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Abstract— This paper describes a computer vision based sys-
tem for real-time robust traffic sign detection, tracking, and
recognition. Such a framework is of major interest for driver
assistance in an intelligent automotive cockpit environment. The
proposed approach consists of two components. First, signs are
detected using a set of Haar wavelet features obtained from Ada-
Boost training. Compared to previously published approaches,
our solution offers a generic, joint modeling of color and
shape information without the need of tuning free parameters.
Once detected, objects are efficiently tracked within a temporal
information propagation framework. Second, classification is
performed using Bayesian generative modeling. Making use of the
tracking information, hypotheses are fused over multiple frames.
Experiments show high detection and recognition accuracy and a
frame rate of approximately 10 frames per second on a standard
PC.

I. INTRODUCTION

In traffic environments, signs regulate traffic, warn the

driver, and command or prohibit certain actions. A real-time

and robust automatic traffic sign recognition can support and

disburden the driver, and thus, significantly increase driving

safety and comfort. For instance, it can remind the driver of the

current speed limit, prevent him from performing inappropriate

actions such as entering a one-way street, passing another car

in a no passing zone, unwanted speeding, etc. Further, it can

be integrated into an adaptive cruise control (ACC) for a less

stressful driving. In a more global context, it can contribute

to the scene understanding of traffic context (e.g., if the car is

driving in a city or on a freeway).

In this contribution, we describe a real-time system for

vision based traffic sign detection and recognition. We focus

on an important and practically relevant subset of (German)

traffic signs, namely speed-signs and no-passing-signs, and

their corresponding end-signs, respectively. A few sign ex-

amples from our dataset are shown in Figure 1.

The problem of traffic sign recognition has some beneficial

characteristics. First, the design of traffic signs is unique, thus,

object variations are small. Further, sign colors often contrast

very well against the environment. Moreover, signs are rigidly

Figure 1: Examples of traffic signs. Note that data are available

in color.

positioned relative to the environment (contrary to vehicles),

and are often set up in clear sight to the driver.

Nevertheless, a number of challenges remain for a success-

ful recognition. First, weather and lighting conditions vary sig-

nificantly in traffic environments, diminishing the advantage of

the above claimed object uniqueness. Additionally, as the cam-

era is moving, additional image distortions, such as, motion

blur and abrupt contrast changes, occur frequently. Further,

the sign installation and surface material can physically change

over time, influenced by accidents and weather, hence resulting

in rotated signs and degenerated colors. Finally, the constraints

given by the area of application require inexpensive systems

(i.e., low-quality sensor, slow hardware), high accuracy and

real-time computation.

II. RELATED WORK

Related work can be found in machine learning, general

object detection and intelligent vehicle literature.

A. Machine learning and object detection

In recent years, the performance of many object detection

applications has received a boost by the “Viola-Jones” detec-

tor [11], an approach that discriminates object from non-object

image patches with help of machine learning techniques. Its

main idea is to generate an over-complete set of (up to 100000)

efficiently computable Haar wavelet features, combine them

with simple threshold classifiers, and utilize AdaBoost [9] to

select and weight the most discriminative subset of wavelet

features and threshold classifiers. Supported by an efficient

wavelet feature computation with help of the so-called integral

image and a cascaded classifier setup, those systems were



shown to be able to solve many practical problems in real-

time [12, 14].

B. Traffic sign recognition

The vast majority of published traffic sign recognition

approaches utilizes at least two steps, one aiming at detection,

the other one at classification, that is, the task of mapping the

detected sign image into its semantic category.

Regarding the detection problem, several different ap-

proaches have been proposed. Among those, a few rely solely

on gray-scale data. Gavrila [5] employs a template based

approach in combination with a distance transform. Barnes

and Zelinsky [1] utilize a measure of “radial symmetry”

and apply it as a pre-segmentation within their framework.

