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Abstract. The automatic delineation of the boundaries of organs and other
anatomical structures is a key component of many medical image processing
systems. In this paper we present a generic learning approach based on a
novel space of segmentation features, which can be trained to predict the
overlap error and Dice coefficient of an arbitrary organ segmentation without
knowing the ground truth delineation. We show the regressor to be much
stronger a predictor of these error metrics than the responses of Probabilistic
Boosting Classifiers trained on the segmentation boundary. The presented
approach not only allows us to build reliable confidence measures and fidelity
checks, but also to rank several segmentation hypotheses against each other
during online usage of the segmentation algorithm in clinical practice.

1 Introduction

Measuring the quality of a segmentation produced by an algorithm is key to cre-
ating a deployable system and comparing the effectiveness of different algorithms
to address a particular application. In fact, segmentation quality measures form
the backbone for judging results of the segmentation challenges embraced by the
medical imaging community in recent years (e.g., [8]). Additionally, these quality
measures are key to publishing segmentation algorithms in order to demonstrate
improved effectiveness of a new algorithm. Recent studies have shown that standard
quality measures used in the community (or combinations thereof) serve as good
proxies for human evaluation of segmentation quality in a clinical context [5,7].

The basic procedure for applying the existing quality measures is to create
ground truth (manually segmented) structures and to compare those structures
with algorithm-generated segmentations in terms of overlap or boundary differences.
Although this procedure is effective for developing and comparing algorithms, there
is no automated method for evaluating segmentation quality after algorithm deploy-
ment since there is no ground truth available after deployment (if there were, then
a segmentation algorithm would be unnecessary). Consequently, in the field, our
methods for evaluating segmentation quality are not usable due to a lack of ground
truth segmentations to compare with. Figure 1 illustrates this difference.

The evaluation of segmentation quality after deployment serves a very differ-
ent purpose than the evaluation of segmentation quality during algorithm develop-
ment. During development, the purpose of the evaluation is to compare different



approaches or to optimize parameter settings. In contrast, on-line segmentation
evaluation during deployment has several uses:

1. The evaluation can flag the user or system that a poor segmentation was ob-
tained that requires manual review.

2. If a poor segmentation evaluation is obtained, the deployed system can try again
to produce a better segmentation by re-running the segmentation with different
algorithm parameters or a new algorithm entirely.

3. Every time a segmentation is required for a new dataset, several candidate seg-
mentations may be generated on-line (e.g., in parallel) using different parameter
settings and/or algorithms. The candidate segmentations are each evaluated and
the segmentation with best evaluation score is then selected to return as output.

Fig. 1. With ground truth,
quantifying the segmen-
tation error is straight-
forward (left lung). This
error relative to ground
truth is essential during
pre-development to select
an algorithm and opti-
mize parameters. In con-
trast, our method applies
to the post-deployment sit-
uation where it is neces-
sary to estimate error when
no ground truth is avail-
able (right lung).

Several different types of popular segmentation al-
gorithms are associated with measures that might be
considered useful to evaluate segmentation in the ab-
sence of ground truth. For example, any of the family of
optimization-based segmentation algorithms (e.g., level
sets [17], graph cuts [2], random walker [9]) explicitly op-
timize an objective function to produce the desired seg-
mentation. Therefore, a natural idea might be to use the
energy of the output solution as an evaluation metric for
segmentation quality. However, this energy of the min-
imal solution is unsuitable to evaluating segmentation
quality since these algorithms are designed to compare
relative energies of different segmentations and not to
measure an absolute energy difference between a (possi-
bly locally minimal) solution to the ground truth. An-
other class of popular segmentation algorithms utilizes
learning to produce the segmentation. For these meth-
ods, a natural idea would be to use the outputs of the
learning system as a confidence measure to perform on-
line segmentation evaluation in the absence of ground
truth. However, in Section 3 we demonstrate that the
learning outputs of one popular learning algorithm, the
Probabilistic Boosting Tree (PBT) [19], are poorly cor-
related with traditional measures of segmentation error
when ground truth is known.

We adopt a hybrid approach to evaluating segmen-
tation quality in the absence of ground truth. First, we
calculate features to describe the output segmentation which are derived from
the optimization-based segmentation literature. Effectively, we choose features by
adopting every generic term in an objective function that we could find from an
optimization-based segmentation paper. Second, we train a regression algorithm to
predict the conventional segmentation error with respect to a known ground truth.
Once trained, the regression algorithm can be used to predict the segmentation
error from the calculated features in the absence of ground truth.



2 Method

First we introduce a novel space of shape and appearance features to characterize a
segmentation. We then use these features to learn a predictor of segmentation error
by training on error with respect to ground truth.

