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Abstract— In this paper a camera-based system for detection,
tracking, and classification of U.S. speed signs is presented.
The implemented application uses multiple connected stages
and iteratively reduces the number of pixels to process for
recognition. Possible sign locations are detected using a fast,
shape-based interest operator. Remaining objects other than
speed signs are discarded using a classifier similar to the Viola-
Jones detector. Classification results from tracked candidates
are utilized to improve recognition accuracy. On a standardPC
the system reached a detection speed of 27fps with an accuracy
of 98.8%. Including classification, speed sign recognitionrates
of 96.3% were achieved with a frame rate of approximately
11fps and one false alarm every 42s.

I. I NTRODUCTION

Advanced driver assistance systems (ADAS) for cars have
been evolving rapidly over the last decades. Due to the
growth in computational performance these systems are able
to handle more and more tasks. As with most car assistance
systems, their goal is to improve the driver’s safety and
comfort. Detecting traffic signs can be used to foster the
driver’s awareness of the current road situation and warn of
dangerous crossings, such as those indicated by stop signs.A
system that is able to detect speed signs can ensure the driver
is always aware of current speed limits and warn of overseen
ones. Integrated into an adaptive cruise control system (ACC)
the driver’s cognitive load can be reduced, and safe driving
is supported.

Traffic sign recognition systems (TSR) can also be used
to ease the task of road maintenance. Assuring the visibility
and readability of traffic signs is an ongoing task necessaryto
maintain safety on roads. However, street signs can be cov-
ered by obstacles, damaged, soiled or misaligned. Equipping
service cars (e.g., police cars) with a sign detection system
and the according database containing pre-located positions
of important signs can reduce and automate maintenance
tasks. Most work in recent years has focused on circular
speed signs, which are used in Europe, Asia, and Australia.
In this contribution, we describe a TSR system which is
adapted for rectangular U.S. speed signs. Examples of U.S.
speed signs can be found in Figure 1.
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II. RELATED WORK

To solve the problem of traffic sign detection most systems
follow the typical approach used in computer vision systems.
Generally, the task at hand is structured into the subproblems
of pre-processing the acquired image data using different
segmentation techniques, detecting signs in the image and
finally classifying them. In some systems classification is
improved by exploiting the available temporal information.

Color based Segmentation:Traffic sign colors have been
chosen by the traffic authorities to assure an immediate focus
on the sign. Hence, pre-segmenting the image using color
thresholding techniques is widely described in publications
(e.g., [8], [12], [17], [22]) in order to identify a region
of interest. Because of the distinct colors used in traffic
signs (e.g., red, blue, yellow) most authors prefer a linear
or non-linear mapping from RGB to other color coordinate
systems (i.e. HSV, HSI, YIQ, etc.) which are less sensitive
to illumination changes by decoupling color and intensity
information. Kehtarnavaz [12] claims that a transformation
into the YIQ color space provides the best segmentation
outcome for red and yellow traffic signs. He also points out
that none of the different color systems provide adequate
distinction qualities between black-and-white signs and the
background. Unfortunately, most U.S. traffic signs have black
letters on white background.

Shape based Segmentation:Another popular technique is
exploiting shape information derived from edge features. The
main advantage is its robustness with respect to different
lighting conditions and the sign’s degradation. A traditional
method to detect circular structures, for example circular
speed limit signs [6] is the circular Hough transform. De-
tecting straight line segments can be realized using the gen-
eralized Hough transform. Grouping detected peaks [11] can

Fig. 1: Example Images of U.S. Speed Signs



be used to detect rectangles [18]. Although hardware imple-
mentations for the generalized Hough transform exist [21],
calculating the transformation and extracting matching peaks
on large images is computationally too complex for real-time
processing.

Barnes and Zelinsky [4] introduce a radial symmetry
detector which uses the gradient image to detect (circular)
Australian speed signs in real-time. Loy and Barnes [14]
presented a modification of this algorithm to detect regular
polygon-shaped signs (e.g., triangle, square, octagon). The
regular polygon detector is implemented and extended in this
work in order to detect rectangular speed signs in the United
States of America.