Since radial symmetry corresponds to a simplified (i.e., fast)

circular Hough transform, it is particularly applicable for

detecting possible occurrences of circular signs. A hypothesis

verification is integrated within the classification. The authors

report very fast processing with this method.

The majority of recently published sign detection ap-

proaches make use of color information [2, 3, 6, 7, 10,

13]. They share a common two-step strategy. First, a pre-

segmentation is employed by a thresholding operation on the

individual author’s favorite color representation. Some authors

perform this directly in RGB space, others apply linear or

nonlinear transformations of it. Subsequently, a final detection

decision is obtained from shape based features, applied only

to the pre-segmented regions. Researchers use, for instance,

corner [3] or edge [13] features, genetic algorithms [2], or

template matching [10]. An active vision strategy is pursued

by Miura et al. [6], where a second camera is used to get a

high resolution image of the pre-segmented region.

The drawback of this sequential appliance of color and

shape detection is as follows. Regions that have falsely been

rejected by the color segmentation, cannot be recovered in

the further processing. A joint modeling of color and shape

can overcome this problem. Additionally, color segmentation

requires the fixation of thresholds, mostly obtained from a time

consuming and error prone manual tuning.

A joint treatment of color and shape has been proposed by

Fang et al. [4]. The authors compute a feature map of the entire

image frame, based on color and gradient information, while

incorporating a geometry model of signs. Still, their approach

requires a manual threshold tuning, and it is reported to be

computationally rather expensive.

For the classification task, most systems utilize techniques

from the inventory of well studied classification schemes, such

as, template matching [1, 6], multi-layer perceptrons [3, 10],

radial basis function networks [5], Laplace kernel classifiers

[7], etc.

A few approaches employ a temporal fusion of frame based

detections to obtain a more robust overall detection [8]. This,

however, requires some sort of tracking framework.

The contribution of this paper in the context of the above

reviewed literature is two-fold. It describes (i) an integrated

approach for color and shape modeling for general object
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Figure 3: Example of a Haar wavelet.

detection applications, without the need of manually tuning

thresholds, and, based on this, (ii) a system for a robust and

real-time traffic sign detection and recognition.

III. TRAFFIC SIGN RECOGNITION SYSTEM

ARCHITECTURE

The proposed sign recognition system is founded on a com-

bination of two components. This includes (i) a detection and

tracking framework, based on AdaBoost, color sensitive Haar

wavelet features, and a temporal information propagation, and

(ii) a Bayesian classification with temporal hypothesis fusion.

The architecture of this system is illustrated in Figure 2, and

its details are given in the following.

A. AdaBoost detection and tracking with joint color and shape

modeling

The detection is addressed by a patch based approach, which

is motivated by the work of Viola and Jones [11]. Their

approach assigns an image patch xi (taken as a vector) into

one of the two classes “object” (yi ≥ 0) and “non-object”

(yi < 0) by evaluating

yi = sign

(

T
∑

t=1

αt sign (〈ft,xi〉 − θt)

)

, (1)

with 〈·, ·〉 the inner product. The filter masks ft (taken as a

vector) usually describe an over-complete set of Haar wavelet

filters, which are generated by varying particular geometric

parameters, such as, their relative position (a, b), width w and

height h (see Figure 3 for an example). An optimal subset of

those wavelets, as well as the weights αt and classifier thresh-

olds θt are obtained from the AdaBoost training algorithm [9].

Details are given in the above mentioned references.

Novel contribution of the proposed approach is a joint color

and shape modeling within the AdaBoost framework, as will

be described as follows.

For the application of traffic sign recognition, color repre-

sents valuable information, as most of the object color is not

observed in typical background patterns (e.g., trees, houses,

asphalt, etc.).