2.1 Using Energy Terms as Segmentation Features

We propose the following 42 shape and appearance features, many of which can
be found as building blocks of popular energy-based or graph-based segmentation
approaches. Thereby we remain agnostic about which feature choices worked well
for the final regressor. The features we used can be broken down into five major
categories: (weighted or unweighted) geometric features, intensity features, gradient
features, and ratio features.

Note that in the following descriptions, we will use three-dimensional (3-D)
terminology such as voxels, volume, surface area, and mean curvature, but it is
understood that when applied to 2-D problems, the appropriate 2-D counterparts
are implied, without loss of generality. In addition, all weights in these descriptions
refer to the Cauchy distribution function applied to the appropriate image intensities
differences, i.e., w(I1, I2) = 1

1+β( I1−I2
M )

2 , where I1 and I2 are two image intensities

in question, β, which is set to 104 for all experiments, controls the sensitivity of the
weight to intensity difference, and M = max(x,y)∈S ‖∇I(x, y)‖1 was the maximum
L1 norm of all intensity gradients within the segmentation mask, S. The purpose
of M is to normalize the weights. We will also define w+(I1, I2) = w(I1, I2) when
I1 > I2 and w+(I1, I2) = 1 otherwise. Likewise, we will define w−(I1, I2) = 1 when
I1 > I2 and w−(I1, I2) = w(I1, I2) otherwise.

Geometric features capture some measure of size of the segmentation mask
S ⊂ R3, a concept dating back to some of the earliest works on image segmen-
tation [1,16,4]. Of these, we chose: volume, defined as the number of voxels in the
segmentation mask, |S|; surface area, the number of edges (assuming a graph struc-
ture with a 6-connected lattice) on the boundary of the segmentation,

∑
i,j:i∈S,j∈S̄ 1,

where S̄ is the set of voxels not in the segmentation mask; and total curvature, the
sum of the mean curvature defined on the segmentation surface,

∑
i,j:i∈S,j∈S̄ H(i, j),

where H(i, j) is the discretely computed mean curvature on the segmentation sur-
face between voxels i and j and is locally computed as in [6].

Weighted geometric features are similar to the geometric features, but in addi-
tion the geometric measure is locally emphasized when intensity values are similar
to each other and suppressed when local intensity values are dissimilar to each
other. This concept has been pervasive in image segmentation since the work of
Caselles et al. [3] and has been seen in many other recent works [9]. The geo-
metric weights we use are based on local intensity in the image and are mapped
via the Cauchy function w(·, ·) shown above. In the cases where we refer to voxel
(or vertex v ∈ V ) weight, we mean the average weight of all edges leaving that
vertex, w(v) = 1

Dv

∑
i:(v,i)∈E w(Iv, Ii) where Dv is the degree of the vertex v.

For weighted geometric features, we chose: weighted volume, the sum over the
weights of all voxels,

∑
v∈S w(v); weighted cut, the sum over the all edge weights



along the boundary of the segmentation
∑
i,j:i∈S,j∈S̄ w(Ii, Ij); weighted curvature∑

i,j:i∈S,j∈S̄ w(Ii, Ij)H(i, j), the sum of the mean curvature weighted by the local
edge weight; low-hi weighted cut,

∑
i,j:i∈S,j∈S̄ w+(Ii, Ij); and hi-low weighted cut∑

i,j:i∈S,j∈S̄ w−(Ii, Ij) along the segmentation boundary.
Intensity features use various measures of the direct image intensities. Of these,

we chose: mean intensity defined as µI = 1
|S|
∑
v∈S Iv; median intensity defined as

median({Iv : v ∈ S}); sum of intensities
∑
v∈S Iv; minimum intensity minv∈S Iv;

maximum intensity maxv∈S Iv; interquartile distance (defined as half of the differ-
ence between the 75th percentile and the 25th percentile values) of intensities; and

standard deviation of the intensities 1
|S|−1

∑
v∈S (Iv − µI)2

.

Gradient features use various measures of the intensity gradients (local inten-
sity changes). All intensity derivatives comprising these gradients are computed
via central differences. Of these, we chose: sum of the L1 norms of the gradients,∑
v∈S ‖∇I(v)‖1; sum of the L2 norms of the gradients,

∑
v∈S ‖∇I(v)‖2; mean of the

L1 norms of the gradients 1
|S|
∑
v∈S ‖∇I(v)‖1; mean of the L2 norm of gradients

µg = 1
|S|
∑
v∈S ‖∇I(v)‖2; median of the L1 norms of gradients median({‖∇I(v)‖1 :

v ∈ S}); minimum L1 norm of all gradients minv∈S ‖∇I(v)‖1; maximum L1 norm
of all gradients maxv∈S ‖∇I(v)‖1; interquartile distance of the L1 norms of the gra-
dients; standard deviation of the L1 norms of gradients; and the standard deviation
of the L2 norms of gradients 1

|S|−1

∑
v∈S (‖∇Iv‖2 − µg)2

.

