Real-time Recognition of U.S. Speed Signs

Christoph Gustav Kellér Christoph Sprunk Claus Bahlmanh Jan Giebél and Gregory Baratoff

I Computer Science Department
Albert-Ludwigs-University Freiburg
79110 Freiburg, Germany
{ckel | er, sprunkc}@ nf ormati k. uni -frei burg. de

2 Siemens Corporate Research, Inc 3 VDO Automotive AG
755 College Road East Peter-Dornier-Str. 10
Princeton, NJ 08540 USA 88131 Lindau, Germany
cl aus. bahl mrann@i enens. com {Gregory. Baratof f, Jan. G ebel }

@ontinental -corporation.com

Abstract— In this paper a camera-based system for detection, IIl. RELATED WORK
tracking, and classification of U.S. speed signs is preseunte o )
The implemented application uses multiple connected stage  To solve the problem of traffic sign detection most systems

and iteratively reduces the number of pixels to process for follow the typical approach used in computer vision systems
recognition. Possible sign locations are detected using adt, Generally, the task at hand is structured into the subpnable

shape-based interest operator. Remaining objects other #n ) : : : - -
speed signs are discarded using a classifier similar to the dfa- of pre-processing the acquired image data using different

Jones detector. Classification results from tracked candigtes ~S€gmentation techniques, detecting signs in the image and

are utilized to improve recognition accuracy. On a standardPC ~ finally classifying them. In some systems classification is

the system reached a detection speed of 27fps with an accuyac improved by exploiting the available temporal information

of 98.8%. Including classification, speed sign recognitiomates Color based Segmentatiofraffic sign colors have been

of 96.3% were achieved with a frame rate of approximately - o . :

11fps and one false alarm every 42s. chosen b_y the traffic authorities to assure an |mmed|§1tesfocu

on the sign. Hence, pre-segmenting the image using color

I. INTRODUCTION thresholding techniques is widely described in publicadio

Advanced driver assistance systems (ADAS) for cars ha&-9-, [8], [12], [17], [22]) in order to identify a region
been evolving rapidly over the last decades. Due to tHégf interest. Because of the distinct colors used in tr_afflc
growth in computational performance these systems are alsi@ns (€.g., red, blue, yellow) most authors prefer a linear
to handle more and more tasks. As with most car assistan@e non-linear mapping from RGB to other color coordinate
systems, their goal is to improve the driver's safety ang@ystems (i.e. HSV, HSI, YIQ, etc.) which are less sensitive
comfort. Detecting traffic signs can be used to foster th#® illumination changes by decoupling color and intensity
driver's awareness of the current road situation and warn dfformation. Kehtarnavaz [12] claims that a transformatio
dangerous crossings, such as those indicated by stop signdnto the YIQ color space provides the best segmentation
system that is able to detect speed signs can ensure the dridtcome for red and yellow traffic signs. He also points out
is always aware of current speed limits and warn of oversedpat none of the different color systems provide adequate
ones. Integrated into an adaptive cruise control systen€)AC distinction qualities between black-and-white signs amel t
the driver's cognitive load can be reduced, and safe drivingackground. Unfortunately, most U.S. traffic signs havelbla
is supported. letters on white background.

Traffic sign recognition systems (TSR) can also be used Shape based Segmentatiohnother popular technique is
to ease the task of road maintenance. Assuring the vigibiliexploiting shape information derived from edge featurée T
and readability of traffic signs is an ongoing task necessary main advantage is its robustness with respect to different
maintain safety on roads. However, street signs can be cdighting conditions and the sign’s degradation. A tradib
ered by obstacles, damaged, soiled or misaligned. Equjppifethod to detect circular structures, for example circular
service cars (e.g., police cars) with a sign detection aystespeed limit signs [6] is the circular Hough transform. De-
and the according database containing pre-located pusitidt€cting straight line segments can be realized using the gen
of important signs can reduce and automate maintenangealized Hough transform. Grouping detected peaks [11] can
tasks. Most work in recent years has focused on circular
speed signs, which are used in Europe, Asia, and Australia.
In this contribution, we describe a TSR system which is
adapted for rectangular U.S. speed signs. Examples of U.
speed signs can be found in Figure 1.