In fact, AdaBoost provides a simple but very effective lever-

age for this issue, when it is interpreted as a feature selection:

Previously, AdaBoost has been used to select (and weight)

a set of wavelet features, parameterized by their geometric

properties, such as, position (a, b), width w, or height h. Those
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Figure 2: Architecture for the proposed traffic sign recognition system: An algorithm based on AdaBoost and color sensitive

Haar wavelet features detects appearances of signs at each frame t. Once detected, objects are tracked, and individual detections

from frames (t − t0, . . . , t) are temporally fused for a robust overall detection. In the figure, this is indicated by the cross-

linked arrows. Following, the sign is circularly masked and normalized with respect to position, scale and brightness. Finally,

classification is performed based on the Bayesian paradigm, including another temporal hypotheses fusion.

wavelets have been typically applied to patches of gray-scale

images.

In situations, where color instead of gray-scale information

is available, no general guidance exists for choosing, which

color representation should be used, or how they could be

optimally combined within a linear or nonlinear color trans-

formation. This not only applies to AdaBoost, but is a general

matter of disagreement among researchers.

At this point, one contribution of this paper applies: If we

regard the color representation to be operated on as a free

wavelet parameter, side by side to a, b, w, and h, we can

achieve a fully automatic color selection within the AdaBoost

framework.

The variety of the color representations to be integrated

are not limited to R, G, and B. We can incorporate prior

domain knowledge by adopting linear or non-linear color

transformations. One beneficial property of this modeling is

that these transformations are only “proposals” to the Ada-

Boost training. In principle, each combination in color and

geometric space can be proposed. The AdaBoost framework is

designed to select the most effective and disregard ineffective

ones. The variety of the “proposals” is solely limited by the

computational and memory resources.

For our particular application of traffic sign detection, we

propose the following seven color representations:

1) the plain channels R, G, and B,

2) the normalized channels r = R/S, g = G/S, and b =
B/S with S = R + G + B, and

3) the gray-scale channel S/3.

A result of the AdaBoost training for the traffic signs (the

setup will be described in Section IV) is illustrated in Figure 4

by means of the top six (i.e., maximum weighted) wavelets.

In other words, those six wavelets correspond to the feature

Figure 4: Top six Haar wavelets of a sign detector from left

to right. The pixels below the white areas are weighted by

+1, the black area by −1. The here illustrated filter masks

are parameterized by their width w, the height h, and relative

coordinates a and b. The background “coloring” indicates the

color channel the individual features are computed on, in this

example corresponding to r, R, G, r, S/3, g.

extractors most significant for the present application. One

conclusion is very notable for this example. The most valuable

information is selected from the color representations, in this

case, r, R, and G, corresponding to the frequently observed red

ring in the positive and trees in the negative sample set. This

underlines the usefulness of color in the present application.

We conclude this section about the detection with a few

remarks. As the pursued patch based detection is not scale

invariant, different detectors are trained for a number of

discrete scales. After detection, an estimate of detected sign

parameters (i.e., position (a0, b0) and scale r0) can be obtained

from the maxima in the response map of respective detectors.

Once detected, a sign is tracked using a simple motion

model and temporal information propagation. For a more

robust detection, we fuse the results of the individual frame

based detections to a combined score. More details are given

by Zhu et al. [14] in the context of vehicle detection.

B. Normalization

Based on the estimated sign parameters from the detection,

(a0, b0, r0), the following normalization steps are pursued (cf.



also Figure 2):

1) A circular region with diameter 2r0 is extracted from

the sign patch.

2) The image is converted to gray-scale, its brightness is

normalized by histogram equalization.

3) The resulting image is scaled to a normalized resolution,

in order to be compatible to the classifier.

C. Classifier design

The classification framework is based on the generative

paradigm, employing unimodal Gaussian probability densities.

Prior to the probabilistic modeling, a feature transformation is

performed, using standard linear discriminant analysis (LDA).

In this respect, a feature vector x ∈ R
25 of the sign pattern

comprises the first 25 most discriminative basis vectors of the

LDA.