We opt to explicitly include a selection of features that were ratios of our other
features. The intent is not to be completely comprehensive, but rather to use do-
main knowledge of segmentation problems to explicitly choose combinations that
the literature and our experience told us would be good indicators of segmenta-
tion performance. The ratio features are simply the ratio of two features above. We
only include ratios that either we believe to be meaningful, or have appeared in
the segmentation literature thus far. Several fall into the category of cut divided
by volume, a concept that has appeared throughout the history of segmentation in
various forms [13,10]. Of these, we chose: all four weighted and unweighted combi-
nations of cut divided by volume; all four combinations of low-hi weighted cut or
hi-low weighted cut divided by unweighted or weighted volume; weighted cut divided
by unweighted cut ; all four combinations of low-hi weighted cut or hi-low weighted
cut divided by unweighted or weighted cut ; blur index defined as sum the L2 norms
of the gradients divided by sum of the L1 norms of the gradients; curvature over
unweighted cut ; and weighted curvature over unweighted cut.

Some of the features, such as the geometric features and most of the intensity-
based features, are not meant to be discriminative alone. Rather, they are intended
to lend context about the expected values for some of the other more discriminative
features for a given candidate segmentation. Our intention is to extract features
that might be relevant independent of the classifier method, and then to let feature
selection or the classifiers determine how the features would be used.

2.2 Learning to Predict Segmentation Error

Based on this novel space of shape and appearance features, we propose to use non-
linear regressors in order to separately approximate different segmentation metrics.
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Fig. 2. Real segmentation errors (x-axis) versus linearly regressed PBT-probabilities (y-
axis). Correlations coefficients (left to right): 0.45, 0.48, 0.49. Max. surf. err: 0.29. (Note
that for readability we have adopted linear and log scaling where appropriate.)
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Fig. 3. Real segmentation errors (x-axis) versus SVM regressor-predicted ones (y-axis).
Correlations coefficients (fr. l. to r.): 0.85, 0.79, 0.56. Max. surface error: 0.69.

Specifically, we treat the 42 features as independent variables and each of the error
metrics, which we will define below, as dependent variables.

In order to obtain a comprehensive quantification of the segmentation error
relative to the ground truths, we employ four different error metrics. Let G,S ⊂
R3 denote the set of points of the ground truth segment and the computed seg-
ment, respectively. As first metric we use the popular volumetric overlap error
[12]: EO(S,G) = 1 − (|S ∩G|)/(|S ∪G|), which is 0% for a perfect segmenta-
tion (i.e. S = G) and 100% if the computed segment does not overlap with the
ground truth at all. As a second volumetric measure we employ the Dice coefficent :
ED = 2 |S ∩G| /(|S| + |G|), which is similar to the first one, and assigns 1 to a
perfect segmentation and 0 to a completely failed one. In practice, S and G are
typically represented as binary masks on a regular grid. In case segmentations are
represented by surfaces, such masks can be obtained by voxelization. Besides these
volumetric measures, we also compute the symmetric surface-to-surface metrics. In
particular the well-known Hausdorff distance: EH = max {supx∈∂S infy∈∂G d(x, y),
supx∈∂G infy∈∂S d(x, y)}, which measures the maximum of the Euclidean distance
(d(x, y) := |x− y|l2) of each point on the computed segmentation surface ∂S to the
ground truth surface ∂G and vice versa. Besides the maximum of the minimum per-
vertex surface distances, we also gauge their mean by computing the average surface

error : ES = 1
2

(
1
|∂S|

∑
x∈∂S miny∈∂G d(x, y) + 1

|∂G|
∑
y∈∂G miny∈∂S d(x, y)

)
.
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Fig. 4. Real segmentation errors (x-axis) versus predictions (y-axis) for 378 lung (left or
right) and 411 liver segmentation from a level set approach [14] (ten-fold cross-validation).

To perform the learning, we experimented with commonly known linear and non-
linear regression approaches, all of which are available in the Weka tool [11]. Thereby
we found an SVM regressor with a normalized polynomial kernel 〈x,y〉/

√
〈x,x〉〈y,y〉

with 〈x,y〉 = (1 + x · y)2 and an SMO-type optimizer [18] (with C = 1) to yield
the highest correlations factors using a ten-fold-cross-validation.