Different template matching methods exist to detect sign
shaped structures. Because of the computational complex-
ity, they are often applied to smaller areas that are pre-
determined by color thresholding [22]. To improve per-
formance, several techniques were proposed to speed up
template matching. Betke and Makris [5] use a simulated an-
nealing algorithm for fast template matching, and Gavrila [9]
exploits matching properties in the distance-transform of
the image. However, these methods adapted to the task
of detecting U.S. speed signs are time-consuming due to
template shape and size necessary to detect these signs.

Detection performance has been increased in many object
detection applications with help of the Viola-Jones detec-
tor [23]. This detector has been applied in [1] to detect
circular German traffic signs. Its application will be extended
in this work to detect rectangular U.S. speed signs.

For a more accurate determination of the exact sign loca-
tion usually a combination of color and shape segmentation
is used. Edge [19], ring [20] and other features are used
to detect the outline of a sign with relative robustness to
occlusion and distortion.

Classification: The final classification of the sign is usu-
ally done by one of the common classifiers (Support Vector
Machines [13], Neural Networks [22], Nearest Neighbor [5],
Radial Basis Functions [10], etc.). Most often, the intensity
image of the candidate region is passed on to the classifier.

Tracking: Tracking candidate signs from frame to frame
allows redefining and restricting the region of interest to
speed up the classification process [7]. In [16] the trackingof
detected signs is realized by using a Kalman-filter framework
with the assumption of a constant straight car movement.
Bahlmann et al. [1] update the classification confidence by
considering and re-weighting classification decisions from
previous frames.

These techniques have mainly been used to detect circular
speed signs. To the best of our knowledge only Moutarde
et al. [15] applied a combination of shape based detection
and neural network classification on rectangular U.S. speed
signs.

III. T RAFFIC SIGN RECOGNITION SYSTEM
ARCHITECTURE

The system workflow can be divided into three different
stages: Detection, classification, and tracking. In the detec-
tion stage each input frame is processed to detect speed signs
of a fixed size. The search size is selected from a predefined
range of sign sizes and is changed for every frame. Figure 2
describes the detection process for a speed sign. A fast shape
based interest operator (III-A) is applied to the input image

to detect rectangles matching the shape of a speed sign.
Candidates generated by the shape detector are passed on to
an AdaBoost based classifier (III-B) to remove rectangular
signs and objects that are not speed signs. Remaining speed
signs are then passed on to the classification stage where
their size and rotation is computed (III-C) to allow a correct
masking of the imprinted speed limit. Once the speed limit
is classified (III-D) the signs are tracked and classification
results are propagated to the next frame (III-E) to improve
the final classification result.

Fig. 2: Speed sign detection and classification: First rectangle
structures are detected. Then the generated candidates areclassified
to contain a speed sign. Finally speed signs are aligned and
classified.

A. Rectangle Detection

Loy and Barnes [14] have introduced an algorithm to
detect the center of regular polygons. The algorithm operates
on the normalized gradients of a gray scale image and
uses an accumulator image that receives votes for possible
centers of a regular polygon. All gradients with a magnitude
above a certain threshold [2] and a certain orientation [3]
will be considered in a scan-line order. Our algorithm is
based on the same basic idea that a rectangular structure
yields gradients with high magnitudes at its borders. U.S.
speed signs are not regular but rectangular with fixed aspect
ratio. By assuming an upright orientation of a speed sign
the algorithm is extended to consider the orientation of a
gradient. Depending on the orientation the length of the
voting line is adjusted to allow a detection of U.S. speed
signs. Figure 3 illustrates the voting process for gradients
with horizontal or vertical orientation.