1) Training: For each class l ∈ {1, . . . , L}, a probability

density function p (x|l) is estimated based on a unimodal

multivariate Gaussian

p (x|l) = N
µ

(l)
x

,Σ
(l)
x

(x) , (2)

thus the entire classifier is determined by L pairs of mean and

covariance
(

µ
(l)
x ,Σ

(l)
x

)

.

2) Classification: Given a feature vector x
(t) from the test

sequence at frame t, a maximum likelihood (ML) approach

implies a classification decision l̂, which is defined by

l̂ = argmin
l

{

d
(

x
(t),
(

µ
(l)
x

,Σ(l)
x

))}

(3)

and

d
(

x
(t),
(

µ
(l)
x

,Σ(l)
x

))

= − ln
(

p
(

x
(t)|l
))

(4)

The classification performance can further be improved by

taking into account the temporal dependencies. Given a feature

sequence X
(t0) =

[

x
(1), . . . ,x(t0)

]

, obtained from the above

depicted tracking, the classifier decision can be combined

from the observations so far seen. Assuming the statistical

independence of x
(1), . . . ,x(t0), a combined classification

distance is given by

d
(

X
(t0),

(

µ
(l)
x

,Σ(l)
x

))

= − ln

(

t0
∏

t=1

p
(

x
(t)|l
)

)

=

t0
∑

t=1

d
(

x
(t),
(

µ
(l)
x

,Σ(l)
x

))

(5)

From a practical point of view, it can be worthwhile to weight

the impact of the individual frames differently, that is,

d
(

X
(t0),

(

µ
(l)
x

,Σ(l)
x

))

=

t0
∑

t=1

πtd
(

x
(t),
(

µ
(l)
x

,Σ(l)
x

))

.(6)

In our preliminary experiments we have chosen

πt = at0−t (7)

with a < 1. This is motivated from the fact that the traffic

signs get bigger in later frames, resulting in a more accurate

frame based classification.

Probabilistic confidence measures for the classification are

provided by means of the posterior probability for each class

l′,

p
(

l′|x(t)
)

=
p
(

x
(t)|l′

)

P (l′)
∑

l p
(

x(t)|l
)

P (l)
. (8)

The priors P (l) can be taken uniformly, or could be chosen to

reflect known information about the traffic environment (e.g.,

city or freeway situation).

IV. EXPERIMENTS AND RESULTS

We have performed extensive benchmarking on the above

described system, based on 30 minutes of traffic sign video

material. The frame resolution in the videos is 384 × 288,

typical signs appear in 10–55 pixels diameter. The scenario

in the videos includes urban, highway, and freeway traffic,

taken during both day and night time. Weather conditions are

cloudy and sunny. It should be stated that the data is very

difficult as most of the signs appear only in small resolution,

that is, smaller than 20 pixels diameter.

A. Individual detection and classification performance

In a first experimental setup, we separately evaluate the

detection and classification modules, as described in Sec-

tions III-A and III-C, respectively. For this, we labeled ap-

proximately 4000 positive (out of 23 sign classes) and 4000
negative samples out of the videos. The amount of positive

training samples per class varies from 30 to 600. Detectors

have been trained on five discrete scales, corresponding to a

sign diameter of 14, 20, 28, 40, and 54 pixels. The test data set

comprises approximately 1700 positives and 40000 negatives,

and is disjoint to the training set. A summary of the results is

given in Table I.

1) Detection: The system described above has been evalu-

ated to 1.4% false negative rate (DFNR, i.e., miss detections)

and 0.03% false positive rate (DFPR, i.e., false alarms). These

rates are the mean values of experiments for the five different

scales.

An interesting question concerns the impact of the proposed

color modeling. In this respect, we performed the correspond-

ing experiment, as described above, using only the plain

gray-scale color representation (i.e., using only the gray-scale

channel S/3). There, a false negative rate 1.6% was achieved,

similar to the color based detection. However, the false positive

rate increased to 0.3%, which is one magnitude higher. This

result can be interpreted as a clear indicator for the usefulness

of color in traffic sign detection.