3 Experiments

In this section we will address the following questions: Can the response of a com-
monly used boundary classifier be used to predict the above error metrics? How
much better does the proposed regressor predict the segmentation errors than the
boundary classifier probabilities? Can the new predictors estimate the error of a
typical optimization based segmentation too? How do they perform on individual
organs instead of of a whole collection? If we use the regressor to classify results
into good and bad, how high is the error rate of this classification?

In order to address the first question, we used the machine learning-based or-
gan segmentation approach described in [20] and [15] as reference. The last stage
of this segmentation approach comprises a hierarchical boundary detection, where
Probabilistic Boosting Tree boundary classifiers [19] are queried along the normals
of an approximate segmentation mesh and the mesh vertices are then being placed
at the location of maximum classifier response. We trained this method on eight
different organs or organ parts (both referred to as “organs” in the following), for
which we had the following number of ground truth segmentations: liver: 411, left
lung: 187, right lung: 191, right kidney: 341, left kidney: 379, bladder: 311, prostate:
204, rectum: 149. All of those were generated by manual editing from a pool of 950
different CT scans that cover a variety of different patient anatomies, scanning
protocols and parameters (slice resolution range: 1–5mm). For each ground truth
segmentation, we applied the PBT and not only recorded the detected segmenta-
tion surface, but also the mean of the classifiers’ probabilities over each segment
surface. Subsequently, we used a linear regressor in order to fit the 2173 probability
values to each of the four error metrics. See results in Figure 2. Surprisingly, the
mean probabilities and any of the four metrics are only weakly correlated. This
observation is in spite of the overall good segmentation accuracies of the system.
Despite the individual boundary classifier responses provide a good prediction of
the true boundary location on a local scale, in aggregation they seem to be a poor
predictor for the overall accuracy of a segmentation shape.



Table 1. Confusion matrices when thresholding the regressor-predicted volume overlap
error EO. Left: for 2 × 2173 segmentations on all organs using results both from [15]
and [14]. Right: for 377 left/right lung segmentations using [14] only.

# of predicted cases
# of true cases EO ≤ 10% EO > 10%

EO ≤ 10% 867 373
EO > 10% 255 2851

# of predicted cases
# of true cases EO ≤ 10% EO > 10%

EO ≤ 10% 178 39
EO > 10% 24 136

By contrast, when training a regressor as described in Section 2.2, we observe
significantly better correlations between the true and the predicted errors of the
PBT-based segmentations, especially for the volume overlap error and the Dice
coefficient. See results in Figure 3 using ten-fold cross-validation. In order to in-
vestigate a possible bias of the predictors towards PBT-type segmentation errors,
we also ran them on segmentations generated by a level set approach [14], which
relies on a volumetric shape representation. However, also for those segmentation
results we observed very similar error prediction performances, with correlation co-
efficients being the same as for the PBT method up to the first decimal. In a next
step, we trained and tested the regressors on different organ-specific subsets and
discovered significant performance differences. For the lungs, for example, the real
and predicted overlap and Dice errors are both correlated by a factor of 0.85 each,
whereas for the liver only with 0.54, see Fig. 4. Finally, encouraged by the overall
good correlation factors between the SVM regressor and the overlap error metric,
we investigated the use of the former in classifying segmentations results into ac-
ceptable (EO ≤ 10%) and non-acceptable segmentations (EO > 10%). Results in
Table 1 show that the proposed method is capable of classifying into these two
classes with low false positive rates (lower left entry) over all organ classes, as well
as, e.g., for the lungs only.

4 Conclusion

We presented a method for predicting segmentation error in the absence of ground
truth based on learning a classifier from errors measured against ground truth.
Our method used a series of features derived from objective functions found in the
literature for optimization-driven segmentation algorithms and trained our classifier
to predict error measured against ground truth using standard error metrics used
in the literature to compare segmentation quality. Despite training our classifier on
segmentations for 8 very different organs, a strong correlation was observed between
the predicted and actual errors when applied to an unseen test set. Furthermore, we
demonstrated that a popular learning algorithm (PBT) does not provide the same
power to predict segmentation quality.

A method for predicting segmentation error for on-line segmentations after de-
ployment has many uses to improve final segmentation quality (by retrying poor
segmentations or choosing the best segmentation from multiple algorithms run in
parallel) or to request user review for a segmentation. We believe that the problem
of predicting segmentation error without ground truth holds many future opportu-



nities, such as the development of new feature sets, training across modalities and
systems that can localize the source of segmentation error.
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