radiobuttons, checkboxes pro-
voked misses and false alarms. Again, a grammar contain-
ing more details is expected to improve the result.

Component % correct FA/Image
Pushbutton 90% 0.17
Menulist 100% 0

Radiobutton 90% 0.33
Checkbox 67% 2.67

Table 2. Quantitative results for different GUI components

3.3. Sharing subgraphs

As can be seen from Figure 5, different GUI elements
share certain subgraphs in the grammar. For instance, all
of pushbutton, checkbox, and droplist are implicated by the
rectangle node. This property is specific to the modular and
deep representation chosen, compared to a monolithic one,
and specifically beneficial for robustness (in the context of
parameter learning) and computational complexity.

For logical inference, it is beneficial to perform infer-
ence bottom-up, corresponding to a logical inference strat-
egy called forward chaining, such that nodes are computed
only once. In order to support the comments made in Sec-
tion 2.3 by a concrete example, we set up a small experi-
ment, where we infer about the rectangle by two different
strategies. In a monolithic approach, a rectangle is directly
implicated by a set of four lines, two of which are parallel
to each other but perpendicular to the other two lines. In
a finer grained approach, a rectangle is implicated by two
(L-shaped) orthogonal pairs of lines, which in turn are im-
plicated from the set of all detected lines. In both cases,
we utilize neighborhood information to speed up the search.
Both approaches produce the identical output, however, the
monolithic one 4 times slower. This interesting result is
an indication for a practice to prefer deep hierarchies over
shallow ones.

4. Discussion
We have proposed a generic meta-grammar for produc-

ing hierarchical object description rules to be used with a
logic program, focusing on bilattice based logical reasoning
(BLR). We have shown results for parsing a GUI for the pur-
pose of robust GUI testing. In the computer vision context,
this approach is not limited to GUI parsing, but can advan-
tageously be applied to many kinds of object detection and
recognition. This particularly applies to situations where
domain knowledge is available and can be formulated by
domain experts. The work of [6] demonstrates the utility of
such model for several different examples. For future work,
we want to formulate grammars for additional elementary

GUI components as well as more complex structures, such
as graphs, images (2D/3D), etc.

In addition, usability aspects of the grammar can be fur-
ther addressed by a graphical tool, where domain experts
can visually create a grammar for objects of interest. The
proposed meta-grammar can be utilized to define activities
as well, facilitating activity detection from a video. The
graphical tool will be constrained to conform with our meta-
grammar. It would provide the user with flexibility to define
the object or activity, and their parts, following the alternat-
ing conjunction-disjunction format and using the relation-
function dictionary.

Overall, we would like to point out that, though the meta-
grammar was designed to work with BLR logic programs,
the basic structure of it is much more general. With mi-
nor modifications, it is possible to produce a specification
grammar for other stochastic logic programs being utilized
in computer vision.
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