The author would like to thank Prof. Burkhardt from the ChafiPattern J
Recognition and Image Processing at the University of Ergilfor his
personal and professional support. This work was conduethie the . . .
author was with Siemens Corporate Research, Princeton)Sl4, Fig. 1: Example Images of U.S. Speed Signs




be used to detect rectangles [18]. Although hardware implés detect rectangles matching the shape of a speed sign.
mentations for the generalized Hough transform exist [21{7andidates generated by the shape detector are passed on to
calculating the transformation and extracting matchingkge an AdaBoost based classifier (I1I-B) to remove rectangular
on large images is computationally too complex for reaktimsigns and objects that are not speed signs. Remaining speed
processing. signs are then passed on to the classification stage where

Barnes and Zelinsky [4] introduce a radial symmetntheir size and rotation is computed (l11-C) to allow a cotrec
detector which uses the gradient image to detect (circulamasking of the imprinted speed limit. Once the speed limit
Australian speed signs in real-time. Loy and Barnes [14% classified (l1l-D) the signs are tracked and classificatio
presented a modification of this algorithm to detect regulaesults are propagated to the next frame (llI-E) to improve
polygon-shaped signs (e.g., triangle, square, octagdm. Tthe final classification result.
regular polygon detector is implemented and extended & thi
work in order to detect rectangular speed signs in the Unitec |
States of America.

Different template matching methods exist to detect sigr|

ity, they are often applied to smaller areas that are pre, \
determined by color thresholding [22]. To improve per- === A0
formance, several techniques were proposed to speed v
template matching. Betke and Makris [5] use a simulated an SPEED
nealing algorithm for fast template matching, and Gaveia [ . ZM('T)
exploits matching properties in the distance-transform of

the image. However, these methods adapted to the task

of detecting U.S. speed signs are time-consuming due structures are detected. Then the generated candidatefasséied

template.shape and size necessary to detect Fhese SI9NS- 4 contain a speed sign. Finally speed signs are aligned and
Detection performance has been increased in many obje¢ ified.

detection applications with help of the Viola-Jones detec-
tor [23]. This detector has been applied in [1] to detect
.C|rcullar German traffic signs. Its application will _be exded A. Rectangle Detection
in this work to detect rectangular U.S. speed signs. ) i

For a more accurate determination of the exact sign loca- Loy and Barnes [14] have introduced an algorithm to
tion usually a combination of color and shape segmentatid#etect the center of regular polygons. The algorithm operat
is used. Edge [19], ring [20] and other features are used? the normalized gradients of a gray scale image and
to detect the outline of a sign with relative robustness tgses an accumulator image that receives votes for possible
occlusion and distortion. centers of a regular polygon. All gradients with a magnitude

Classification: The final classification of the sign is usu-above a certain threshold [2] and a certain orientation [3]
ally done by one of the common classifiers (Support Vectd¥ill be considered in a scan-line order. Our algorithm is
Machines [13], Neural Networks [22], Nearest Neighbor [5]Pased on the same basic idea that a rectangular structure
Radial Basis Functions [10], etc.). Most often, the intgnsi Yields gradients with high magnitudes at its borders. U.S.
image of the candidate region is passed on to the classifiéi€ed signs are not regular but rectangular with fixed aspect

Tracking: Tracking candidate signs from frame to framefatio. By assuming an upright orientation of a speed sign
allows redefining and restricting the region of interest t¢he algorithm is extended to consider the orientation of a
speed up the classification process [7]. In [16] the trackihg gradient. Depending on the orientation the length of the
detected signs is realized by using a Kalman-filter fram&wowvoting line is adjusted to allow a detection of U.S. speed
with the assumption of a constant straight car movemerftigns. Figure 3 illustrates the voting process for gradient
Bahlmann et al. [1] update the classification confidence byith horizontal or vertical orientation.
cons_lderlng and re-weighting classification decisionanfro B. Speed Sign Detection
previous frames.