B. Speed Sign Detection

Using the rectangle detector already reduces the number
of possible positions containing a traffic sign. However, it
cannot distinguish between structures within the image that
are rectangular and other rectangular traffic signs. Unfortu-
nately, there are various structures in natural video scenes
that can be confused with the rectangular shape of a traffic
sign. Additionally, many traffic signs beside speed signs can
be detected as false positives because of their rectangular
shape. To assure that only the speed limit signs will be
further analyzed, a classifier is needed to reject objects in
the image that are no speed signs. Again this classifier must
fulfill the demand to process in real-time. To address this
issue, a classifier based on the method of Viola-Jones [23]
is used. We will not further explain its usage but focus on
the training and test results in section IV-B.
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Fig. 3: Voting process for one border point. Notation is largely taken
from [14] and [2]. Positions receiving a negative vote are visualized
by black segments and positive votes by white segments of thevote
line. Length of the voting line and offset are adjusted depending on
the gradient orientation.

C. Sign Alignment

The sign classification stage assumes accurately aligned
sign images, as will be shown later. This constraint is in
general not fulfilled, partly because traffic signs are of-
ten slightly rotated, partly because the AdaBoost detection
operates on a coarse scale resolution. To this end, our
architecture employs an explicit processing that estimates
location and rotation parameters of the speed sign using
robust voting. Subsequently, the image can be accurately
normalized according to those parameters.

1) Rotation: To estimate the rotation we make use of the
traffic sign’s edges, one of its most distinctive characteristics.
An upright (rotationally aligned) sign should yield horizontal
and vertical gradients for the sign’s outer edges as they
usually contrast strongly with the sign’s inner area, and
sometimes also the background (compare Figure 1). In this
respect, a rotation of the traffic sign by an angleθ translates
into a rotation of its outer edges’ gradients by the sameθ.

In our system,θ is estimated using histogram voting. We
aim to combine votes from all four main gradient direc-
tions in a rectangle (i.e., horizontal up/downwards, vertical
left/right) into one single bin. Hence, the gradients are first
transformed by

α′ = α mod 90◦. (1)

Here, we assume· mod 90◦ mapping to(−45◦, 45◦].
Then, the transformed gradient directionsα′ perform a

Gaussian kernel vote with bins of width1◦. Figure 4 shows
a histogram for an example image. The rotation angleθ̂,
estimated from the histogram maximum, can then be used
to rectify the sign.

Similar to the rectangle detection (III-A), computational
speed and accuracy can be increased by restricting the voting
to pixels that meet constraints in gradient directionα′ and
magnitudem, more specifically,

|α′| ≤ ǫ (2)

m > t. (3)

ǫ and t are parameters, to be determined.
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Fig. 4: Rotation estimation: Votes for the speed sign in Figure 5
(a). The estimated sign rotation iŝθ = −3

◦ with the convention of
clockwise rotations being positive.

2) Sign Size:The detector size from the sign detection
stage provides a rough estimate of the sign size and center.
More accurate values of these parameters can be obtained
by re-applying the rectangle detection in a small, local
neighborhood around the initial parameters, and computing
the maximum in this 3D position-scale space.

Using the computed position, size and rotation the actual
speed limit can be masked, rotationally rectified and passed
on to the classification. Figure 5 illustrates the alignment
steps.

(a) (b) (c) (d) (e)

Fig. 5: Alignment using the rectangle detector and estimated rota-
tion. (a) Rough size and position estimate provided by speedsign
detection. (b)-(d) Retrieval of exact sign position and size through
repeated application of the rectangle detector: (b) and (c)show
response maps for different rectangle sizes, (d) displays rectangle
corresponding to best response. (e) Alignment data allows cropping
of the rotationally rectified area of interest for classification.

D. Speed Limit Classification

At a final stage speed signs are classified into a set of
given speed limits. For this, we assume a unimodal Gaussian
distribution for each class’ data samples, and employ a nor-
mal distribution classifier following an LDA feature transfor-
mation. This assumption is justified by the small intra-class
variations of the signs and the previous accurate alignment
stage. A vector~x ∈ R

8, consisting of the most discriminative
basis vectors of the LDA, is classified by maximizing the
likelihood of a correct classification according to:

k̂ = argmin
k

{dΣk
(~x, ~µ′

k
)}

whereµ′

k
represents the class mean in the feature space and

dΣk
(~x, ~y) =

√

(~x − ~y)T Σ−1

k
(~x − ~y)

is the Mahalanobis distance using the class covarianceΣk in
feature space.
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Fig. 6: Accumulated classifier decisions for a tracked speedsign
using a majority voting scheme.