2) Classification: For the evaluation of the classification

method we used the same disjoint (positive) data sets as

described above, scaled to a normalized resolution. Within this

framework, the classification error rate (CER) has been eval-

uated to 6%. Most classification errors result from confusions

between similar classes (e.g., “speed limit 60” vs. “speed limit

80”, “speed limit 100” vs. “speed limit 120”) and from low

resolution test samples.



DFNR DFPR CER SRER

Proposed System 1.4 % 0.03 % 6% 15 %

Proposed System
1.6 % 0.3 %

only gray-scale

Table I: Summary of the detection false negative rate (DFNR),

false positive rate (DFPR), classification error rate (CER), and

the system recognition error rate (SRER). We compare the

proposed system (upper row) with a variation of it, where

detection is solely based on gray-scale data (lower row). The

DFNR are comparable, however, the color based approach

leads to 10 times less DFPR. The CER in a patch based

classification is 6% for the proposed system. While the first

three error rates are measured from isolated patches and on

predefined object scales, the SRER evaluates the whole system

performance in the context of entire video sequences including

tracking and temporal fusion.

B. Overall system performance

In a second evaluation setup, we tested the performance of

the entire detection, tracking, and recognition system, as de-

scribed in Section III. For the notation of “system recognition

error rate” (SRER), we count the fraction of traffic signs, that

have been misclassified at their last detected appearance in the

entire image sequence, or have been missed in the detection.

With this convention, we measured 15% SRER on a video

test set disjoint to the training videos, allowing only very few

false positive detections (approximately 1 every 600 frames).

Notably, the SRER is higher than the combined error of

the 1.4% DFNR and 6% CER from the individual detection

and classification evaluation. An explanation of this fact lies

in the discrete nature of the detection scales. In the system

evaluation of the previous section, the object size in the test

set matches the size the detector is particularly trained for. In

the video based performance evaluation, as discussed in this

section, object sizes appear on a continuous range. In cases

where object size and classifier size differ, the detector needs

to extrapolate, leading to a less accurate performance.

Figure 5 illustrates examples of correctly and incorrectly

recognized signs in various traffic environments.

The run time of the entire system is approximately 10
frames per second on a 2.8 GHz Intel Xeon processor.

In the context of Equation (1), at most T = 200 Haar

wavelets need to be evaluated for the here described results. As

we use a cascading-like architecture [11], much less wavelets

are computed in average.

V. CONCLUSION

We have described a traffic sign detection, tracking, and

recognition system, focusing on 23 classes of German speed-

signs and no-passing-signs. In an intelligent automotive cock-

pit environment, such a system could serve as a speed limit

reminder for the driver. The system integrates color, shape,

and motion information. It is built on two components, that

is, a detection and tracking framework, based on AdaBoost and

Haar wavelet features, and a classifier, based on a Gaussian

probability density modeling.

The main contribution of this paper is a joint modeling

of color and shape within the AdaBoost framework. Beside

the benefit of the integrated modeling, this approach has the

additional advantage that no free parameters have to be tuned

manually. The proposed modeling is a generic concept and

can find its application in many additional detection problems

that are based on color data.

In addition, the detection and classification have been aug-

mented by temporal information fusion. By this modeling,

the robustness of the recognition system could further be

improved.

Experiments have shown an accurate sign detection and

classification performance with near real-time processing. Fur-

ther, the impact of the proposed color modeling has been

demonstrated in a comparative study.

In future work, we want to tackle a number of challenges

for further improvement in computational speed and the recog-

nition accuracy. In this respect, we are planning to address

the following issues: The incorporation of scene and motion

modeling, in combination with projective geometry, can both

reduce the computational cost and detection errors.

Experiments have shown inferior performance for the de-

tection and classification of objects, the size of which is not

exactly covered by one of the detectors. In this sense, we plan

to study a fusion in scale space, where detector responses are

combined from different scales in a systematic way.
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