These techniques have mainly been used to detect circulatsing the rectangle detector already reduces the number
speed signs. To the best of our knowledge only Moutard®f possible positions containing a traffic sign. However, it
et al. [15] applied a combination of shape based detectici@nnot distinguish between structures within the image tha
and neural network classification on rectangular U.S. speé@d€ rectangular and other rectangular traffic signs. Uafort

. 2. Speed sign detection and classification: First regea

signs. nately, there are various structures in natural video sene
that can be confused with the rectangular shape of a traffic

I1l. TRAFFIC SIGN RECOGNITION SYSTEM sign. Additionally, many traffic signs beside speed signs ca
ARCHITECTURE be detected as false positives because of their rectangular

The system workflow can be divided into three differenshape. To assure that only the speed limit signs will be
stages: Detection, classification, and tracking. In theaet further analyzed, a classifier is needed to reject objects in
tion stage each input frame is processed to detect speesl sigime image that are no speed signs. Again this classifier must
of a fixed size. The search size is selected from a predefinidfill the demand to process in real-time. To address this
range of sign sizes and is changed for every frame. Figureigsue, a classifier based on the method of Viola-Jones [23]
describes the detection process for a speed sign. A faseé shap used. We will not further explain its usage but focus on
based interest operator (Ill-A) is applied to the input imagthe training and test results in section IV-B.
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Fig. 3: Voting process_fpr one bo_ro!er point. N(_)tation is iﬂyga_ken 2) Sign Size:The detector size from the sign detection
fbrortr;l [li] and [2]. Pos'ct;ons receiving ab“egﬁ.t"’e vote am”;}?:é stage provides a rough estimate of the sign size and center.
y black segments and positive votes by white segments ;
line. Length of Fhe vqting line and offset are adjusted dejpanon Eﬂorfe_zccﬂr?rt]e \;ﬁgerse&;:]h?se dz?égtrig %teil;ls ;agn?gnoﬁ);aclgle d
the gradient orientation. y pplying gl€ ’ .
neighborhood around the initial parameters, and computing
the maximum in this 3D position-scale space.
; . Using the computed position, size and rotation the actual
speed limit can be masked, rotationally rectified and passe
C. Sign Alignment d limit can be masked, rotationally rectified and passed

_The sign classification stage assumes accurately aligngf| to the classification. Figure 5 illustrates the alignment
sign images, as will be shown later. This constraint is iRjteps,

general not fulfilled, partly because traffic signs are of-

ten slightly rotated, partly because the AdaBoost detactio
operates on a coarse scale resolution. To this end, ot
architecture employs an explicit processing that estimate | seeeo|

LIMIT |

location and rotation parameters of the speed sign usin |55

robust voting. Subsequently, the image can be accuratelgh

normalized according to those parameters. -
1) Rotation: To estimate the rotation we make use of the  (a) (b) (©) (d) (e)

traffic sign’s edges, one of its most distinctive charastas.

An upright (rotationally aligned) sign should yield horital ~ Fig. 5: Alignment using the rectangle detector and estichatéa-

and vertical gradients for the sign's outer edges as thdipn- (8) Rough size and position estimate provided by spsigul

usually contrast strongly with the sign’s inner area, an etection. (b)-(d) Retrieval of exact sign position andestiarough
: : repeated application of the rectangle detector: (b) andskow
sometimes also the background (compare Figure 1). In ”1’ sponse maps for different rectangle sizes, (d) displegtangle

respect, a rotation of the traffic sjgn by an anglanslates ., osnonding to best response. (e) Alignment data alloaping
into a rotation of its outer edges’ gradients by the s#ne of the rotationally rectified area of interest for classifica.

In our system§ is estimated using histogram voting. We
aim to combine votes from all four main gradient direc-
tions in a rectangle (i.e., horizontal up/downwards, eeiti p. Speed Limit Classification
left/right) into one single bin. Hence, the gradients arst fir
transformed by

At a final stage speed signs are classified into a set of

o = a mod 90° Q) given speed limits. For this, we assume a unimodal Gaussian
' distribution for each class’ data samples, and employ a nor-
Here, we assumemod 90° mapping to(—45°, 45°]. mal distribution classifier following an LDA feature transf