E. Temporal Integration

Speed signs are tracked within a temporal information
propagation framework, which takes into account 2D image
location and scale of the sign, the camera homography, and
vehicle CAN bus data. The independent classifier decisions
Y = [y1 . . . yn] for a track of lengthn can be fused into
a single decision, since the class membership of a track is
not expected to change overn. We require the fusion to
be robust to outliers, as a speed sign can be occluded or
simply misaligned. Majority voting is known to fulfill this
requirement. Given

c(k) =

∑

n

i=1
[yi = k]

n
,

describing the fraction of votes for each class, majority
voting determines the classifier responsek̂ by

k̂ = arg max
k

c(k).

Figure 6 illustrates the class assignment for a tracked speed
sign. In our experiments this majority voting scheme proved
to be very robust against accidental misclassifications with
high confidence.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the modules 119 minutes
of video, recorded on several trips between noon and 4pm
were manually labeled. The videos contained a total of
152 different instances of speed limit signs in 4354 frames.
Video data was acquired using a gray scale camera with a
resolution of750 × 400 pixels at a frame rate of 25 frames
per second. Depending on the module task the labeled data is
split into training and validation data to evaluate the module
performance. Results obtained from the evaluation are used
to adjust the system parameters. System performance is
evaluated using a newly recorded test set, disjoint to the
training and validation set.

A. Rectangle Detection Performance

Performance of the rectangle detector was measured using
a test set consisting of 3369 image patches containing one
speed sign and 12000 randomly cropped patches containing
no speed sign. Speed signs are centered in the patch and
scaled to the same size. To decide if a sample contains a
rectangle it is transformed, as outlined in section III-A, and
local maxima are located involving non-maxima suppression.
If a peak received a number of votes above a certain

thresholdt, it is classified as containing a rectangle. Because
only rectangles matching the search size will generate a
substantial peak there is no further constraint on the position
of the peak.
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Fig. 7: Performance of the rectangle detector for a fixed angle
threshold ǫ, and different percentagesn of largest gradients to
include in computation. Depending on the threshold the percentage
r of gradients from the input image used in the computation vary.

Detection performance and speed is further improved by
using only gradients fulfilling Equation (2) in the computa-
tion. A valueǫ = 12 representing the maximum sign rotation
due to misaligned signs and car motion was derived from
the labeled data. As described in [3] restricting the used
gradients not only results in a speed up but also improves the
detection rate. By using only then percent largest gradients
in the voting process detection speed is further increased.
Figure 7 shows the performance of the rectangle detector.
By choosing a threshold ofn = 32% only 15% of the
images gradients are used in the computation. Minimizing
the number of gradients used in the computation is crucial to
allow real-time processing. Especially when searching large
signs the necessary number of votes reduces the detector
speed. Because this detector is only integrated as interest
operator the detector threshold is adjusted for a high true
positive rate of 98%. The remaining large false positive rate
of 48% is handled by the sign detector.

B. Speed Sign Detection Performance

A total of five differently sized detectors have been trained,
covering the range of speed signs appearing in approximately
10m up to 50m distance, given camera homography. In this
respect, the smallest size is 16 and 20 pixels of sign width
and height, respectively, the largest is 38 and 48. To train
the detector a total of 2880 positive samples containing signs
with different speed limits were used. A total of0.7 times
the number of positive examples were randomly cropped
for every detector size from a set of frames containing no
traffic signs. The number of negative samples was extended
using boostrapping by15% during every iteration. Figure 8
illustrates the performance of the detector on a test set
that consists of 1233 positive patches and 100000 negative
patches. In training rounds one to four the size of the
wavelet dictionary was limited to 3000 features. By allowing
AdaBoost to select from a total of 10000 features in round
five the detector performance additionally increased.
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Fig. 8: Performance of the Speed Sign Detector for different
bootrapping rounds. Not that the size of the wavelet dictionary was
limited to 3000 in the first rounds and extended to 10000 in the
last.