Then, the transformed gradient directions perform a mation. This assumption is justified by the small intra-glas
Gaussian kernel vote with bins of widtli. Figure 4 shows variations of the signs and the previous accurate alignment
a histogram for an example image. The rotation arfjle stage. A vecto# € R, consisting of the most discriminative
estimated from the histogram maximum, can then be usdxsis vectors of the LDA, is classified by maximizing the

to rectify the sign. likelihood of a correct classification according to:
Similar to the rectangle detection (llI-A), computational . . Lo
speed and accuracy can be increased by restricting thegvotin k= arg;mn{dﬁk(x’ i)}
to pixels that meet constraints in gradient directighand i
magnitudem, more specifically, wherey;, represents the class mean in the feature space and
o] <€ ) ds, (2,5) = /(@ - DTS @ - )
m > t. 3)

is the Mahalanobis distance using the class covariahce
e andt are parameters, to be determined. feature space.



thresholdt, it is classified as containing a rectangle. Because
only rectangles matching the search size will generate a
substantial peak there is no further constraint on the iposit

of the peak.
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Fig. 6: Accumulated classifier decisions for a tracked spsgd
using a majority voting scheme.
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Speed signs are tracked within a temporal information N et et el
propagation framework, which takes into account 2D image L . .

location and scale of the sign, the camera homography, and

vehicle CAN bus data. The independent classifier de.c's'o'ﬁg. 7: Performance of the rectangle detector for a fixed eng|
Y = [y1...yn] for a track of lengthn can be fused into ipresholde, and different percentages of largest gradients to
a single decision, since the class membership of a track jiflude in computation. Depending on the threshold theeseiege
not expected to change over We require the fusion to r of gradients from the input image used in the computatiory.var
be robust to outliers, as a speed sign can be occluded or

simply misaligned. Majority voting is known to fulfill this  petection performance and speed is further improved by

requirement. Given using only gradients fulfilling Equation (2) in the computa-
S [y = K] tion. A valuee = 12 representing the maximum sign rotation
c(k) = %, due to misaligned signs and car motion was derived from

- . .. the labeled data. As described in [3] restricting the used
describing the fraction of votes for each class, majority agients not only results in a speed up but also improves the
voting determines the classifier resporisby detection rate. By using only the percent largest gradients

in the voting process detection speed is further increased.
Figure 7 shows the performance of the rectangle detector.

Figure 6 illustrates the class assignment for a trackeddspeBY €hoosing a threshold ok = 32% only 15% of the
sign. In our experiments this majority voting scheme provelfiages gradients are used in the computation. Minimizing

to be very robust against accidental misclassificationt wit€ number of gradients used in the computation is crucial to
high confidence. allow real-time processing. Especially when searchingdar

signs the necessary number of votes reduces the detector
IV. EXPERIMENTS AND RESULTS speed. Because this detector is only integrated as interest

To evaluate the performance of the modules 119 minut@perator the detector threshold is adjusted for a high true
of video, recorded on several trips between noon and 4pR@sitive rate of 98%. The remaining large false positive rat
were manually labeled. The videos contained a total ¢if 48% is handled by the sign detector.

152 different instances of speed limit signs in 4354 frame% Speed Sian Detection Perf
Video data was acquired using a gray scale camera witha peed sigh Deteclion Ferformance

resolution of750 x 400 pixels at a frame rate of 25 frames A total of five differently sized detectors have been trained

per second. Depending on the module task the labeled dat&@yvering the range of speed signs appearing in approxiynatel
split into training and validation data to evaluate the medu 10m up to 50m distance, given camera homography. In this
performance. Results obtained from the evaluation are uskgbpect, the smallest size is 16 and 20 pixels of sign width
to adjust the system parameters. System performanceagd height, respectively, the largest is 38 and 48. To train
evaluated using a newly recorded test set, disjoint to tHBe detector a total of 2880 positive samples containingssig

k = argmax c(k).
k

training and validation set. with different speed limits were used. A total 0f7 times
) the number of positive examples were randomly cropped
A. Rectangle Detection Performance for every detector size from a set of frames containing no

Performance of the rectangle detector was measured usingffic signs. The number of negative samples was extended
a test set consisting of 3369 image patches containing onsing boostrapping by5% during every iteration. Figure 8
speed sign and 12000 randomly cropped patches containiiigstrates the performance of the detector on a test set
no speed sign. Speed signs are centered in the patch dhdt consists of 1233 positive patches and 100000 negative
scaled to the same size. To decide if a sample containspatches. In training rounds one to four the size of the
rectangle it is transformed, as outlined in section Ill-Ada wavelet dictionary was limited to 3000 features. By allogvin
local maxima are located involving non-maxima suppressiordaBoost to select from a total of 10000 features in round
If a peak received a number of votes above a certaifive the detector performance additionally increased.
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Fig. 11: Clustering of the feature vectors in the first thr@aeh-
sions of the LDA-space