For an illustration of one exemplary classifier the first
twelve features selected by AdaBoost are displayed in Fig-
ure 9. Note that the patches have twice the width and height
of the speed sign. As can be seen, many Haar wavelets focus
on the sign boundary, while some lie on the inside of the sign.

Fig. 9: Top twelve features selected by Adaboost

This classifier is integrated in the detector cascade and
adjusted to have a low false positive rate (0.01% on the test
set). Remaining responses are assumed to be speed signs and
are therefore passed on to the following stages of alignment
and speed limit classification.

C. Speed Limit Classifier Performance

The classifier was trained using 2880 aligned positive
samples. Figure 10 displays the class means derived from
the aligned training data. Evaluating the classification per-
formance on the aligned test set consisting of 1233 different
speed signs results in a classification error of 8.6%. Cluster-
ing of the data in the first three dimensions of the feature
space is illustrated in Figure 11.

Fig. 10: Class means of the training data

Fig. 11: Clustering of the feature vectors in the first three dimen-
sions of the LDA-space

D. System Performance

System performance is evaluated using video sequences
consisting of 16826 frames (673s) and 80 different speed
sign instances. Video data was recorded between 2pm and
6pm on a route which was not used to obtain training data.
Each recording was started as soon as a sign appeared in
view; just perceptible for the human observer. Accordingly,
signs are visible in the video sequence several seconds later.
After the sign was passed the recording was stopped. In
the following the system detection and classification rate are
evaluated separately to gain a better understanding of their
performance.

TABLE I: System test data and performance
Total length of test videos: 673s
Number of frames: 16826
Number of different speed sign instances: 80
Missed signs: 1
Detected but falsely classified: 2
False alarms: every 42s
Detection rate: 98.75%
Classification rate: 97.5%
Recognition rate: 96.25%

1) Detection Performance:A sign will be called detected
when it was tracked for more than two frames and passed on
to the classification module. From all appearing speed signs
in the video sequence only one was missed resulting in a
detection rate of 98.75%. Figure 12 illustrates the reason for
the mis-detection. Due to insufficient border gradients, inall
frames in which the sign was visible the rectangle detection
module rejected the sign. Detecting speed signs (without
speed limit classification) was possible with an average speed
of 27fps and a false alarm every 42 seconds.

2) Classification:Once the sign was detected it is classi-
fied as described in Section III-E. For a correct classification
of a track the majority vote has to be correct for the last frame
in which the sign was visible. Measuring the system speed
including the alignment, classification and tracking modules
results in an average processing speed of 11fps. Only two
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Fig. 12: Mis-detection caused by insufficient gradients at the sign
border.

Fig. 13: Two speed limits detected, tracked, and classified on a
countryside highway

tracks were mis-classified leading to a classification rate of
97.5%. A result of combining the different modules can be
seen in Figure 13. Two speed signs are tracked and classified.
Table I summarizes the key features of the test data and the
system.

V. CONCLUSION

We have presented a system for detection and classification
of rectangular U.S. speed signs. The system uses a mono
grayscale camera with a resolution of 700x400 pixels. Video
data can be processed in realtime on a standard 2.16GHz
dual-core laptop. Detecting speed signs is possible at an
average framerate of 27fps while detecting, tracking, and
classifying speed signs requires 11fps. Overall detectionrate
on a sample 11-minute video with 80 speed sign instances is
98.75% with one false alarm every 42 seconds, classification
rate is 97.5%, resulting in an overall recognition rate of
96.25%.

In future work, we specifically want to address a low false
alarm rate. An effective, yet easy to implement way lies in
utilizing the classifier confidence value for an additional re-
jection of non speed signs. From an application perspective,
the system needs to be adapted for the task of recognizing
variable U.S speed limits and other rectangular shaped signs.
Those can be straightforwardly integrated by extending the
classifier training samples and parameter adjustment.
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