For an illustration of one exemplary classifier the first
twelve features selected by AdaBoost are displayed in Fig2- System Performance

ure 9. Note that the patches have twice the width and heightSystem performance is evaluated using video sequences

of the speed sign. As can be seen, many Haar wavelets foghsisting of 16826 frames (673s) and 80 different speed
on the sign boundary, while some lie on the inside of the sigRign instances. Video data was recorded between 2pm and

Fig. 9: Top twelve features selected by Adaboost

6pm on a route which was not used to obtain training data.
Each recording was started as soon as a sign appeared in
view; just perceptible for the human observer. Accordingly
signs are visible in the video sequence several seconds late
After the sign was passed the recording was stopped. In
the following the system detection and classification ra¢e a
evaluated separately to gain a better understanding af thei
performance.

TABLE |: System test data and performance

Total length of test videos: 6735
'_I'his classifier is integrated in_ _the detector cascade and Hﬂmgg g; gﬁf@risrit speed sign instances: 1682680

adjusted to have a low false positive rate (0.01% on the test [—issed signs: 1

set). Remaining responses are assumed to be speed signs andl petected but falsely classified: b

are therefore passed on to the following stages of alignment | False alarms: every 425
and speed limit classification. Detection rate: 98.759
Classification rate: 97.59
C. Speed Limit Classifier Performance Recognition rate: 96.259

The classifier was trained using 2880 aligned positive . ) .
samples. Figure 10 displays the class means derived froml) Detection PerformanceA sign will be called detected
the aligned training data. Evaluating the classification peWhen it was tracked for more than two frames and passed on
formance on the aligned test set consisting of 1233 diftereff the classification module. From all appearing speed signs
speed signs results in a classification error of 8.6%. Qlustel the video sequence only one was missed resulting in a
ing of the data in the first three dimensions of the featyrdetection rate of 98.75%. Figure 12 illustrates the reason f

space is illustrated in Figure 11.

025303540
AS 5055 &8

Fig. 10: Class means of the training data

the mis-detection. Due to insufficient border gradientslin
frames in which the sign was visible the rectangle detection
module rejected the sign. Detecting speed signs (without
speed limit classification) was possible with an averagedpe
of 27fps and a false alarm every 42 seconds.

2) Classification: Once the sign was detected it is classi-
fied as described in Section llI-E. For a correct classiforati
of a track the majority vote has to be correct for the last fram
in which the sign was visible. Measuring the system speed
including the alignment, classification and tracking medul
results in an average processing speed of 11fps. Only two



Fig. 12: Mis-detection caused by insufficient gradientshat $sign
border.
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Blue Frame: Sign size detected by alignment
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countryside highway

tracks were mis-classified leading to a classification réte ([)
97.5%. A result of combining the different modules can b
seen in Figure 13. Two speed signs are tracked and classifi

Speed limit by majority vote,

Cut-out numbers used for classification

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

14]

b

Table | summarizes the key features of the test data and the

system.

V. CONCLUSION

[16]

We have presented a system for detection and classificatit]
of rectangular U.S. speed signs. The system uses a mono
grayscale camera with a resolution of 700x400 pixels. Videps]
data can be processed in realtime on a standard 2.16GHz

dual-core laptop. Detecting speed signs is possible at

average framerate of 27fps while detecting, tracking, an

classifying speed signs requires 11fps. Overall detectits

on a sample 11-minute video with 80 speed sign instances!fd]
98.75% with one false alarm every 42 seconds, classification
rate is 97.5%, resulting in an overall recognition rate of21]

96.25%.

In future work, we specifically want to address a low false

alarm rate. An effective, yet easy to implement way lies i
utilizing the classifier confidence value for an additiore r

2

jection of non speed signs. From an application perspective

the system needs to be adapted for the task of recognizi
variable U.S speed limits and other rectangular shaped sig

Those can be straightforwardly integrated by extending the

classifier training samples and parameter adjustment.
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